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Abstract 

Knowledge graph (KG) fact prediction aims to complete a KG by determining the truthfulness of predicted triples. 
Reinforcement learning (RL)-based approaches have been widely used for fact prediction. However, the existing 
approaches largely suffer from unreliable calculations on rule confidences owing to a limited number of obtained 
reasoning paths, thereby resulting in unreliable decisions on prediction triples. Hence, we propose a new RL-based 
approach named EvoPath in this study. EvoPath features a new reward mechanism based on entity heterogeneity, 
facilitating an agent to obtain effective reasoning paths during random walks. EvoPath also incorporates a new post-
walking mechanism to leverage easily overlooked but valuable reasoning paths during RL. Both mechanisms provide 
sufficient reasoning paths to facilitate the reliable calculations of rule confidences, enabling EvoPath to make precise 
judgments about the truthfulness of prediction triples. Experiments demonstrate that EvoPath can achieve more 
accurate fact predictions than existing approaches.
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Introduction
A knowledge graph (KG) structurally organizes facts and 
knowledge in the form of triples [1]. A triple is expressed 
as (head entity, relation, tail entity), such as (Elton_Brand, 
Athlete_plays_in_league, NBA). A KG cannot involve 
all the facts in an application domain, which is known 
as incompleteness [2]. Fact prediction is a widely used 
method to add new facts for a KG [3]. Given that a pre-
diction triple is not involved, its head entity, relation, and 
tail entity independently exist in a KG. Fact prediction 
determines whether the prediction triple is true based on 
the existing triples in the KG. If the result is true, the pre-
diction triple will be added as a new fact into the KG.

Two-staged reinforcement learning (RL)-based 
approaches are currently the mainstream methods for 
fact prediction [4]. The first is a training stage where 
an RL-based agent conducts a reasoning path-finding 
process to extract rules for a target relation. All the tri-
ples whose relations are the target relation in a KG are 
used as training facts/samples. Taking the rule Athlete_
plays_in_league = Athlete_plays_for_team → Team_
plays_in_league, Athlete_plays_in_league as an example, 
Athlete_plays_in_league is the rule head (i.e., the target 
relation), and Athlete_plays_for_team → Team_plays_in_
league is the ruling body. This rule is extracted based on 
one or multiple reasoning paths between the head and 
tail entities of training samples, as illustrated by the blue 
path in Fig. 1 (a). The agent assigns any rule a confidence 
value. A high value indicates that the paths correspond-
ing to the rule frequently occur. The second stage is the 
predicting stage, where the extracted rules are unitized 
to determine whether a prediction triple is true. First, 
the agent considers the top k (e.g., 3) high-confidence 
rules for fact prediction. The target relation of these rules 
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equals the relation of the prediction triple. Further, the 
agent extracts all relation chains within n hops (e.g., 50) 
between the head and tail entities of the prediction tri-
ple. Finally, if any chain matches one of these rules, the 
prediction triple is considered true. Considering the 
prediction triple in Fig.  1 (b) as an example, a relation 
chain between Vince_Carter and NBA (marked in blue) is 
deemed equal to the rule body of the example mentioned 
above rule. Thus, the prediction triple is considered true.

However, RL-based approaches often encounter reli-
ability issues of rule confidence, embodying two aspects: 
(1) some high-confidence rules are not necessarily true 
in the real world, and (2) some low-confidence rules con-
form to common sense, resulting in false positives and 
negatives in prediction, respectively. For example, given 
a high-confidence rule: Athlete_plays_in_league = Ath-
lete_home_stadium → League_stadiums_inverse, indicat-
ing that given an athlete playing in a league equals the one 
playing in a home stadium, the home stadium is used by 
the league. This rule does not always meet real-world facts 
because multiple leagues can share a stadium. As shown in 
Fig. 1 (c), the triple (Al_Jefferson, Athlete_plays_in_league, 
NHL) would be true using the given high-confidence rule. 
However, this result is a false positive because Al_Jeffer-
son plays in NBA. Conversely, given a low-confidence rule: 

Team_plays_sport = Athlete_plays_for_team_inverse → 
Athlete_plays_sport, indicating that a team playing a sport 
equals the team having an athlete who is playing the sport. 
This rule is in line with common sense. However, such a 
low-confidence rule is probably excluded from the top k 
rules, thereby being underused in fact prediction.

The main reason for the unreliability problem is that 
the reasoning path-finding process may obtain ineffective 
reasoning paths. In ineffective reasoning paths, an agent 
cannot walk from the head entity to the tail entity during 
a random walk. In this study, we propose a new RL-based 
approach (“Methods” section) to address the unreliability 
problem, improving traditional RL-based approaches by 
providing a new reward mechanism based on entity het-
erogeneity and a new postwalking mechanism.

Entity heterogeneity is the core factor in obtaining 
ineffective reasoning paths during a random walk where 
each step goes from a step-starting entity to a step-end-
ing entity along a step relation. Typically, a step relation 
(e.g., Team_plays_sport_inverse in Fig. 1 (a)) is connected 
to multiple types of ending entities (e.g., La_clippers and 
Middle_tennessee_state in Fig. 1 (a); the two teams belong 
to different leagues, namely, NBA and NCAA​, respec-
tively), thereby presenting a certain entity heterogeneity. 
A step-starting entity (e.g., Basketball in Fig.  1 (a)) has 

Fig. 1  Illustrations of RL-based KG fact prediction. (a) A training sample and its partial walking space for an RL-based agent. The black relation 
is a rule head for rules extracted. The blue path is an effective reasoning path that can extract a rule for fact prediction. The green path 
is an ineffective reasoning path. (b) A prediction triple and its subgraph containing multiple paths linking the head and tail entities of the triple. 
The blue path matches the rule Athlete_plays_for_team → Team_plays_in_league. Therefore, the prediction relation indicated by the black dashed 
line is considered true. (c) Another prediction triple and its subgraph containing multiple paths. The orange path matches the rule Athlete_home_
stadium → League_stadiums_inverse. Therefore, the prediction relation indicated by the black dashed line is considered true. However, this black 
dashed line relationshipno with walking mechanisms is a false positive
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multiple step relations (e.g., Team_plays_sport_inverse 
and Athlete_plays_sport_inverse) with different values 
of entity heterogeneity. When the random walk selects a 
step relation with a high entity heterogeneity, the reached 
step-ending entity presents a significant uncertainty of 
entity type, causing the random walk to fail in getting the 
sample’s tail entity.

Based on the above analysis, we propose a new reward 
mechanism based on entity heterogeneity (“Reward mech-
anism redesign based on entity heterogeneity” section). 
For a reasoning path obtained by a random walk, we group 
the candidate step-ending entities of a walking step into 
several clusters according to their semantic information 
using a clustering method. Then, we use the reciprocal of 
the number of clusters as the value of entity heterogene-
ity of a walking step. Finally, we multiply the entity hetero-
geneity values of all steps and add this product as a new 
reward item into the traditional reward mechanism. This 
new reward mechanism can guide subsequent random 
walks to select step relations with relatively low values of 
entity heterogeneity, thereby improving the probability of 
obtaining effective reasoning paths.

Ineffective reasoning paths have been obtained for 
some training samples. Nevertheless, effective reasoning 
paths exist. As demonstrated in Fig. 1 (a), an ineffective 
reasoning path (marked in green) that does not reach the 
tail entity (i.e., NBA) of the training sample (Elton_Brand, 
Athlete_plays_in_league, NBA) has been obtained by a 
random walk. However, a potentially effective reasoning 
path (marked in blue) exists between the head and tail 
entities of the sample. Such potentially effective reason-
ing paths can provide useful path information for the 
agent’s walk.

Based on the above analysis, we propose a postwalking 
mechanism (“Postwalking mechanism design”  section) 
to be triggered for each training sample whose random 
walk obtains an ineffective reasoning path. We extract all 
potentially effective reasoning paths for such a training 
sample and conduct new walks to obtain rewards. The 
rewards can increase the likelihood of walking on these 
paths later. This way, the postwalking mechanism can 
enhance the possibility of obtaining effective reasoning 
paths in subsequent walks.

We conducted a set of experiments to evaluate the 
effectiveness of our approach and selected two classic 
benchmark datasets. We also selected DeepPath [4] as 
the core reference. We named our approach EvoPath, 
which stands for the evolution of DeepPath, and selected 
memoryPath [5] as another core reference including four 
classic embedding representation-based approaches. The 
experimental results show that our approach is supe-
rior to all the references regarding mean average preci-
sion (MAP). The results also demonstrate that EvoPath 

outperforms DeepPath in terms of Hits@N. The rules 
and rule confidence values obtained by EvoPath increase 
the probability of positive samples ranked first or in the 
top three, further demonstrating the effectiveness of 
rules with reliable confidence values in fact prediction. 
Furthermore, we conducted a case study on EvoPath 
and DeepPath to compare the differences in the rules 
obtained by the two models. The results demonstrates 
greater diversity of rules obtained by EvoPath.

In this study, we introduce a new RL-based approach 
for achieving highly reliable KG fact prediction. We pro-
posed two specific techniques: the reward mechanism 
based on entity heterogeneity and the postwalking mech-
anism. Both mechanisms are advantageous for obtain-
ing sufficient reasoning paths during RL model training, 
thereby extracting reliable rules and the rule confidence 
values for fact prediction.

Related works
KG completion tasks can be classified into entity, rela-
tion, and fact predictions [3]. Entity, relation, and fact 
predictions involve predicting another entity given a 
known entity and relation, represented as (head entity, 
relation, ?) or (?, relation, tail entity), a relation between 
two known entities (head or tail entities), and predicting 
the truth value of a triple given a head entity, a relation, 
and a tail entity, respectively. It is represented as a pre-
diction triple (head entity, relation, tail entity). Currently, 
KG fact prediction has three categories of research meth-
ods: rule-based, representation-based, and RL-based 
approaches.

Rule-based approaches extract rules from the KG 
using manual or statistical techniques. Then, they match 
these obtained rules with paths between the head and 
tail entities of a prediction triple to perform fact predic-
tion. A successful match indicates that the prediction 
triple is true. Galárraga et al. [6] proposed an AMIE sys-
tem  in 2013, which efficiently mines rules and matches 
them with triples in the knowledge base to acquire new 
facts. In 2016, Cohen [7] introduced TensorLog, which 
employs a differentiable process for obtaining rules. In 
the same year, Yang et  al. [8] proposed Neural LP, an 
approach based on TensorLog that enables end-to-end 
training of logical rules with gradient-based learning. In 
2020, Qu et al. [9] introduced RNNLogic, a probabilistic 
model that trains a rule generator and a reasoning pre-
dictor using the EM algorithm. Rule-based approaches 
are generally accurate and interpretable. However, their 
effectiveness can be limited by the complexity and scale 
of KGs.

Representation-based approaches map entities and 
relations to a semantic vector space using a scoring func-
tion to calculate the distance between the head-and-tail 
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entities and the relation KG completion tasks. They can 
be divided into two categories: embedding representa-
tion and graph representation techniques. TransE rep-
resents the embedding representation techniques [10]. 
TransE maps the head-and-tail entities and relations 
into a low-dimensional continuous vector space and uses 
distance-based score functions to evaluate the authentic-
ity of prediction triples. However, TransE cannot handle 
1-to-N and N-to-1 relations.TransH [11], TransR [12], 
and TransD [13] have been proposed to address this 
issue. Besides, tensor decomposition models such as 
RESCAL [14], DistMult [15], ComplEx [16], and ConvE 
[17] use a similarity-based score function to evaluate the 
truth of prediction triples. While these embedding rep-
resentation techniques can effectively capture seman-
tic information about entities and relations in KG, they 
only use one-hop information and disregard global KG 
information. However, graph representation techniques 
can utilize the structural information of multiple hops to 
capture semantic relationships and contextual informa-
tion from entities and relations. In 2018, Schlichtkrull 
et  al. [18] first demonstrated that the graph convolu-
tional networks framework can be applied to modeling 
relational data, specifically for entity prediction and rela-
tion prediction tasks. In 2018, Teru et al. [19] proposed 
a graph neural network (GNN)-based relation prediction 
framework, GraIL, which reasons over local subgraph 
structures and has a strong inductive bias to learn entity-
independent relational semantics. In 2022, Li et  al. [20] 
proposed CoNR, a new heterogeneous GNN model. In 
CoNR, entity, and relation representations are mutually 
updated layer-wise and work together to facilitate down-
stream tasks. Embedding representation techniques have 
been used for fact, entity, and relation prediction tasks. 
Graph representation techniques are mainly applied to 
entity prediction and relation prediction tasks.

RL-based approaches define the reasoning path-find-
ing process in KG as the Markov decision process (MDP), 
extract rules from the effective reasoning paths obtained 
from the process, and apply them to fact prediction. 
Some RL-based approaches are suitable for fact, entity, 
and relation predictions. In 2019, Lin et al. [21] proposed 
MultiHop, which introduces reward shaping and action 
dropout in the path-finding process. In 2021, using a 
graph attention network, Tiwari et  al. [22] proposed 
DAPath to capture more comprehensive information 
about neighboring entities and relations. Moreover, it 
incorporates the GSA mechanism with GRU to consider 
the memory of relations in the path to guide the agent to 
walk to the tail entity efficiently. Additionally, some RL-
based approaches focus on solving the fact prediction 
task. DeepPath [4] is the first approach to introduce RL 

to find reasoning paths combining accuracy, diversity, 
and efficiency to teach the agent to find effective paths 
and extract effective rules. The latest approach, Memo-
ryPath  proposed by Li et  al. [5], is a KG model based 
on deep RL incorporating LSTM and a graph attention 
mechanism to form memory components and automati-
cally find promising paths. RL-based approaches can 
effectively handle the inefficiency of path finding and 
the lack of explanation in other approaches. With these 
advantages, RL-based approaches have achieved satisfac-
tory results for fact prediction. Thus, we use RL in our 
current research on KG fact prediction.

Results
All of the metrics in this section are covered in detail in 
the “Methods” section.

We used the classic MAP metric to validate the effec-
tiveness of EvoPath in fact prediction on TransE, TransR, 
TransH, TransD, DeepPath, MemoryPath, and EvoPath.

As Table  1 shows, EvoPath improves the MAP values 
on both datasets. Compared with the widely used embed-
ding representation-based models, our model performs 
excellently on the NELL-995 dataset, indicating that 
RL-based models are better suited for fact prediction. 
Moreover, EvoPath’s fact-prediction ability outperforms 
the classic DeepPath model and the latest MemoryPath 
model in the MAP metric, indicating that compared with 
other models, EvoPath can rank most positive samples 
highly and most negative samples lowly in test samples, 
thereby improving the accuracy of fact prediction. Evo-
Path can discover useful rules that other models have 
overlooked, thus resulting in more complete rules for 
each fact prediction task. Furthermore, this result is 
attributed to the reliability of the rule confidence values, 
leading to higher scores for positive samples and lower 
scores for negative samples. Owing to the uneven data 
distribution in FB15K-237, all models perform poorly 
on this dataset. However, EvoPath remains the best-per-
forming model.

Table 1  MAP of different models on two datasets

Model NELL-995 FB15K-237

TransE 0.383 0.277

TransH 0.389 0.309

TransR 0.406 0.302

TransD 0.413 0.303

DeepPath 0.493 0.311

MemoryPath 0.598 0.315

EvoPath 0.628 0.319
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To further demonstrate EvoPath’s effectiveness, we 
compare it with DeepPath using the Hits@1 and Hits@3 
metrics. Hits@N values can directly reflect the model’s 
performance and more intuitively reflect whether posi-
tive samples can be ranked in the top N of the samples. 
Tables 2 and 3 present both models’ detailed Hits@1 and 
Hits@3 results on the NELL-995 and FB15K-237 data-
sets, respectively.

The Hits@1 and Hits@3 metrics focus on the pro-
portion of positive samples ranked first and in the top 
three, respectively. By comparing Tables  2 and 3, Evo-
Path outperforms DeepPath overall. On the NELL-995 
dataset, DeepPath only outperforms EvoPath for the 
Athlet_plays_in_league task is in two metrics but falls 
behind EvoPath for other tasks in two metrics. On the 
FB15K-237 dataset, EvoPath outperforms DeepPath in 
most fact prediction tasks, demonstrating that EvoPath is 
more likely to provide correct answers for prediction tri-
ples. As EvoPath obtains more effective reasoning paths, 
the rule data are expected to become more comprehen-
sive. The rule confidence calculation will be more reli-
able, allowing positive samples to be ranked easily ahead 
of negative ones with more reliable rule confidence. Fur-
thermore, we observe that EvoPath’s performance on the 
FB15K-237 dataset is inferior to that on the NELL-995 
dataset, attributing to the greater complexity of relations 
in FB15K-237. Moreover, different relation names may 
express the same meaning in the dataset. In conclusion, 
the EvoPath model that we have proposed shows a sig-
nificant improvement compared with other models in 
various evaluation metrics. EvoPath can generate more 
reliable rules, thus resulting in more accurate fact predic-
tion results.

Discussion
The proposed RL model mainly relies on the relation 
information from the KG. However, entity informa-
tion is also important in fact prediction because enti-
ties can provide additional contextual information to 
enhance the model’s performance. For instance, GraIL, 
which is based on GNN, incorporates entity informa-
tion by encoding the distance between the head and 
tail entities of each relationship, enabling the model to 
learn the structural properties of subgraphs in the KG. 
So, we intend to explore further how to combine entity 
information to enhance fact-prediction performance. 
Besides, this study involves embedding representa-
tion techniques, which usually only capture one-hop 
information about entities and relations. Researchers 
recently have applied graph representation techniques to 
entity prediction and relation prediction tasks [18–20]. 
Graph representation techniques can effectively uti-
lize the structure information of multiple hops to cap-
ture semantic relationships and contextual information. 
Therefore, in future work, we plan to incorporate graph 
representation techniques to improve the performance 
of fact prediction.

Second, our model should incorporate an anom-
aly rule detection mechanism. All models inevitably 

Table 2  Hits@N result of NELL-995

Task DeepPath EvoPath

Hits@1 Hits@3 Hits@1 Hits@3

Agent_belongs_to_organization 0.552 0.655 0.582 0.727
Athlete_homestadium 0.621 0.785 0.872 0.903
Athlete_plays_for_team 0.269 0.432 0.585 0.741
Athlete_plays_in_league 0.618 0.970 0.603 0.967

Athlete_plays_sport 0.800 0.973 0.877 0.977
Organization_head_quartered_
in_city

0.863 0.934 0.899 0.947

Organization_hired_person 0.641 0.885 0.683 0.907
Person_born_in_location 0.646 0.708 0.663 0.837
Person_leads_organization 0.644 0.920 0.655 0.925
Team_plays_in_league 0.826 0.919 0.863 0.929
Team_plays_sport 0.490 0.923 0.644 0.952
Works_for 0.550 0.820 0.597 0.890
Average 0.627 0.827 0.710 0.892

Table 3  Hits@N result of FB15K-237

Task FB15K-237 EvoPath

Hits@1 Hits@3 Hits@1 Hits@3

ServiceLocation 0.134 0.537 0.299 0.672
FilmDirector 0.060 0.320 0.140 0.633
FilmCountry 0.275 0.532 0.526 0.788
FilmWrittenBy 0.135 0.480 0.419 0.620
CapitalOf 0.415 0.915 0.537 0.963
LocationContains 0.201 0.506 0.321 0.590
MedicineDiseaseRiskFactors 0.030 0.121 0.000 0.273
SymptomOf 0.250 0.500 0.250 0.500
MusicArtistOrigin 0.276 0.500 0.276 0.517
OrganizationLocation 0.166 0.565 0.395 0.642
OrganizationsFounded 0.023 0.302 0.163 0.372
OrganizationMember 0.032 0.184 0.119 0.346
PeopleLanguagesSpoken 0.140 0.512 0.209 0.465

PersonNationality 0.474 0.776 0.706 0.888
BirthPlace 0.298 0.510 0.277 0.504

PeopleProfession 0.212 0.333 0.212 0.333

SportsTeamposition 0.017 0.483 0.000 0.450

TeamSports 0.522 0.873 0.873 0.943
SportsTeamLocation 0.259 0.482 0.259 0.482
CountryOfOrigin 0.772 0.967 0.837 0.957

Average 0.235 0.520 0.341 0.597
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generate incorrect rules during experimentation. 
However, our model produces fewer incorrect rules 
compared with other models. RL is a trial-and-error 
learning method that cannot guarantee the correct-
ness of the generated rules. If prediction triples match 
incorrect rules, this scenario may decrease the model’s 
fact-prediction performance. Therefore, we plan to use 
methods to identify potential incorrect and anomalous 
rules. (1) We can employ deep-learning-based anom-
aly detection methods to identify anomalous rules. For 
example, convolutional neural networks [23], recur-
rent neural networks [24], or other models can extract 
features from rules. Then, the softmax or sigmoid 
functions can classify rules as normal or abnormal. (2) 
We can explore using human-machine collaboration 
for rule anomaly detection. We plan to visualize rule 
properties, such as entity heterogeneity, using color 
coding, shape coding, and other graph visualization 
tools [25–27]. Additionally, we intend to visualize the 
subgraphs between the head and tail entities of pre-
diction triples together with the rules. This multiper-
spective KG contextual information will be displayed 
in a visualization interface [28]. We intend to invite 
domain experts to participate in human-machine col-
laborative rule anomaly detection. Through an inter-
active visualization interface, experts can analyze the 
anomalies in rules and provide insights, thus obtaining 
accurate and reliable rules.

Finally, we believe that our model should not only 
be limited to fact prediction but also be applicable to 
entity prediction. Fact prediction involves determining 
the truthfulness of a prediction triple (h, r, t). By con-
trast, entity prediction involves predicting the tail entity 
when the head entity and relation are known, e.g., (h, r, 
?). Both tasks complete KG under the premise of known 
relations. Our model can extract reliable rules from the 
KG to provide reasoning support for each relation. By 
leveraging these rules and given the head entity, we can 
perform inference in the KG to obtain the tail entity, 
thus achieving entity prediction. The highly reliable rules 
generated by our model can improve the accuracy and 
efficiency of entity prediction, providing rich and pre-
cise technical support for KG completion. For example, 
it can be applied to specific scenarios such as medical 
disease diagnosis [29] and malicious behavior analysis of 
function calls [30].

Conclusions
In this study, we proposed a new RL-based model called 
EvoPath for KG fact prediction. The model integrates a 
reward mechanism based on entity heterogeneity and a 
postwalking mechanism. The reward mechanism assists 

an agent in obtaining more effective reasoning paths dur-
ing a random walk on training samples. By contrast, the 
postwalking mechanism fully utilizes effective reason-
ing paths that are ignored. With these two mechanisms, 
EvoPath accurately calculates the confidence value for 
each rule by enriching the path information, enhancing 
the reliability of fact prediction. Compared with main-
stream models, the emergence of EvoPath significantly 
reduces the occurrence of false positives and negatives. 
Furthermore, it resolves the issue of unreliable rule confi-
dence and strengthens the reliability and accuracy of fact 
prediction.

Methods
First, we introduce some notations and describe 
the task at hand, assume an incomplete KG 
G={(eh, r, et)|eh, et ∈ E, r ∈ R } and denote the sets of enti-
ties and relations, respectively.
(eh, r, et) represents a fact. Fact prediction deter-

mines the truthfulness of a given prediction triple 
(e

′

h, rt , e
′

t) /∈ G , where e′h, e
′

t ∈ E, rt ∈ R . However, e′h and e′t 
have no direct connection via rt . Instead, some long paths 
of the form e′h

r1
→ e1

r2
→ e2...

rn
→ e

′

t from e′h to e′t exist. ei 
denotes the i-th entity in a path.

RL-based approaches for fact prediction mainly rely 
on the reasoning path-finding process formulated as an 
MDP. This process involves performing random walks on 
samples to identify effective reasoning paths connecting 
e
′

h and e′t . Then, rules are extracted from these paths and 
compared with the relation chains of each prediction tri-
ple to determine its truthfulness.

One common issue with existing RL-based approaches 
is the tendency to obtain ineffective reasoning paths dur-
ing path-finding, resulting in unreliable rule confidence 
for fact prediction. Our approach is to address this prob-
lem, which builds upon the DeepPath model and includes 
two key improvements: a new reward mechanism based 
on entity heterogeneity and a postwalking mechanism. 
Our model aims to identify effective reasoning paths 
connecting e′h and e′t as much as possible. By increasing 
the occurrence of effective reasoning paths, the rules 
extracted from them are assigned with more reliable con-
fidence for fact prediction.

We will first introduce the basic elements of our pro-
posed RL framework, describe the implementation pro-
cess for the reward and postwalking mechanisms, and 
present our model’s training method.

RL framework for KG fact prediction
Figure  2 shows that our model comprises the MDP 
environment and the policy-based agent. The MDP 
environment refers to the dynamic interaction between 
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the agent and the KG. The policy-based agent utilizes 
a policy network to determine its selection of specific 
relations and entities during a random walk in the MDP 
environment. The agent stops its walk when it meets 
the termination condition and obtains a reasoning path. 
The interaction between the policy-based agent and 
the MDP environment generates basic elements of the 
RL framework, including state, action, transition, and 
reward. In the following sections, we introduce these 
basic elements in the context of KG fact prediction. 

Environment. In our model, the environment com-
prises all the relations and entities of a complete KG in 
a certain domain. This environment remains unchanged 
throughout the entire training process.

State. The state is defined as a vector containing the 
position information of an agent when the agent walks to 
the i-th step entity ( ei ) in a KG. In our model, the state 
consists of entity and historical path information ( hi ). We 
define the state vector at the i-th step as:

The entity information includes ei and etail , repre-
senting the embeddings of the i-th step and tail enti-
ties, respectively. To enable the agent to remember the 

(1)si = [ei, et − ei, hi]

historical path information before the i-th step entity, 
we utilized a three-layer LSTM network [31]. The LSTM 
hidden state hi is defined as follows:

where r0 represents a special initial embedding vector 
and h0 , the initial hidden state.

Action. Our model selects a relation as an action. We 
define the action space as the set of all relations in the 
KG, where the action space for each step entity is repre-
sented as A = R. The agent utilizes the policy network to 
select the most promising relation as an action in the cur-
rent state. The formula is as follows:

where p(ai) represents the probability of action ai output 
by the policy network, F(ai) represents the normalized 

(2)h0 = LSTM(0, [r0, eh])

(3)hi = LSTM(hi−1, [ai−1, ei−1])

(4)F(ai) =
p(ai)

�n
i=0p(ai)

, ai ∈ A

(5)aj = random(A, F(ai))

Fig. 2  Illustrations of a framework for a KG fact prediction model based on RL. (a) The KG environment is modeled as an MDP environment. The 
black and blue lines represent a target relation trained by RL and a reasoning path obtained by the agent through a random walk, respectively. (b) 
The agent interacts with the MDP environment and takes action based on the policy network to extend the reasoning path
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probability distribution of action space A, and random() 
is a random sampling function.

When the relation taken in the action is not directly 
connected to the current entity, the other relations are 
reselected until the selected relation is directly con-
nected to the current entity. Additionally, when the 
agent reaches the maximum walk length without reach-
ing the tail entity, we use the postwalking mechanism 
(see “Postwalking mechanism design” section) to guide 
the agent to take actions that enhance the model’s abil-
ity to obtain more effective reasoning paths.

Transition. Transition refers to the interaction 
between the agent and the MDP environment, caus-
ing a state change. It is a transition function P:S×A→
S. The transition of state is achieved by mapping the 
state of the current state vector to a new state vector. 
The state transition probability distribution is shown 
as follows:

where θ denotes the policy network model parameters.
Reward. The reward is an indicator of the effec-

tiveness of the actions. We propose a new reward 
mechanism based on entity heterogeneity to encour-
age agents to find more effective reasoning paths. Our 
reward mechanism considers global, path length, and 
path effectiveness information to build upon a focus 
on entity heterogeneity. Furthermore, it quantifies the 
effectiveness of actions into a reward value from mul-
tiple dimensions. The reward value is input into the 
policy network to update its parameters, making it eas-
ier for the agent to reach the tail entity in subsequent 
walk samples. We will detail this reward mechanism in 
“Reward mechanism redesign based on entity heteroge-
neity” section.

Policy network. The policy network guides an agent 
forward by taking an action in action space A. We used a 
three-layer fully connected neural network to parameter-
ize the policy function πθ (ai = ri | si) mapping the state 
vector si to a probability distribution over all possible 
actions. Furthermore, we added action dropout to block 
some actions randomly. The output layer is normalized 
using a softmax function. The policy network π is defined 
as:

where W1 , W2 , and W3 denote the weights.

Reward mechanism redesign based on entity 
heterogeneity
Entity heterogeneity is a step relation linked to mul-
tiple types of step-ending entities (as shown in 

(6)si+1 ∼ p(si+1 | si, ai; θ)

(7)πθ (si) = softmax(W3Relu(W2dropout(Relu(W1si))))

“Introduction” section). It is the core factor in obtain-
ing ineffective reasoning paths during a random walk. 
Previous RL-based approaches did not consider the 
impact of entity heterogeneity on random walks. Our 
model quantifies entity heterogeneity into a specific 
numerical value and incorporates this product into the 
reward mechanism to upgrade it.

Quantify entity heterogeneity reward
Regarding each reasoning path, the entity heterogeneity 
reward quantifies entity heterogeneity for each relation 
within the path. The configuration method of the reward 
is as follows:

1)	 Entity embedding dimension reduction. For each 
action the agent takes, we find all the step-ending 
entities connected to the corresponding step relation 
and collect them into an entity set. However, high-
dimensional embeddings of entities are not conducive 
to adjusting RL parameters. To address this issue, we 
used the t-distributed stochastic neighbor embedding 
[32] dimension reduction technique to map the high-
dimensional embedding representation of entities into 
a two-dimensional space. The reduced dimensional 
representation vectors will serve as inputs for step 2.

2)	 Entity clustering. Inspired by Hatem [33], we used the 
k-nearest neighbors algorithm [34] and knee point 
detection method to obtain the optimal radius eps 
value for the current entity set. Then, we used this 
value as input for the density-based spatial clustering of 
application with noise [35] clustering algorithm, which 
outputs m clusters of entities and grouped entities with 
similar semantic features into the same cluster. When 
the entity set connected to a certain step relation is 
divided into multiple clusters, we use the number of 
clusters as a quantitative value to measure the entity 
heterogeneity of that step relation, denoted as rh = m. 
The rh metric measures the entity heterogeneity of a 
given step relation.

3)	 Entity heterogeneity reward calculation. After a rea-
soning path p is generated, we calculate the entity het-
erogeneity reward for p using the following formula:

where |p| represents the length of a reasoning path p, the 
number of relations in the reasoning path.

(8)γp_h =

|p|

i

1

rih
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Reward mechanism redesign
To encourage the agent to walk autonomously and obtain 
effective reasoning paths, we proposed a new reward 
mechanism based on entity heterogeneity, which calculates 
the reward value for each reasoning path and updates the 
policy network parameters based on the obtained reward. 
The mechanism includes the following four scoring criteria:

1)	 Global reward: If a reasoning path cannot reach the 
tail entity of a sample, we assign a negative reward to 
the path to reduce the probability of the agent select-
ing the relations within that path. Conversely, when 
a reasoning path reaches a sample’s tail entity, we 
assign a positive reward to the path to increase the 
probability of the agent selecting the relations within 
that path. We represent the last entity of a reasoning 
path as en , and the global reward is defined as follows:

If en  = et in a reasoning path, we only use γgb as the 
reward mechanism.

2)	 Path length reward: Previous studies show that a 
short path is more effective in extracting useful rules 
than a long path [4]. Therefore, to encourage the 
agent to reach the tail entity in the fewest steps pos-
sible, we define the path length reward as:

3)	 Path effectiveness reward: Inspired by Li et  al. [36], 
we believe that the semantics of an effective rea-
soning path should be similar to that of the target 
relation rt . Therefore, we calculated their seman-
tic similarity as a reward to encourage the agent to 
walk along an effective reasoning path with a higher 
semantic similarity with the target relation. The path 
effectiveness reward is defined as:

(9)γgb =

{

+1, if en = et
−0.05, if en �= et

(10)γp_l =
1

|p|

(11)γp_e = sim(P, rt)

(12)P =

n
∑

i=1

ri

where P represents the embedding representation of the 
relation chain obtained by sequentially extracting rela-
tions from the reasoning path, rt represents the embed-
ding representation of the target relation, and sim () is the 
similarity function. We use the cosine similarity as the 
similarity function.

4) Entity heterogeneity reward: See Quantify entity 
heterogeneity reward section.

5) Total reward: When the agent obtains a reasoning 
path through a random walk, we combine the global, path 
length, path effectiveness, and entity heterogeneity rewards 
to define the total reward for a reasoning path as follows:

where � is a hyperparameter with 
∑

� = 1 . In addition, 
γgb is obtained from Formula (9), γp_l from Formula (10), 
γp_e from Formula (11), and γp_h from Formula (8).

Postwalking mechanism design
During the RL training process, some training samples pro-
duce ineffective reasoning paths. Nevertheless, effective rea-
soning paths exist. When these existing effective reasoning 
paths to provide valid information for training are not used, 
the agent will have difficulty walking autonomously to reach 
the tail entity of some samples in the vast walking space.

To extract useful path information for the rule confidence 
calculation from the training samples that obtained ineffec-
tive reasoning paths, we proposed a postwalking mecha-
nism, which will be triggered for each training sample 
whose random walk obtains an ineffective reasoning path. 
We show the implementation of this mechanism as follows.

1)	 Subgraph extraction: For each sample that does not 
obtain an ineffective reasoning path, the head and tail 
entities of the sample are known. We used the depth-
first search algorithm [37] to find a 3-hop subgraph 
between the head and tail entities of the sample, con-
taining multiple paths linking the head and tail enti-
ties. Then, we sequentially extracted relations on each 
path and formed a continuous sequence of relations 
as the path type, i.e.,type(p) = r1 −→ r2... −→ rn.

2)	 Path type deduplication: A subgraph of a sample 
often has many duplicated path types. The path type 
with the highest occurrence will affect the reward cal-
culation of those with lower occurrence and greatly 
impact the policy network. Therefore, we performed a 
deduplication operation on all the path types obtained 
from a subgraph to ensure that each is equally calcu-
lated once in step 3 for reward calculation.

3)	 Force the agent to walk on path types and generate 
reward: The model is not guiding the agent to walk in 
the entire KG based on the policy network. Instead, 

(13)γTt =

{

�1γgb + �2γp_l + �3γp_e + �4γp_h, if en = et
γgb, if en �= et
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the agent is forced to walk on each deduplicated path 
type, thus obtaining an effective reasoning path for 
each walk. For each agent’s walk, we calculated the 
corresponding reward to update the policy network’s 
parameters, increased the probability of selecting the 
relations in these effective reasoning paths, and enabled 
the agent to reach the tail entity of the sample autono-
mously through a random walk in subsequent samples 
maximally. The reward calculation is as follows:

where γp_l is obtained from Formula (10), γp_e from 
Formula (11), and γp_h from Formula (8).

Training method
To obtain high-reliability rules representing a target rela-
tion rt , we trained our model by conducting a random walk 
on each triple in the training samples for one episode. The 
specific process of one episode is described as follows:

1)	 We used a training sample ( eh,rt,et ). Starting from its 
head entity eh(e0 ), when the agent is at the i-th step 
entity, the MDP environment provides the agent with 
the state of the entity and the action space A. The 
agent inputs the state and A into the policy network 
πθ ( si ) and outputs the probability distribution of the 
action space A.

2)	 The agent selects the most promising relation from A 
directly connected to the i-th step entity as the action 
to extend the reasoning path based on the probabil-
ity distribution. For example, as shown in Fig. 3, if the 

(14)γp_r =
1

3
(γp_l + γp_e + γp_h)

agent is at e1 and an invalid action r1 that is not directly 
connected to e1 is selected, the agent will reselect a 
valid action r2 that is directly connected to e1.

3)	 Our model selects the next step entity once a valid 
action is performed. When selecting a relation as an 
action, it first uses clustering methods to group enti-
ties connected to the relation into different clusters. 
Then, it calculates the similarity between each clus-
ter’s average and the tail entity’s embedding repre-
sentations. Finally, the cluster most similar to the tail 
entity is selected, and an entity from this cluster is ran-
domly selected as the next step entity. As Fig. 3 shows, 
assuming that the average embedding representation 
of cluster 1 is more similar to that of the tail entity, our 
model selects e3 from cluster 1 as the next step entity.

4)	 After n steps, the agent’s walk terminates at en . 
Rewards are computed on the basis of two cases: 
en =  et and en  = et . If en =  et , the reward is com-
puted directly by the agent using the Formula (13). If 
en  = et , after calculating the reward through Formula 
(13), the postwalking mechanism guides the agent 
to walk once on each of the path types between the 
head and tail entities. The reward obtained from each 
walk is calculated using the Formula (14). Each time 
a reward is computed, it updates the policy network’s 
θ parameter. We use the REINFORCE algorithm [38] 
and the following policy gradient to update θ:

(15)
�

θ
J (θ) ≈

�
θ

N
∑

i=1

R(sN | es, rt)logπθ (si)

Fig. 3  A schematic diagram showing action reselection and entity clustering selection, where the blue solid line represents valid actions, the red 
dotted line represents invalid action, and multiple entities enclosed by a dotted circle are the results of entity clustering
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where πθ ( si ) represents the probability of the selected 
action and R(sN | es, rt) represents the reward obtained 
after walking with the maximum length n from the 
head entity e0 to the target relation rt . The parameter θ 
is updated using an L2-regularized Adam optimizer [39].

Our model only stores this rule during the training pro-
cess: the agent extracts and stores the rule from an effec-
tive reasoning path when it autonomously walks to the 
tail entity of the sample.

5)	 After completing all the training, our model will 
count the times the agent walks each rule and nor-
malize this number to obtain the rule confidence 
value. The calculation formula is as follows:

where xi represents the number of times each rule 
rulei(rt) is induced, which is the rule confidence value. 
Finally, our model generates a descendingly sorted rule 
set, with rules having confidence values that are ranked 
higher. The obtained rules and rule confidence values will 
be used for the KG fact prediction task.

Experimental settings
Dataset
The experiment uses two publicly available benchmark 
datasets, NELL-995 [40] and FB15K-237 [41]. The NELL-
995 dataset has 154213 triples, with 12 types of fact pre-
diction tasks having the same relations within each task, 
such as Athlete_plays_for_team, Athlete_plays_in_league. 
The FB15K-237 dataset has 310116 triples, with 20 fact 
prediction tasks, such as capitalOf and filmDirector. 
Table 4 presents the detailed statistics of the datasets.

We split the triples of each fact prediction task into 
training and test samples at a ratio of 7:3. The test sam-
ples comprised positive and negative samples, where 
negative samples were generated by randomly replacing 
the tail entity in positive samples. To enable the agent to 
reverse the previous action decision during the random 
walk, we augmented each triple in the dataset with its 
inverse triple in the form of (t, r_inverse, h).

(16)αi = conf (αi | rulei(rt)) =
xi

∑

N

i=1xi

,α ∈ [0, 1]

Training and hyperparameters
We obtained the embedding representations of enti-
ties and relations used in our model through pretrained 
TransR, with 100 dimensions for entity and relation 
embedding vectors. We set the hidden dimension of the 
LSTM network to 200. The policy network guiding the 
agent consists of a three-layer fully connected neural 
network with the ReLU activation function. The first and 
second layers of the fully connected neural network have 
512 and 1024 dimensions, respectively. The output layer 
has a dimension equal to the number of relations in the 
KG. Therefore, the output layer dimension is 474 and 400 
when using FB15K-237 and NELL-995, respectively.

Additionally, we set the dropout rate for the action drop-
out mechanism in the policy network to 0.1 for NELL-995 
and 0.15 for FB15K-237 datasets. We used the Adam opti-
mizer to update the parameters of the policy network with 
a learning rate of 0.001 and an L2 regularization of 0.005. 
The policy network remains unchanged from DeepPath.

Regarding the reward mechanism proposed, we set 
�1 to 0.1, �2 to 0.7, �3 to 0.1, and �4 to 0.1 according to 
Formula (13). We obtained these parameters through 
experimental testing and yielded satisfactory experimen-
tal results. For each fact prediction task, we trained the 
model on 300 training samples for 300 episodes, with a 
maximum walking length of 50 set in each episode.

Evaluation
To evaluate the performance of our model and other 
reference models in KG fact prediction, we utilized the 
commonly used metric MAP. Additionally, we employ 
the Hits@N metric to measure the capability of our 
model and the DeepPath model in ranking positive sam-
ples within the top N for each fact prediction task.

The calculation details of each evaluation metric are 
described below:

(a)	The formula for calculating MAP is as follows:

 

where t is the total number of positive samples, i/ranki 
represents the average precision value of the i-th positive 
sample, and ranki is the rank of a positive sample in the 
test samples. A higher MAP value indicates that positive 
samples are ranked higher in the test samples, indicating 
better performance in fact prediction.

(b)	The formula for calculating Hits@N is as follows:

(17)MAP =
1

t

t
∑

i

i

ranki

Table 4  Dataset information

Dataset Entity Relation Triple Task

NELL-995 75492 200 154213 12

FB15K-237 14505 237 310116 20
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where Q is the total number of positive and negative sam-
ples with the same head entity, ranki represents the rank 
of the positive sample among these samples, and δ is an 
indicator function that takes a value of 1 if the rank of 
the positive sample is less than or equal to N and 0 oth-
erwise. In this experiment, we use Hits@1 and Hits@3 as 
additional metrics to evaluate the model’s performance in 
fact prediction. A higher Hits@N indicates that positive 
samples are more likely to be ranked in the top N in the 
test samples.

Baseline and implementation details
Our experiment compared two types of models. The first 
type was the RL-based model, with our model improving 
the RL-based DeepPath model. Therefore, we used Deep-
Path as the baseline model for our experiment. Moreo-
ver, to compare the performance of our model with the 
latest RL-based model, we selected MemoryPath as 
another RL-based model. The second type is the embed-
ding representation-based model, which adopts a com-
pletely different design concept from the RL-based model 

(18)Hits @ N =
1

Q

Q
∑

i

δ(ranki ≤ N )

and is widely used in the fact prediction task. Therefore, 
we selected TransE, TransR, TransH, and TransD as the 
comparative models for conducting experiments. We 
used TransE, TransR, TransH, TransD, DeepPath, Mem-
oryPath, and our improved RL-based model to complete 
the experiment.

Fact prediction aims to evaluate the truthfulness of a pre-
dicted triple. We conducted the implementation of the fact 
prediction experiment from three aspects. First, we used the 
widely recognized metric for fact prediction, MAP, to evalu-
ate all models and measure the fact prediction ability of each 
model. Second, we further compared our model with the 
baseline model using Hits@1 and Hits@3 metrics to deter-
mine which model can more accurately predict the truth-
fulness of a prediction triple. Finally, we conducted a case 
study on our model and the baseline model to demonstrate 
the validity and diversity of the rules learned by our model.

Case study
We compare the rules used by EvoPath and DeepPath for 
several fact prediction tasks and analyze the diversity of 
rules and the effectiveness of rule confidence through a 
case study. Tables 5 and 6 present the detailed results.

The experimental results demonstrate the effectiveness 
of EvoPath in obtaining rules from three aspects as follows. 

Table 5  Comparison of confidence scores for different tasks and rules

Task Rule Confidence

DeepPath EvoPath

Athlete_plays_in_league (NELL-995) Athlete_plays_for_team→Team_plays_in_league 0.28 0.46
Athlete_plays_sport→Team_plays_sport_inverse→Team_plays_in_league 0.26 0.43

Athlete_plays_sport (NELL-995) Athlete_plays_for_team→Team_plays_sport 0.40 0.58
Athlete_plays_in_league→Team_plays_in_league_inverse→Team_plays_sport 0.11 0.14
Athlete_plays_in_league→League_stadiums→Sport_uses_stadium_inverse - 0.07
Athlete_fly_out_to_sports_team_position→Sport_has_sports_team_position_inverse→
Sport_fans_in_country→Sport_fans_in_country_inverse

0.08 -

filmWrittenBy (FB15K-237) /award/award_nominee/award_nominations./award/award_nomination/nominated_for_
inverse

0.33 0.47

/film/actor/film./film/performance/film_inverse 0.33 0.20

/film/director/film_inverse 0.17 0.09

/film/film/cinematography_inverse 0.17 0.05

Table 6  Rule count

Target relation Model Rule count Length = 1 Length = 2 Length = 3 Length 
> 3

Athlete_plays_in_league DeepPath 24 0 3 6 15

EvoPath 31 1 2 5 23

Athlete_plays_sport DeepPath 21 0 3 4 14

EvoPath 40 0 3 6 31

filmWrittenBy DeepPath 4 4 0 0 0

EvoPath 37 6 3 2 26



Page 13 of 14Zhou et al. Visual Computing for Industry, Biomedicine, and Art            (2023) 6:21 	

(1) EvoPath is more likely than DeepPath to extract reliable 
rules. For instance, for the relation Athlete_plays_sport, 
EvoPath can extract a reliable rule: Athlete_plays_in_
league→League_stadiums→Sport_uses_stadium_inverse, 
while DeepPath cannot. (2) The rules extracted by Evo-
Path have fewer high-entity heterogeneity relations, 
while the rules induced by DeepPath have multiple ones. 
For instance, Athlete_fly_out_to_sports_team_position→
Sport_has_sports_team_position_inverse→Sport_fans_in_
country→Sport_fans_in_country_inverse is extracted by 
DeepPath but not by EvoPath because EvoPath considers 
such rules with high-entity heterogeneity relations unre-
liable. (3) The reliable rules extracted by EvoPath have 
higher confidence than those extracted by DeepPath. For 
instance, for the rule Athlete_plays_for_team→Team_
plays_in_league, EvoPath gives it a confidence of 0.18 
higher than DeepPath. Conversely, the unreliable rules 
extracted by EvoPath have lower confidence than those 
extracted by DeepPath. For instance, the rule /film/direc-
tor/film_inverse means a director directs a movie. How-
ever, the rule head filmWrittenBy means a person writes a 
movie. Although both models extract this rule, EvoPath’s 
confidence is 0.08 lower than that of DeepPath.

Table 6 shows the number of rules extracted by Deep-
Path and EvoPath on different lengths. The results indicate 
that EvoPath obtains more diverse rules than DeepPath by 
learning short and long paths, which are useful for pre-
dicting triples that lack short paths. For instance, EvoPath 
learns 17 additional rules with a length > 3 for the target 
relation Athlete_plays_sport compared with DeepPath. 
This feature can be attributed to the postwalking mecha-
nism in EvoPath, helping the agent accurately reach the 
tail entity when expanding long paths. Additionally, Evo-
Path extracts more rules for the same target relation than 
DeepPath because the postwalking and reward mecha-
nisms help the agent find more effective reasoning paths.
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