
Zhou et al.
Visual Computing for Industry, Biomedicine, and Art (2023) 6:21
https://doi.org/10.1186/s42492-023-00150-7

ORIGINAL ARTICLE Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

Visual Computing for Industry,
Biomedicine, and Art

Reliable knowledge graph fact prediction
via reinforcement learning
Fangfang Zhou1, Jiapeng Mi1, Beiwen Zhang1, Jingcheng Shi1, Ran Zhang2, Xiaohui Chen2, Ying Zhao1 and
Jian Zhang1*    

Abstract 

Knowledge graph (KG) fact prediction aims to complete a KG by determining the truthfulness of predicted triples.
Reinforcement learning (RL)-based approaches have been widely used for fact prediction. However, the existing
approaches largely suffer from unreliable calculations on rule confidences owing to a limited number of obtained
reasoning paths, thereby resulting in unreliable decisions on prediction triples. Hence, we propose a new RL-based
approach named EvoPath in this study. EvoPath features a new reward mechanism based on entity heterogeneity,
facilitating an agent to obtain effective reasoning paths during random walks. EvoPath also incorporates a new post-
walking mechanism to leverage easily overlooked but valuable reasoning paths during RL. Both mechanisms provide
sufficient reasoning paths to facilitate the reliable calculations of rule confidences, enabling EvoPath to make precise
judgments about the truthfulness of prediction triples. Experiments demonstrate that EvoPath can achieve more
accurate fact predictions than existing approaches.

Keywords  Knowledge graph, Fact prediction, Reinforcement learning, Entity heterogeneity, Postwalking mechanism

Introduction
A knowledge graph (KG) structurally organizes facts and
knowledge in the form of triples [1]. A triple is expressed
as (head entity, relation, tail entity), such as (Elton_Brand,
Athlete_plays_in_league, NBA). A KG cannot involve
all the facts in an application domain, which is known
as incompleteness [2]. Fact prediction is a widely used
method to add new facts for a KG [3]. Given that a pre-
diction triple is not involved, its head entity, relation, and
tail entity independently exist in a KG. Fact prediction
determines whether the prediction triple is true based on
the existing triples in the KG. If the result is true, the pre-
diction triple will be added as a new fact into the KG.

Two-staged reinforcement learning (RL)-based
approaches are currently the mainstream methods for
fact prediction [4]. The first is a training stage where
an RL-based agent conducts a reasoning path-finding
process to extract rules for a target relation. All the tri-
ples whose relations are the target relation in a KG are
used as training facts/samples. Taking the rule Athlete_
plays_in_league = Athlete_plays_for_team → Team_
plays_in_league, Athlete_plays_in_league as an example,
Athlete_plays_in_league is the rule head (i.e., the target
relation), and Athlete_plays_for_team → Team_plays_in_
league is the ruling body. This rule is extracted based on
one or multiple reasoning paths between the head and
tail entities of training samples, as illustrated by the blue
path in Fig. 1 (a). The agent assigns any rule a confidence
value. A high value indicates that the paths correspond-
ing to the rule frequently occur. The second stage is the
predicting stage, where the extracted rules are unitized
to determine whether a prediction triple is true. First,
the agent considers the top k (e.g., 3) high-confidence
rules for fact prediction. The target relation of these rules

*Correspondence:
Jian Zhang
jianzhang@csu.edu.cn
1 School of Computer Science and Engineering, Central South University,
Changsha, Hunan 410083, China
2 School of Target and Data, Information Engineering University, Zheng
Zhou, Henan 450001, China

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s42492-023-00150-7&domain=pdf
http://orcid.org/0000-0001-5418-0455

Page 2 of 14Zhou et al. Visual Computing for Industry, Biomedicine, and Art (2023) 6:21

equals the relation of the prediction triple. Further, the
agent extracts all relation chains within n hops (e.g., 50)
between the head and tail entities of the prediction tri-
ple. Finally, if any chain matches one of these rules, the
prediction triple is considered true. Considering the
prediction triple in Fig. 1 (b) as an example, a relation
chain between Vince_Carter and NBA (marked in blue) is
deemed equal to the rule body of the example mentioned
above rule. Thus, the prediction triple is considered true.

However, RL-based approaches often encounter reli-
ability issues of rule confidence, embodying two aspects:
(1) some high-confidence rules are not necessarily true
in the real world, and (2) some low-confidence rules con-
form to common sense, resulting in false positives and
negatives in prediction, respectively. For example, given
a high-confidence rule: Athlete_plays_in_league = Ath-
lete_home_stadium → League_stadiums_inverse, indicat-
ing that given an athlete playing in a league equals the one
playing in a home stadium, the home stadium is used by
the league. This rule does not always meet real-world facts
because multiple leagues can share a stadium. As shown in
Fig. 1 (c), the triple (Al_Jefferson, Athlete_plays_in_league,
NHL) would be true using the given high-confidence rule.
However, this result is a false positive because Al_Jeffer-
son plays in NBA. Conversely, given a low-confidence rule:

Team_plays_sport = Athlete_plays_for_team_inverse →
Athlete_plays_sport, indicating that a team playing a sport
equals the team having an athlete who is playing the sport.
This rule is in line with common sense. However, such a
low-confidence rule is probably excluded from the top k
rules, thereby being underused in fact prediction.

The main reason for the unreliability problem is that
the reasoning path-finding process may obtain ineffective
reasoning paths. In ineffective reasoning paths, an agent
cannot walk from the head entity to the tail entity during
a random walk. In this study, we propose a new RL-based
approach (“Methods” section) to address the unreliability
problem, improving traditional RL-based approaches by
providing a new reward mechanism based on entity het-
erogeneity and a new postwalking mechanism.

Entity heterogeneity is the core factor in obtaining
ineffective reasoning paths during a random walk where
each step goes from a step-starting entity to a step-end-
ing entity along a step relation. Typically, a step relation
(e.g., Team_plays_sport_inverse in Fig. 1 (a)) is connected
to multiple types of ending entities (e.g., La_clippers and
Middle_tennessee_state in Fig. 1 (a); the two teams belong
to different leagues, namely, NBA and NCAA​, respec-
tively), thereby presenting a certain entity heterogeneity.
A step-starting entity (e.g., Basketball in Fig. 1 (a)) has

Fig. 1  Illustrations of RL-based KG fact prediction. (a) A training sample and its partial walking space for an RL-based agent. The black relation
is a rule head for rules extracted. The blue path is an effective reasoning path that can extract a rule for fact prediction. The green path
is an ineffective reasoning path. (b) A prediction triple and its subgraph containing multiple paths linking the head and tail entities of the triple.
The blue path matches the rule Athlete_plays_for_team → Team_plays_in_league. Therefore, the prediction relation indicated by the black dashed
line is considered true. (c) Another prediction triple and its subgraph containing multiple paths. The orange path matches the rule Athlete_home_
stadium → League_stadiums_inverse. Therefore, the prediction relation indicated by the black dashed line is considered true. However, this black
dashed line relationshipno with walking mechanisms is a false positive

Page 3 of 14Zhou et al. Visual Computing for Industry, Biomedicine, and Art (2023) 6:21 	

multiple step relations (e.g., Team_plays_sport_inverse
and Athlete_plays_sport_inverse) with different values
of entity heterogeneity. When the random walk selects a
step relation with a high entity heterogeneity, the reached
step-ending entity presents a significant uncertainty of
entity type, causing the random walk to fail in getting the
sample’s tail entity.

Based on the above analysis, we propose a new reward
mechanism based on entity heterogeneity (“Reward mech-
anism redesign based on entity heterogeneity” section).
For a reasoning path obtained by a random walk, we group
the candidate step-ending entities of a walking step into
several clusters according to their semantic information
using a clustering method. Then, we use the reciprocal of
the number of clusters as the value of entity heterogene-
ity of a walking step. Finally, we multiply the entity hetero-
geneity values of all steps and add this product as a new
reward item into the traditional reward mechanism. This
new reward mechanism can guide subsequent random
walks to select step relations with relatively low values of
entity heterogeneity, thereby improving the probability of
obtaining effective reasoning paths.

Ineffective reasoning paths have been obtained for
some training samples. Nevertheless, effective reasoning
paths exist. As demonstrated in Fig. 1 (a), an ineffective
reasoning path (marked in green) that does not reach the
tail entity (i.e., NBA) of the training sample (Elton_Brand,
Athlete_plays_in_league, NBA) has been obtained by a
random walk. However, a potentially effective reasoning
path (marked in blue) exists between the head and tail
entities of the sample. Such potentially effective reason-
ing paths can provide useful path information for the
agent’s walk.

Based on the above analysis, we propose a postwalking
mechanism (“Postwalking mechanism design” section)
to be triggered for each training sample whose random
walk obtains an ineffective reasoning path. We extract all
potentially effective reasoning paths for such a training
sample and conduct new walks to obtain rewards. The
rewards can increase the likelihood of walking on these
paths later. This way, the postwalking mechanism can
enhance the possibility of obtaining effective reasoning
paths in subsequent walks.

We conducted a set of experiments to evaluate the
effectiveness of our approach and selected two classic
benchmark datasets. We also selected DeepPath [4] as
the core reference. We named our approach EvoPath,
which stands for the evolution of DeepPath, and selected
memoryPath [5] as another core reference including four
classic embedding representation-based approaches. The
experimental results show that our approach is supe-
rior to all the references regarding mean average preci-
sion (MAP). The results also demonstrate that EvoPath

outperforms DeepPath in terms of Hits@N. The rules
and rule confidence values obtained by EvoPath increase
the probability of positive samples ranked first or in the
top three, further demonstrating the effectiveness of
rules with reliable confidence values in fact prediction.
Furthermore, we conducted a case study on EvoPath
and DeepPath to compare the differences in the rules
obtained by the two models. The results demonstrates
greater diversity of rules obtained by EvoPath.

In this study, we introduce a new RL-based approach
for achieving highly reliable KG fact prediction. We pro-
posed two specific techniques: the reward mechanism
based on entity heterogeneity and the postwalking mech-
anism. Both mechanisms are advantageous for obtain-
ing sufficient reasoning paths during RL model training,
thereby extracting reliable rules and the rule confidence
values for fact prediction.

Related works
KG completion tasks can be classified into entity, rela-
tion, and fact predictions [3]. Entity, relation, and fact
predictions involve predicting another entity given a
known entity and relation, represented as (head entity,
relation, ?) or (?, relation, tail entity), a relation between
two known entities (head or tail entities), and predicting
the truth value of a triple given a head entity, a relation,
and a tail entity, respectively. It is represented as a pre-
diction triple (head entity, relation, tail entity). Currently,
KG fact prediction has three categories of research meth-
ods: rule-based, representation-based, and RL-based
approaches.

Rule-based approaches extract rules from the KG
using manual or statistical techniques. Then, they match
these obtained rules with paths between the head and
tail entities of a prediction triple to perform fact predic-
tion. A successful match indicates that the prediction
triple is true. Galárraga et al. [6] proposed an AMIE sys-
tem in 2013, which efficiently mines rules and matches
them with triples in the knowledge base to acquire new
facts. In 2016, Cohen [7] introduced TensorLog, which
employs a differentiable process for obtaining rules. In
the same year, Yang et al. [8] proposed Neural LP, an
approach based on TensorLog that enables end-to-end
training of logical rules with gradient-based learning. In
2020, Qu et al. [9] introduced RNNLogic, a probabilistic
model that trains a rule generator and a reasoning pre-
dictor using the EM algorithm. Rule-based approaches
are generally accurate and interpretable. However, their
effectiveness can be limited by the complexity and scale
of KGs.

Representation-based approaches map entities and
relations to a semantic vector space using a scoring func-
tion to calculate the distance between the head-and-tail

Page 4 of 14Zhou et al. Visual Computing for Industry, Biomedicine, and Art (2023) 6:21

entities and the relation KG completion tasks. They can
be divided into two categories: embedding representa-
tion and graph representation techniques. TransE rep-
resents the embedding representation techniques [10].
TransE maps the head-and-tail entities and relations
into a low-dimensional continuous vector space and uses
distance-based score functions to evaluate the authentic-
ity of prediction triples. However, TransE cannot handle
1-to-N and N-to-1 relations.TransH [11], TransR [12],
and TransD [13] have been proposed to address this
issue. Besides, tensor decomposition models such as
RESCAL [14], DistMult [15], ComplEx [16], and ConvE
[17] use a similarity-based score function to evaluate the
truth of prediction triples. While these embedding rep-
resentation techniques can effectively capture seman-
tic information about entities and relations in KG, they
only use one-hop information and disregard global KG
information. However, graph representation techniques
can utilize the structural information of multiple hops to
capture semantic relationships and contextual informa-
tion from entities and relations. In 2018, Schlichtkrull
et al. [18] first demonstrated that the graph convolu-
tional networks framework can be applied to modeling
relational data, specifically for entity prediction and rela-
tion prediction tasks. In 2018, Teru et al. [19] proposed
a graph neural network (GNN)-based relation prediction
framework, GraIL, which reasons over local subgraph
structures and has a strong inductive bias to learn entity-
independent relational semantics. In 2022, Li et al. [20]
proposed CoNR, a new heterogeneous GNN model. In
CoNR, entity, and relation representations are mutually
updated layer-wise and work together to facilitate down-
stream tasks. Embedding representation techniques have
been used for fact, entity, and relation prediction tasks.
Graph representation techniques are mainly applied to
entity prediction and relation prediction tasks.

RL-based approaches define the reasoning path-find-
ing process in KG as the Markov decision process (MDP),
extract rules from the effective reasoning paths obtained
from the process, and apply them to fact prediction.
Some RL-based approaches are suitable for fact, entity,
and relation predictions. In 2019, Lin et al. [21] proposed
MultiHop, which introduces reward shaping and action
dropout in the path-finding process. In 2021, using a
graph attention network, Tiwari et al. [22] proposed
DAPath to capture more comprehensive information
about neighboring entities and relations. Moreover, it
incorporates the GSA mechanism with GRU to consider
the memory of relations in the path to guide the agent to
walk to the tail entity efficiently. Additionally, some RL-
based approaches focus on solving the fact prediction
task. DeepPath [4] is the first approach to introduce RL

to find reasoning paths combining accuracy, diversity,
and efficiency to teach the agent to find effective paths
and extract effective rules. The latest approach, Memo-
ryPath proposed by Li et al. [5], is a KG model based
on deep RL incorporating LSTM and a graph attention
mechanism to form memory components and automati-
cally find promising paths. RL-based approaches can
effectively handle the inefficiency of path finding and
the lack of explanation in other approaches. With these
advantages, RL-based approaches have achieved satisfac-
tory results for fact prediction. Thus, we use RL in our
current research on KG fact prediction.

Results
All of the metrics in this section are covered in detail in
the “Methods” section.

We used the classic MAP metric to validate the effec-
tiveness of EvoPath in fact prediction on TransE, TransR,
TransH, TransD, DeepPath, MemoryPath, and EvoPath.

As Table 1 shows, EvoPath improves the MAP values
on both datasets. Compared with the widely used embed-
ding representation-based models, our model performs
excellently on the NELL-995 dataset, indicating that
RL-based models are better suited for fact prediction.
Moreover, EvoPath’s fact-prediction ability outperforms
the classic DeepPath model and the latest MemoryPath
model in the MAP metric, indicating that compared with
other models, EvoPath can rank most positive samples
highly and most negative samples lowly in test samples,
thereby improving the accuracy of fact prediction. Evo-
Path can discover useful rules that other models have
overlooked, thus resulting in more complete rules for
each fact prediction task. Furthermore, this result is
attributed to the reliability of the rule confidence values,
leading to higher scores for positive samples and lower
scores for negative samples. Owing to the uneven data
distribution in FB15K-237, all models perform poorly
on this dataset. However, EvoPath remains the best-per-
forming model.

Table 1  MAP of different models on two datasets

Model NELL-995 FB15K-237

TransE 0.383 0.277

TransH 0.389 0.309

TransR 0.406 0.302

TransD 0.413 0.303

DeepPath 0.493 0.311

MemoryPath 0.598 0.315

EvoPath 0.628 0.319

Page 5 of 14Zhou et al. Visual Computing for Industry, Biomedicine, and Art (2023) 6:21 	

To further demonstrate EvoPath’s effectiveness, we
compare it with DeepPath using the Hits@1 and Hits@3
metrics. Hits@N values can directly reflect the model’s
performance and more intuitively reflect whether posi-
tive samples can be ranked in the top N of the samples.
Tables 2 and 3 present both models’ detailed Hits@1 and
Hits@3 results on the NELL-995 and FB15K-237 data-
sets, respectively.

The Hits@1 and Hits@3 metrics focus on the pro-
portion of positive samples ranked first and in the top
three, respectively. By comparing Tables 2 and 3, Evo-
Path outperforms DeepPath overall. On the NELL-995
dataset, DeepPath only outperforms EvoPath for the
Athlet_plays_in_league task is in two metrics but falls
behind EvoPath for other tasks in two metrics. On the
FB15K-237 dataset, EvoPath outperforms DeepPath in
most fact prediction tasks, demonstrating that EvoPath is
more likely to provide correct answers for prediction tri-
ples. As EvoPath obtains more effective reasoning paths,
the rule data are expected to become more comprehen-
sive. The rule confidence calculation will be more reli-
able, allowing positive samples to be ranked easily ahead
of negative ones with more reliable rule confidence. Fur-
thermore, we observe that EvoPath’s performance on the
FB15K-237 dataset is inferior to that on the NELL-995
dataset, attributing to the greater complexity of relations
in FB15K-237. Moreover, different relation names may
express the same meaning in the dataset. In conclusion,
the EvoPath model that we have proposed shows a sig-
nificant improvement compared with other models in
various evaluation metrics. EvoPath can generate more
reliable rules, thus resulting in more accurate fact predic-
tion results.

Discussion
The proposed RL model mainly relies on the relation
information from the KG. However, entity informa-
tion is also important in fact prediction because enti-
ties can provide additional contextual information to
enhance the model’s performance. For instance, GraIL,
which is based on GNN, incorporates entity informa-
tion by encoding the distance between the head and
tail entities of each relationship, enabling the model to
learn the structural properties of subgraphs in the KG.
So, we intend to explore further how to combine entity
information to enhance fact-prediction performance.
Besides, this study involves embedding representa-
tion techniques, which usually only capture one-hop
information about entities and relations. Researchers
recently have applied graph representation techniques to
entity prediction and relation prediction tasks [18–20].
Graph representation techniques can effectively uti-
lize the structure information of multiple hops to cap-
ture semantic relationships and contextual information.
Therefore, in future work, we plan to incorporate graph
representation techniques to improve the performance
of fact prediction.

Second, our model should incorporate an anom-
aly rule detection mechanism. All models inevitably

Table 2  Hits@N result of NELL-995

Task DeepPath EvoPath

Hits@1 Hits@3 Hits@1 Hits@3

Agent_belongs_to_organization 0.552 0.655 0.582 0.727
Athlete_homestadium 0.621 0.785 0.872 0.903
Athlete_plays_for_team 0.269 0.432 0.585 0.741
Athlete_plays_in_league 0.618 0.970 0.603 0.967

Athlete_plays_sport 0.800 0.973 0.877 0.977
Organization_head_quartered_
in_city

0.863 0.934 0.899 0.947

Organization_hired_person 0.641 0.885 0.683 0.907
Person_born_in_location 0.646 0.708 0.663 0.837
Person_leads_organization 0.644 0.920 0.655 0.925
Team_plays_in_league 0.826 0.919 0.863 0.929
Team_plays_sport 0.490 0.923 0.644 0.952
Works_for 0.550 0.820 0.597 0.890
Average 0.627 0.827 0.710 0.892

Table 3  Hits@N result of FB15K-237

Task FB15K-237 EvoPath

Hits@1 Hits@3 Hits@1 Hits@3

ServiceLocation 0.134 0.537 0.299 0.672
FilmDirector 0.060 0.320 0.140 0.633
FilmCountry 0.275 0.532 0.526 0.788
FilmWrittenBy 0.135 0.480 0.419 0.620
CapitalOf 0.415 0.915 0.537 0.963
LocationContains 0.201 0.506 0.321 0.590
MedicineDiseaseRiskFactors 0.030 0.121 0.000 0.273
SymptomOf 0.250 0.500 0.250 0.500
MusicArtistOrigin 0.276 0.500 0.276 0.517
OrganizationLocation 0.166 0.565 0.395 0.642
OrganizationsFounded 0.023 0.302 0.163 0.372
OrganizationMember 0.032 0.184 0.119 0.346
PeopleLanguagesSpoken 0.140 0.512 0.209 0.465

PersonNationality 0.474 0.776 0.706 0.888
BirthPlace 0.298 0.510 0.277 0.504

PeopleProfession 0.212 0.333 0.212 0.333

SportsTeamposition 0.017 0.483 0.000 0.450

TeamSports 0.522 0.873 0.873 0.943
SportsTeamLocation 0.259 0.482 0.259 0.482
CountryOfOrigin 0.772 0.967 0.837 0.957

Average 0.235 0.520 0.341 0.597

Page 6 of 14Zhou et al. Visual Computing for Industry, Biomedicine, and Art (2023) 6:21

generate incorrect rules during experimentation.
However, our model produces fewer incorrect rules
compared with other models. RL is a trial-and-error
learning method that cannot guarantee the correct-
ness of the generated rules. If prediction triples match
incorrect rules, this scenario may decrease the model’s
fact-prediction performance. Therefore, we plan to use
methods to identify potential incorrect and anomalous
rules. (1) We can employ deep-learning-based anom-
aly detection methods to identify anomalous rules. For
example, convolutional neural networks [23], recur-
rent neural networks [24], or other models can extract
features from rules. Then, the softmax or sigmoid
functions can classify rules as normal or abnormal. (2)
We can explore using human-machine collaboration
for rule anomaly detection. We plan to visualize rule
properties, such as entity heterogeneity, using color
coding, shape coding, and other graph visualization
tools [25–27]. Additionally, we intend to visualize the
subgraphs between the head and tail entities of pre-
diction triples together with the rules. This multiper-
spective KG contextual information will be displayed
in a visualization interface [28]. We intend to invite
domain experts to participate in human-machine col-
laborative rule anomaly detection. Through an inter-
active visualization interface, experts can analyze the
anomalies in rules and provide insights, thus obtaining
accurate and reliable rules.

Finally, we believe that our model should not only
be limited to fact prediction but also be applicable to
entity prediction. Fact prediction involves determining
the truthfulness of a prediction triple (h, r, t). By con-
trast, entity prediction involves predicting the tail entity
when the head entity and relation are known, e.g., (h, r,
?). Both tasks complete KG under the premise of known
relations. Our model can extract reliable rules from the
KG to provide reasoning support for each relation. By
leveraging these rules and given the head entity, we can
perform inference in the KG to obtain the tail entity,
thus achieving entity prediction. The highly reliable rules
generated by our model can improve the accuracy and
efficiency of entity prediction, providing rich and pre-
cise technical support for KG completion. For example,
it can be applied to specific scenarios such as medical
disease diagnosis [29] and malicious behavior analysis of
function calls [30].

Conclusions
In this study, we proposed a new RL-based model called
EvoPath for KG fact prediction. The model integrates a
reward mechanism based on entity heterogeneity and a
postwalking mechanism. The reward mechanism assists

an agent in obtaining more effective reasoning paths dur-
ing a random walk on training samples. By contrast, the
postwalking mechanism fully utilizes effective reason-
ing paths that are ignored. With these two mechanisms,
EvoPath accurately calculates the confidence value for
each rule by enriching the path information, enhancing
the reliability of fact prediction. Compared with main-
stream models, the emergence of EvoPath significantly
reduces the occurrence of false positives and negatives.
Furthermore, it resolves the issue of unreliable rule confi-
dence and strengthens the reliability and accuracy of fact
prediction.

Methods
First, we introduce some notations and describe
the task at hand, assume an incomplete KG
G={(eh, r, et)|eh, et ∈ E, r ∈ R } and denote the sets of enti-
ties and relations, respectively.
(eh, r, et) represents a fact. Fact prediction deter-

mines the truthfulness of a given prediction triple
(e

′

h, rt , e
′

t) /∈ G , where e′h, e
′

t ∈ E, rt ∈ R . However, e′h and e′t
have no direct connection via rt . Instead, some long paths
of the form e′h

r1
→ e1

r2
→ e2...

rn
→ e

′

t from e′h to e′t exist. ei
denotes the i-th entity in a path.

RL-based approaches for fact prediction mainly rely
on the reasoning path-finding process formulated as an
MDP. This process involves performing random walks on
samples to identify effective reasoning paths connecting
e
′

h and e′t . Then, rules are extracted from these paths and
compared with the relation chains of each prediction tri-
ple to determine its truthfulness.

One common issue with existing RL-based approaches
is the tendency to obtain ineffective reasoning paths dur-
ing path-finding, resulting in unreliable rule confidence
for fact prediction. Our approach is to address this prob-
lem, which builds upon the DeepPath model and includes
two key improvements: a new reward mechanism based
on entity heterogeneity and a postwalking mechanism.
Our model aims to identify effective reasoning paths
connecting e′h and e′t as much as possible. By increasing
the occurrence of effective reasoning paths, the rules
extracted from them are assigned with more reliable con-
fidence for fact prediction.

We will first introduce the basic elements of our pro-
posed RL framework, describe the implementation pro-
cess for the reward and postwalking mechanisms, and
present our model’s training method.

RL framework for KG fact prediction
Figure 2 shows that our model comprises the MDP
environment and the policy-based agent. The MDP
environment refers to the dynamic interaction between

Page 7 of 14Zhou et al. Visual Computing for Industry, Biomedicine, and Art (2023) 6:21 	

the agent and the KG. The policy-based agent utilizes
a policy network to determine its selection of specific
relations and entities during a random walk in the MDP
environment. The agent stops its walk when it meets
the termination condition and obtains a reasoning path.
The interaction between the policy-based agent and
the MDP environment generates basic elements of the
RL framework, including state, action, transition, and
reward. In the following sections, we introduce these
basic elements in the context of KG fact prediction.

Environment. In our model, the environment com-
prises all the relations and entities of a complete KG in
a certain domain. This environment remains unchanged
throughout the entire training process.

State. The state is defined as a vector containing the
position information of an agent when the agent walks to
the i-th step entity ( ei ) in a KG. In our model, the state
consists of entity and historical path information ( hi ). We
define the state vector at the i-th step as:

The entity information includes ei and etail , repre-
senting the embeddings of the i-th step and tail enti-
ties, respectively. To enable the agent to remember the

(1)si = [ei, et − ei, hi]

historical path information before the i-th step entity,
we utilized a three-layer LSTM network [31]. The LSTM
hidden state hi is defined as follows:

where r0 represents a special initial embedding vector
and h0 , the initial hidden state.

Action. Our model selects a relation as an action. We
define the action space as the set of all relations in the
KG, where the action space for each step entity is repre-
sented as A = R. The agent utilizes the policy network to
select the most promising relation as an action in the cur-
rent state. The formula is as follows:

where p(ai) represents the probability of action ai output
by the policy network, F(ai) represents the normalized

(2)h0 = LSTM(0, [r0, eh])

(3)hi = LSTM(hi−1, [ai−1, ei−1])

(4)F(ai) =
p(ai)

�n
i=0p(ai)

, ai ∈ A

(5)aj = random(A, F(ai))

Fig. 2  Illustrations of a framework for a KG fact prediction model based on RL. (a) The KG environment is modeled as an MDP environment. The
black and blue lines represent a target relation trained by RL and a reasoning path obtained by the agent through a random walk, respectively. (b)
The agent interacts with the MDP environment and takes action based on the policy network to extend the reasoning path

Page 8 of 14Zhou et al. Visual Computing for Industry, Biomedicine, and Art (2023) 6:21

probability distribution of action space A, and random()
is a random sampling function.

When the relation taken in the action is not directly
connected to the current entity, the other relations are
reselected until the selected relation is directly con-
nected to the current entity. Additionally, when the
agent reaches the maximum walk length without reach-
ing the tail entity, we use the postwalking mechanism
(see “Postwalking mechanism design” section) to guide
the agent to take actions that enhance the model’s abil-
ity to obtain more effective reasoning paths.

Transition. Transition refers to the interaction
between the agent and the MDP environment, caus-
ing a state change. It is a transition function P:S×A→
S. The transition of state is achieved by mapping the
state of the current state vector to a new state vector.
The state transition probability distribution is shown
as follows:

where θ denotes the policy network model parameters.
Reward. The reward is an indicator of the effec-

tiveness of the actions. We propose a new reward
mechanism based on entity heterogeneity to encour-
age agents to find more effective reasoning paths. Our
reward mechanism considers global, path length, and
path effectiveness information to build upon a focus
on entity heterogeneity. Furthermore, it quantifies the
effectiveness of actions into a reward value from mul-
tiple dimensions. The reward value is input into the
policy network to update its parameters, making it eas-
ier for the agent to reach the tail entity in subsequent
walk samples. We will detail this reward mechanism in
“Reward mechanism redesign based on entity heteroge-
neity” section.

Policy network. The policy network guides an agent
forward by taking an action in action space A. We used a
three-layer fully connected neural network to parameter-
ize the policy function πθ (ai = ri | si) mapping the state
vector si to a probability distribution over all possible
actions. Furthermore, we added action dropout to block
some actions randomly. The output layer is normalized
using a softmax function. The policy network π is defined
as:

where W1 , W2 , and W3 denote the weights.

Reward mechanism redesign based on entity
heterogeneity
Entity heterogeneity is a step relation linked to mul-
tiple types of step-ending entities (as shown in

(6)si+1 ∼ p(si+1 | si, ai; θ)

(7)πθ (si) = softmax(W3Relu(W2dropout(Relu(W1si))))

“Introduction” section). It is the core factor in obtain-
ing ineffective reasoning paths during a random walk.
Previous RL-based approaches did not consider the
impact of entity heterogeneity on random walks. Our
model quantifies entity heterogeneity into a specific
numerical value and incorporates this product into the
reward mechanism to upgrade it.

Quantify entity heterogeneity reward
Regarding each reasoning path, the entity heterogeneity
reward quantifies entity heterogeneity for each relation
within the path. The configuration method of the reward
is as follows:

1)	 Entity embedding dimension reduction. For each
action the agent takes, we find all the step-ending
entities connected to the corresponding step relation
and collect them into an entity set. However, high-
dimensional embeddings of entities are not conducive
to adjusting RL parameters. To address this issue, we
used the t-distributed stochastic neighbor embedding
[32] dimension reduction technique to map the high-
dimensional embedding representation of entities into
a two-dimensional space. The reduced dimensional
representation vectors will serve as inputs for step 2.

2)	 Entity clustering. Inspired by Hatem [33], we used the
k-nearest neighbors algorithm [34] and knee point
detection method to obtain the optimal radius eps
value for the current entity set. Then, we used this
value as input for the density-based spatial clustering of
application with noise [35] clustering algorithm, which
outputs m clusters of entities and grouped entities with
similar semantic features into the same cluster. When
the entity set connected to a certain step relation is
divided into multiple clusters, we use the number of
clusters as a quantitative value to measure the entity
heterogeneity of that step relation, denoted as rh = m.
The rh metric measures the entity heterogeneity of a
given step relation.

3)	 Entity heterogeneity reward calculation. After a rea-
soning path p is generated, we calculate the entity het-
erogeneity reward for p using the following formula:

where |p| represents the length of a reasoning path p, the
number of relations in the reasoning path.

(8)γp_h =

|p|

i

1

rih

Page 9 of 14Zhou et al. Visual Computing for Industry, Biomedicine, and Art (2023) 6:21 	

Reward mechanism redesign
To encourage the agent to walk autonomously and obtain
effective reasoning paths, we proposed a new reward
mechanism based on entity heterogeneity, which calculates
the reward value for each reasoning path and updates the
policy network parameters based on the obtained reward.
The mechanism includes the following four scoring criteria:

1)	 Global reward: If a reasoning path cannot reach the
tail entity of a sample, we assign a negative reward to
the path to reduce the probability of the agent select-
ing the relations within that path. Conversely, when
a reasoning path reaches a sample’s tail entity, we
assign a positive reward to the path to increase the
probability of the agent selecting the relations within
that path. We represent the last entity of a reasoning
path as en , and the global reward is defined as follows:

If en = et in a reasoning path, we only use γgb as the
reward mechanism.

2)	 Path length reward: Previous studies show that a
short path is more effective in extracting useful rules
than a long path [4]. Therefore, to encourage the
agent to reach the tail entity in the fewest steps pos-
sible, we define the path length reward as:

3)	 Path effectiveness reward: Inspired by Li et al. [36],
we believe that the semantics of an effective rea-
soning path should be similar to that of the target
relation rt . Therefore, we calculated their seman-
tic similarity as a reward to encourage the agent to
walk along an effective reasoning path with a higher
semantic similarity with the target relation. The path
effectiveness reward is defined as:

(9)γgb =

{

+1, if en = et
−0.05, if en �= et

(10)γp_l =
1

|p|

(11)γp_e = sim(P, rt)

(12)P =

n
∑

i=1

ri

where P represents the embedding representation of the
relation chain obtained by sequentially extracting rela-
tions from the reasoning path, rt represents the embed-
ding representation of the target relation, and sim () is the
similarity function. We use the cosine similarity as the
similarity function.

4) Entity heterogeneity reward: See Quantify entity
heterogeneity reward section.

5) Total reward: When the agent obtains a reasoning
path through a random walk, we combine the global, path
length, path effectiveness, and entity heterogeneity rewards
to define the total reward for a reasoning path as follows:

where � is a hyperparameter with
∑

� = 1 . In addition,
γgb is obtained from Formula (9), γp_l from Formula (10),
γp_e from Formula (11), and γp_h from Formula (8).

Postwalking mechanism design
During the RL training process, some training samples pro-
duce ineffective reasoning paths. Nevertheless, effective rea-
soning paths exist. When these existing effective reasoning
paths to provide valid information for training are not used,
the agent will have difficulty walking autonomously to reach
the tail entity of some samples in the vast walking space.

To extract useful path information for the rule confidence
calculation from the training samples that obtained ineffec-
tive reasoning paths, we proposed a postwalking mecha-
nism, which will be triggered for each training sample
whose random walk obtains an ineffective reasoning path.
We show the implementation of this mechanism as follows.

1)	 Subgraph extraction: For each sample that does not
obtain an ineffective reasoning path, the head and tail
entities of the sample are known. We used the depth-
first search algorithm [37] to find a 3-hop subgraph
between the head and tail entities of the sample, con-
taining multiple paths linking the head and tail enti-
ties. Then, we sequentially extracted relations on each
path and formed a continuous sequence of relations
as the path type, i.e.,type(p) = r1 −→ r2... −→ rn.

2)	 Path type deduplication: A subgraph of a sample
often has many duplicated path types. The path type
with the highest occurrence will affect the reward cal-
culation of those with lower occurrence and greatly
impact the policy network. Therefore, we performed a
deduplication operation on all the path types obtained
from a subgraph to ensure that each is equally calcu-
lated once in step 3 for reward calculation.

3)	 Force the agent to walk on path types and generate
reward: The model is not guiding the agent to walk in
the entire KG based on the policy network. Instead,

(13)γTt =

{

�1γgb + �2γp_l + �3γp_e + �4γp_h, if en = et
γgb, if en �= et

Page 10 of 14Zhou et al. Visual Computing for Industry, Biomedicine, and Art (2023) 6:21

the agent is forced to walk on each deduplicated path
type, thus obtaining an effective reasoning path for
each walk. For each agent’s walk, we calculated the
corresponding reward to update the policy network’s
parameters, increased the probability of selecting the
relations in these effective reasoning paths, and enabled
the agent to reach the tail entity of the sample autono-
mously through a random walk in subsequent samples
maximally. The reward calculation is as follows:

where γp_l is obtained from Formula (10), γp_e from
Formula (11), and γp_h from Formula (8).

Training method
To obtain high-reliability rules representing a target rela-
tion rt , we trained our model by conducting a random walk
on each triple in the training samples for one episode. The
specific process of one episode is described as follows:

1)	 We used a training sample ( eh,rt,et ). Starting from its
head entity eh(e0 ), when the agent is at the i-th step
entity, the MDP environment provides the agent with
the state of the entity and the action space A. The
agent inputs the state and A into the policy network
πθ ( si ) and outputs the probability distribution of the
action space A.

2)	 The agent selects the most promising relation from A
directly connected to the i-th step entity as the action
to extend the reasoning path based on the probabil-
ity distribution. For example, as shown in Fig. 3, if the

(14)γp_r =
1

3
(γp_l + γp_e + γp_h)

agent is at e1 and an invalid action r1 that is not directly
connected to e1 is selected, the agent will reselect a
valid action r2 that is directly connected to e1.

3)	 Our model selects the next step entity once a valid
action is performed. When selecting a relation as an
action, it first uses clustering methods to group enti-
ties connected to the relation into different clusters.
Then, it calculates the similarity between each clus-
ter’s average and the tail entity’s embedding repre-
sentations. Finally, the cluster most similar to the tail
entity is selected, and an entity from this cluster is ran-
domly selected as the next step entity. As Fig. 3 shows,
assuming that the average embedding representation
of cluster 1 is more similar to that of the tail entity, our
model selects e3 from cluster 1 as the next step entity.

4)	 After n steps, the agent’s walk terminates at en .
Rewards are computed on the basis of two cases:
en = et and en = et . If en = et , the reward is com-
puted directly by the agent using the Formula (13). If
en = et , after calculating the reward through Formula
(13), the postwalking mechanism guides the agent
to walk once on each of the path types between the
head and tail entities. The reward obtained from each
walk is calculated using the Formula (14). Each time
a reward is computed, it updates the policy network’s
θ parameter. We use the REINFORCE algorithm [38]
and the following policy gradient to update θ:

(15)
�

θ
J (θ) ≈

�
θ

N
∑

i=1

R(sN | es, rt)logπθ (si)

Fig. 3  A schematic diagram showing action reselection and entity clustering selection, where the blue solid line represents valid actions, the red
dotted line represents invalid action, and multiple entities enclosed by a dotted circle are the results of entity clustering

Page 11 of 14Zhou et al. Visual Computing for Industry, Biomedicine, and Art (2023) 6:21 	

where πθ ( si ) represents the probability of the selected
action and R(sN | es, rt) represents the reward obtained
after walking with the maximum length n from the
head entity e0 to the target relation rt . The parameter θ
is updated using an L2-regularized Adam optimizer [39].

Our model only stores this rule during the training pro-
cess: the agent extracts and stores the rule from an effec-
tive reasoning path when it autonomously walks to the
tail entity of the sample.

5)	 After completing all the training, our model will
count the times the agent walks each rule and nor-
malize this number to obtain the rule confidence
value. The calculation formula is as follows:

where xi represents the number of times each rule
rulei(rt) is induced, which is the rule confidence value.
Finally, our model generates a descendingly sorted rule
set, with rules having confidence values that are ranked
higher. The obtained rules and rule confidence values will
be used for the KG fact prediction task.

Experimental settings
Dataset
The experiment uses two publicly available benchmark
datasets, NELL-995 [40] and FB15K-237 [41]. The NELL-
995 dataset has 154213 triples, with 12 types of fact pre-
diction tasks having the same relations within each task,
such as Athlete_plays_for_team, Athlete_plays_in_league.
The FB15K-237 dataset has 310116 triples, with 20 fact
prediction tasks, such as capitalOf and filmDirector.
Table 4 presents the detailed statistics of the datasets.

We split the triples of each fact prediction task into
training and test samples at a ratio of 7:3. The test sam-
ples comprised positive and negative samples, where
negative samples were generated by randomly replacing
the tail entity in positive samples. To enable the agent to
reverse the previous action decision during the random
walk, we augmented each triple in the dataset with its
inverse triple in the form of (t, r_inverse, h).

(16)αi = conf (αi | rulei(rt)) =
xi

∑

N

i=1xi

,α ∈ [0, 1]

Training and hyperparameters
We obtained the embedding representations of enti-
ties and relations used in our model through pretrained
TransR, with 100 dimensions for entity and relation
embedding vectors. We set the hidden dimension of the
LSTM network to 200. The policy network guiding the
agent consists of a three-layer fully connected neural
network with the ReLU activation function. The first and
second layers of the fully connected neural network have
512 and 1024 dimensions, respectively. The output layer
has a dimension equal to the number of relations in the
KG. Therefore, the output layer dimension is 474 and 400
when using FB15K-237 and NELL-995, respectively.

Additionally, we set the dropout rate for the action drop-
out mechanism in the policy network to 0.1 for NELL-995
and 0.15 for FB15K-237 datasets. We used the Adam opti-
mizer to update the parameters of the policy network with
a learning rate of 0.001 and an L2 regularization of 0.005.
The policy network remains unchanged from DeepPath.

Regarding the reward mechanism proposed, we set
�1 to 0.1, �2 to 0.7, �3 to 0.1, and �4 to 0.1 according to
Formula (13). We obtained these parameters through
experimental testing and yielded satisfactory experimen-
tal results. For each fact prediction task, we trained the
model on 300 training samples for 300 episodes, with a
maximum walking length of 50 set in each episode.

Evaluation
To evaluate the performance of our model and other
reference models in KG fact prediction, we utilized the
commonly used metric MAP. Additionally, we employ
the Hits@N metric to measure the capability of our
model and the DeepPath model in ranking positive sam-
ples within the top N for each fact prediction task.

The calculation details of each evaluation metric are
described below:

(a)	The formula for calculating MAP is as follows:

where t is the total number of positive samples, i/ranki
represents the average precision value of the i-th positive
sample, and ranki is the rank of a positive sample in the
test samples. A higher MAP value indicates that positive
samples are ranked higher in the test samples, indicating
better performance in fact prediction.

(b)	The formula for calculating Hits@N is as follows:

(17)MAP =
1

t

t
∑

i

i

ranki

Table 4  Dataset information

Dataset Entity Relation Triple Task

NELL-995 75492 200 154213 12

FB15K-237 14505 237 310116 20

Page 12 of 14Zhou et al. Visual Computing for Industry, Biomedicine, and Art (2023) 6:21

where Q is the total number of positive and negative sam-
ples with the same head entity, ranki represents the rank
of the positive sample among these samples, and δ is an
indicator function that takes a value of 1 if the rank of
the positive sample is less than or equal to N and 0 oth-
erwise. In this experiment, we use Hits@1 and Hits@3 as
additional metrics to evaluate the model’s performance in
fact prediction. A higher Hits@N indicates that positive
samples are more likely to be ranked in the top N in the
test samples.

Baseline and implementation details
Our experiment compared two types of models. The first
type was the RL-based model, with our model improving
the RL-based DeepPath model. Therefore, we used Deep-
Path as the baseline model for our experiment. Moreo-
ver, to compare the performance of our model with the
latest RL-based model, we selected MemoryPath as
another RL-based model. The second type is the embed-
ding representation-based model, which adopts a com-
pletely different design concept from the RL-based model

(18)Hits @ N =
1

Q

Q
∑

i

δ(ranki ≤ N)

and is widely used in the fact prediction task. Therefore,
we selected TransE, TransR, TransH, and TransD as the
comparative models for conducting experiments. We
used TransE, TransR, TransH, TransD, DeepPath, Mem-
oryPath, and our improved RL-based model to complete
the experiment.

Fact prediction aims to evaluate the truthfulness of a pre-
dicted triple. We conducted the implementation of the fact
prediction experiment from three aspects. First, we used the
widely recognized metric for fact prediction, MAP, to evalu-
ate all models and measure the fact prediction ability of each
model. Second, we further compared our model with the
baseline model using Hits@1 and Hits@3 metrics to deter-
mine which model can more accurately predict the truth-
fulness of a prediction triple. Finally, we conducted a case
study on our model and the baseline model to demonstrate
the validity and diversity of the rules learned by our model.

Case study
We compare the rules used by EvoPath and DeepPath for
several fact prediction tasks and analyze the diversity of
rules and the effectiveness of rule confidence through a
case study. Tables 5 and 6 present the detailed results.

The experimental results demonstrate the effectiveness
of EvoPath in obtaining rules from three aspects as follows.

Table 5  Comparison of confidence scores for different tasks and rules

Task Rule Confidence

DeepPath EvoPath

Athlete_plays_in_league (NELL-995) Athlete_plays_for_team→Team_plays_in_league 0.28 0.46
Athlete_plays_sport→Team_plays_sport_inverse→Team_plays_in_league 0.26 0.43

Athlete_plays_sport (NELL-995) Athlete_plays_for_team→Team_plays_sport 0.40 0.58
Athlete_plays_in_league→Team_plays_in_league_inverse→Team_plays_sport 0.11 0.14
Athlete_plays_in_league→League_stadiums→Sport_uses_stadium_inverse - 0.07
Athlete_fly_out_to_sports_team_position→Sport_has_sports_team_position_inverse→
Sport_fans_in_country→Sport_fans_in_country_inverse

0.08 -

filmWrittenBy (FB15K-237) /award/award_nominee/award_nominations./award/award_nomination/nominated_for_
inverse

0.33 0.47

/film/actor/film./film/performance/film_inverse 0.33 0.20

/film/director/film_inverse 0.17 0.09

/film/film/cinematography_inverse 0.17 0.05

Table 6  Rule count

Target relation Model Rule count Length = 1 Length = 2 Length = 3 Length
> 3

Athlete_plays_in_league DeepPath 24 0 3 6 15

EvoPath 31 1 2 5 23

Athlete_plays_sport DeepPath 21 0 3 4 14

EvoPath 40 0 3 6 31

filmWrittenBy DeepPath 4 4 0 0 0

EvoPath 37 6 3 2 26

Page 13 of 14Zhou et al. Visual Computing for Industry, Biomedicine, and Art (2023) 6:21 	

(1) EvoPath is more likely than DeepPath to extract reliable
rules. For instance, for the relation Athlete_plays_sport,
EvoPath can extract a reliable rule: Athlete_plays_in_
league→League_stadiums→Sport_uses_stadium_inverse,
while DeepPath cannot. (2) The rules extracted by Evo-
Path have fewer high-entity heterogeneity relations,
while the rules induced by DeepPath have multiple ones.
For instance, Athlete_fly_out_to_sports_team_position→
Sport_has_sports_team_position_inverse→Sport_fans_in_
country→Sport_fans_in_country_inverse is extracted by
DeepPath but not by EvoPath because EvoPath considers
such rules with high-entity heterogeneity relations unre-
liable. (3) The reliable rules extracted by EvoPath have
higher confidence than those extracted by DeepPath. For
instance, for the rule Athlete_plays_for_team→Team_
plays_in_league, EvoPath gives it a confidence of 0.18
higher than DeepPath. Conversely, the unreliable rules
extracted by EvoPath have lower confidence than those
extracted by DeepPath. For instance, the rule /film/direc-
tor/film_inverse means a director directs a movie. How-
ever, the rule head filmWrittenBy means a person writes a
movie. Although both models extract this rule, EvoPath’s
confidence is 0.08 lower than that of DeepPath.

Table 6 shows the number of rules extracted by Deep-
Path and EvoPath on different lengths. The results indicate
that EvoPath obtains more diverse rules than DeepPath by
learning short and long paths, which are useful for pre-
dicting triples that lack short paths. For instance, EvoPath
learns 17 additional rules with a length > 3 for the target
relation Athlete_plays_sport compared with DeepPath.
This feature can be attributed to the postwalking mecha-
nism in EvoPath, helping the agent accurately reach the
tail entity when expanding long paths. Additionally, Evo-
Path extracts more rules for the same target relation than
DeepPath because the postwalking and reward mecha-
nisms help the agent find more effective reasoning paths.

Abbreviations
KG	� Knowledge graph
RL	� Reinforcement learning
MAP	� Mean average precision
MDP	� Markov decision process
GNN	� Graph neural network

Acknowledgements
Not applicable.

Authors’ contributions
FZ and JZ conceptualized the study; JM and JS implemented the model,
conducted all the experiments, and produced the paper; BZ and RZ revised the
manuscript; XC and YZ contributed significant information to the introduction
and conclusion; The final manuscript has been read and approved by all authors.

Funding
The work is supported in part by the National Natural Science Foundation of
China, Nos. 62272480 and 62072470; and the National Science Foundation of
Hunan Province, Nos. 2021JJ30881 and 2020JJ4758.

Availability of data and materials
The NELL-995 dataset and FB15K-237 dataset are available at https://​github.​
com/​shehz​aadzd/​MINER​VA/​tree/​master/​datas​ets/​data_​prepr​ocess​ed.

Declarations

Competing interests
The authors declare that they have no competing interests.

Received: 16 July 2023 Accepted: 31 October 2023

References
	1.	 Yani M, Krisnadhi AA, Budi I (2022) A better entity detection of question for

knowledge graph question answering through extracting position-based
patterns. J Big Data 9(1):80. https://​doi.​org/​10.​1186/​s40537-​022-​00631-1

	2.	 Lu R, Cai ZP, Zhao S (2019) A survey of knowledge reasoning based on
KG. IOP Conf Ser: Mater Sci Eng, 569(5):052058. https://​doi.​org/​10.​1088/​
1757-​899X/​569/5/​052058

	3.	 Padia A, Kalpakis K, Ferraro F, Finin T (2019) Knowledge graph fact
prediction via knowledge-enriched tensor factorization. J Web Semant
59:100497. https://​doi.​org/​10.​1016/j.​websem.​2019.​01.​004

	4.	 Xiong WH, Hoang T, Wang WY (2017) DeepPath: a reinforcement learning
method for knowledge graph reasoning. In: Proceedings of the 2017
conference on empirical methods in natural language processing, Associ-
ation for Computational Linguistics, Copenhagen, 7-11 September 2017.
https://​doi.​org/​10.​18653/​v1/​D17-​1060

	5.	 Li SY, Wang H, Pan R, Mao MZ (2021) MemoryPath: a deep reinforcement
learning framework for incorporating memory component into knowl-
edge graph reasoning. Neurocomputing 419:273-286. https://​doi.​org/​10.​
1016/j.​neucom.​2020.​08.​032

	6.	 Galárraga LA, Teflioudi C, Hose K, Suchanek F (2013) AMIE: association rule
mining under incomplete evidence in ontological knowledge bases. In:
Proceedings of the 22nd international conference on world wide web, ACM,
Rio de Janeiro, 13-17 May 2013. https://​doi.​org/​10.​1145/​24883​88.​24884​25

	7.	 Cohen WW (2016) TensorLog: a differentiable deductive database. arXiv
preprint arXiv:​1605.​06523. https://​doi.​org/​10.​48550/​arXiv.​1605.​06523

	8.	 Yang F, Yang ZL, Cohen WW (2017) Differentiable learning of logical rules
for knowledge base reasoning. In: Proceedings of the 31st international
conference on neural information processing systems, Curran Associates
Inc, Long Beach, 4-9 December 2017

	9.	 Qu M, Chen JK, Xhonneux LP, Bengio Y, Tang J (2020) RNNLogic: learning
logic rules for reasoning on knowledge graphs. arXiv preprint arXiv:​2010.​
04029. https://​doi.​org/​10.​48550/​arXiv.​2010.​04029

	10.	 Bordes A, Usunier N, Garcia-Durán A, Weston J, Yakhnenko O (2013) Trans-
lating embeddings for modeling multi-relational data. In: Proceedings
of the 26th international conference on neural information processing
systems, Curran Associates Inc, Lake Tahoe, 5-8 December 2013

	11.	 Wang Z, Zhang JW, Feng JL, Chen Z (2014) Knowledge graph embedding
by translating on hyperplanes. In: Proceedings of the 28th AAAI confer-
ence on artificial intelligence, AAAI, Québec City, 27-31 July 2014. https://​
doi.​org/​10.​1609/​aaai.​v28i1.​8870

	12.	 Lin YK, Liu ZY, Sun MS, Liu Y, Zhu X (2015) Learning entity and relation
embeddings for knowledge graph completion. In: Proceedings of the
29th AAAI conference on artificial intelligence, AAAI, Austin, 25-30 Janu-
ary 2015. https://​doi.​org/​10.​1609/​aaai.​v29i1.​9491

	13.	 Ji GL, He SZ, Xu LH, Liu K, Zhao J (2015) Knowledge graph embedding via
dynamic mapping matrix. In: Proceedings of the 53rd annual meeting of
the association for computational linguistics and the 7th international
joint conference on natural language processing (volume 1: long papers),
Association for Computational Linguistics, Beijing, 26-31 July 2015.
https://​doi.​org/​10.​3115/​v1/​P15-​1067

	14.	 Nickel M, Tresp V, Kriegel HP (2011) A three-way model for collective
learning on multi-relational data. In: Proceedings of the 28th international
conference on international conference on machine learning, Omnipress,
Bellevue, 28 June-2 July 2011

https://github.com/shehzaadzd/MINERVA/tree/master/datasets/data_preprocessed
https://github.com/shehzaadzd/MINERVA/tree/master/datasets/data_preprocessed
https://doi.org/10.1186/s40537-022-00631-1
https://doi.org/10.1088/1757-899X/569/5/052058
https://doi.org/10.1088/1757-899X/569/5/052058
https://doi.org/10.1016/j.websem.2019.01.004
https://doi.org/10.18653/v1/D17-1060
https://doi.org/10.1016/j.neucom.2020.08.032
https://doi.org/10.1016/j.neucom.2020.08.032
https://doi.org/10.1145/2488388.2488425
http://arxiv.org/abs/1605.06523
https://doi.org/10.48550/arXiv.1605.06523
http://arxiv.org/abs/2010.04029
http://arxiv.org/abs/2010.04029
https://doi.org/10.48550/arXiv.2010.04029
https://doi.org/10.1609/aaai.v28i1.8870
https://doi.org/10.1609/aaai.v28i1.8870
https://doi.org/10.1609/aaai.v29i1.9491
https://doi.org/10.3115/v1/P15-1067

Page 14 of 14Zhou et al. Visual Computing for Industry, Biomedicine, and Art (2023) 6:21

	15.	 Yang BS, Yih WT, He XD, Gao JF, Deng L (2014) Embedding entities and
relations for learning and inference in knowledge bases. arXiv preprint
arXiv:​1412.​6575. https://​doi.​org/​10.​48550/​arXiv.​1412.​6575

	16.	 Trouillon T, Welbl J, Riedel S, Gaussier É, Bouchard G (2016) Complex
embeddings for simple link prediction. In: Proceedings of the 33rd inter-
national conference on international conference on machine learning,
JMLR.org, New York City, 19-24 June 2016

	17.	 Dettmers T, Minervini P, Stenetorp P, Riedel S (2018) Convolutional 2D
knowledge graph embeddings. In: Proceedings of the 32nd AAAI confer-
ence on artificial intelligence, AAAI, New Orleans, 2-7 February 2018.
https://​doi.​org/​10.​1609/​aaai.​v32i1.​11573

	18.	 Schlichtkrull M, Kipf TN, Bloem P, Van Den Berg R, Titov I, Welling M (2018)
Modeling relational data with graph convolutional networks. In: Gangemi
A, Navigli R, Vidal ME, Hitzler P, Troncy R, Hollink L et al (eds) The semantic
web. 15th international conference, ESWC 2018, Heraklion, June 2018.
Lecture notes in computer science (Information systems and applica-
tions, incl. internet/web, and HCI), vol 10843. Springer, Heidelberg, pp
593-607. https://​doi.​org/​10.​1007/​978-3-​319-​93417-4_​38

	19.	 Teru KK, Denis EG, Hamilton WL (2020) Inductive relation prediction by
subgraph reasoning. In: Proceedings of the 37th international conference
on machine learning, JMLR.org, Online, 13-18 July 2020.

	20.	 Li WM, Ni L, Wang JJ, Wang C (2022) Collaborative representation learning
for nodes and relations via heterogeneous graph neural network. Knowl-
Based Syst 255:109673. https://​doi.​org/​10.​1016/j.​knosys.​2022.​109673

	21.	 Lin XV, Socher R, Xiong CM (2018) Multi-hop knowledge graph reasoning
with reward shaping. In: Proceedings of the 2018 conference on empiri-
cal methods in natural language processing, Association for Computa-
tional Linguistics, Brussels, 31 October-04 November 4 2018. https://​doi.​
org/​10.​18653/​v1/​D18-​1362

	22.	 Tiwari P, Zhu HY, Pandey HM (2021) DAPath: distance-aware knowledge
graph reasoning based on deep reinforcement learning. Neural Netw
135:1-12. https://​doi.​org/​10.​1016/j.​neunet.​2020.​11.​012

	23.	 Kwon D, Natarajan K, Suh SC, Kim H, Kim J (2018) An empirical study on
network anomaly detection using convolutional neural networks. In:
Proceedings of the IEEE 38th international conference on distributed
computing systems, IEEE, Vienna, 2-6 July 2018. https://​doi.​org/​10.​1109/​
ICDCS.​2018.​00178

	24.	 Hsu D (2017) Anomaly detection on graph time series. arXiv preprint
arXiv:​1708.​02975. https://​doi.​org/​10.​48550/​arXiv.​1708.​02975

	25.	 Wang YY, Bai ZN, Lin ZF, Dong XQ, Feng YCJ, Pan JC et al (2021) G6: a web-
based library for graph visualization. Vis Inf 5(4):49-55. https://​doi.​org/​10.​
1016/j.​visinf.​2021.​12.​003

	26.	 Zhao Y, Ge LH, Xie HX, Bai GH, Zhang Z, Wei Q et al (2022) ASTF: visual
abstractions of time-varying patterns in radio signals. IEEE Trans Vis
Comput Graph 29(1):214-224. https://​doi.​org/​10.​1109/​TVCG.​2022.​
32094​69

	27.	 Burch M, Ten Brinke KB, Castella A, Peters GKS, Shteriyanov V, Vlasvinkel
R (2021) Dynamic graph exploration by interactively linked node-link
diagrams and matrix visualizations. Vis Comput Ind, Biomed, Art 4(1):23.
https://​doi.​org/​10.​1186/​s42492-​021-​00088-8

	28.	 Zhao Y, Shi JC, Liu JW, Zhao J, Zhou FF, Zhang WZ et al (2022) Evaluat-
ing effects of background stories on graph perception. IEEE Trans Vis
Comput Graph 28(12):4839-4854. https://​doi.​org/​10.​1109/​TVCG.​2021.​
31072​97

	29.	 Tao XH, Pham T, Zhang J, Yong JM, Goh WP, Zhang WP et al (2020) Mining
health knowledge graph for health risk prediction. World Wide Web
23(4):2341-2362. https://​doi.​org/​10.​1007/​s11280-​020-​00810-1

	30.	 Zhao Y, Lv SL, Long WW, Fan YL, Yuan J, Jiang HJ et al (2023) Malicious
webshell family dataset for webshell multi-classification research. Vis Inf
(in press) https://​doi.​org/​10.​1016/j.​visinf.​2023.​06.​008

	31.	 Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural
Comput 9(8):1735-1780. https://​doi.​org/​10.​1007/​978-3-​642-​24797-2_4

	32.	 van der Maaten L, Hinton G (2008) Visualizing data using t-SNE. J Mach
Learn Res 9(86):2579-2605.

	33.	 Hatem MQ (2022) Skin lesion classification system using a K-nearest
neighbor algorithm. Vis Comput Ind, Biomed, Art 5(1):7. https://​doi.​org/​
10.​1186/​s42492-​022-​00103-6

	34.	 Kramer O (2013) K-nearest neighbors. In: Kramer O (ed) Dimensionality
reduction with unsupervised nearest neighbors, vol 51. Springer, Heidel-
berg, pp 13-23. https://​doi.​org/​10.​4249/​schol​arped​ia.​1883

	35.	 Wang WT, Wu YL, Tang CY, Hor MK (2015) Adaptive density-based spatial
clustering of applications with noise (DBSCAN) according to data. In:
Proceedings of the 2015 international conference on machine learning
and cybernetics, IEEE, Guangzhou, 12-15 July 2015. https://​doi.​org/​10.​
1109/​ICMLC.​2015.​73409​62

	36.	 Li J, Wang RX, Zhang NY, Zhang W, Yang F, Chen HJ (2020) Logic-guided
semantic representation learning for zero-shot relation classification.
In: Proceedings of the 28th international conference on computational
linguistics, International Committee on Computational Linguistics,
Barcelona, 8-13 December 2020. https://​doi.​org/​10.​18653/​v1/​2020.​
coling-​main.​265

	37.	 Tarjan R (1972) Depth-first search and linear graph algorithms. SIAM J
Comput 1(2):146-160. https://​doi.​org/​10.​1137/​02010​10

	38.	 Williams RJ (1992) Simple statistical gradient-following algorithms for
connectionist reinforcement learning. Mach Learn 8(3):229-256. https://​
doi.​org/​10.​1007/​BF009​92696

	39.	 Kingma DP, Ba J (2015) Adam: a method for stochastic optimization. In:
Proceedings of the 3rd international conference on learning representa-
tions, ICLR, San Diego, 7-9 May 2015.

	40.	 Carlson A, Betteridge J, Kisiel B, Settles B, Hruschka Jr ER, Mitchell TM
(2010) Toward an architecture for never-ending language learning. In:
Proceedings of the 24th AAAI conference on artificial intelligence, AAAI,
Atlanta, 11-15 July 2010. https://​doi.​org/​10.​1609/​aaai.​v24i1.​7519

	41.	 Bollacker KD, Evans C, Paritosh PK, Sturge T, Taylor J (2008) Freebase: a col-
laboratively created graph database for structuring human knowledge.
In: Proceedings of the 2008 ACM SIGMOD international conference on
management of data, ACM, Vancouver, 10-12 June 2008. https://​doi.​org/​
10.​1145/​13766​16.​13767​46

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

http://arxiv.org/abs/1412.6575
https://doi.org/10.48550/arXiv.1412.6575
https://doi.org/10.1609/aaai.v32i1.11573
https://doi.org/10.1007/978-3-319-93417-4_38
https://doi.org/10.1016/j.knosys.2022.109673
https://doi.org/10.18653/v1/D18-1362
https://doi.org/10.18653/v1/D18-1362
https://doi.org/10.1016/j.neunet.2020.11.012
https://doi.org/10.1109/ICDCS.2018.00178
https://doi.org/10.1109/ICDCS.2018.00178
http://arxiv.org/abs/1708.02975
https://doi.org/10.48550/arXiv.1708.02975
https://doi.org/10.1016/j.visinf.2021.12.003
https://doi.org/10.1016/j.visinf.2021.12.003
https://doi.org/10.1109/TVCG.2022.3209469
https://doi.org/10.1109/TVCG.2022.3209469
https://doi.org/10.1186/s42492-021-00088-8
https://doi.org/10.1109/TVCG.2021.3107297
https://doi.org/10.1109/TVCG.2021.3107297
https://doi.org/10.1007/s11280-020-00810-1
https://doi.org/10.1016/j.visinf.2023.06.008
https://doi.org/10.1007/978-3-642-24797-2_4
https://doi.org/10.1186/s42492-022-00103-6
https://doi.org/10.1186/s42492-022-00103-6
https://doi.org/10.4249/scholarpedia.1883
https://doi.org/10.1109/ICMLC.2015.7340962
https://doi.org/10.1109/ICMLC.2015.7340962
https://doi.org/10.18653/v1/2020.coling-main.265
https://doi.org/10.18653/v1/2020.coling-main.265
https://doi.org/10.1137/0201010
https://doi.org/10.1007/BF00992696
https://doi.org/10.1007/BF00992696
https://doi.org/10.1609/aaai.v24i1.7519
https://doi.org/10.1145/1376616.1376746
https://doi.org/10.1145/1376616.1376746

	Reliable knowledge graph fact prediction via reinforcement learning
	Abstract
	Introduction
	Related works
	Results
	Discussion
	Conclusions
	Methods
	RL framework for KG fact prediction
	Reward mechanism redesign based on entity heterogeneity
	Quantify entity heterogeneity reward
	Reward mechanism redesign

	Postwalking mechanism design
	Training method
	Experimental settings
	Dataset
	Training and hyperparameters
	Evaluation
	Baseline and implementation details

	Case study

	Acknowledgements
	References

