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Abstract 

Background  Emphysema influences the appearance of lung tissue in computed tomography (CT). We evaluated 
whether this affects lung nodule detection by artificial intelligence (AI) and human readers (HR).

Methods  Individuals were selected from the “Lifelines” cohort who had undergone low-dose chest CT. Nodules 
in individuals without emphysema were matched to similar-sized nodules in individuals with at least moderate 
emphysema. AI results for nodular findings of 30–100 mm3 and 101–300 mm3 were compared to those of HR; 
two expert radiologists blindly reviewed discrepancies. Sensitivity and false positives (FPs)/scan were compared 
for emphysema and non-emphysema groups.

Results  Thirty-nine participants with and 82 without emphysema were included (n = 121, aged 61 ± 8 years 
(mean ± standard deviation), 58/121 males (47.9%)). AI and HR detected 196 and 206 nodular findings, respectively, 
yielding 109 concordant nodules and 184 discrepancies, including 118 true nodules. For AI, sensitivity was 0.68 (95% 
confidence interval 0.57–0.77) in emphysema versus 0.71 (0.62–0.78) in non-emphysema, with FPs/scan 0.51 and 0.22, 
respectively (p = 0.028). For HR, sensitivity was 0.76 (0.65–0.84) and 0.80 (0.72–0.86), with FPs/scan of 0.15 and 0.27 
(p = 0.230). Overall sensitivity was slightly higher for HR than for AI, but this difference disappeared after the exclusion 
of benign lymph nodes. FPs/scan were higher for AI in emphysema than in non-emphysema (p = 0.028), while FPs/
scan for HR were higher than AI for 30–100 mm3 nodules in non-emphysema (p = 0.009).

Conclusions  AI resulted in more FPs/scan in emphysema compared to non-emphysema, a difference not observed 
for HR.

Relevance statement  In the creation of a benchmark dataset to validate AI software for lung nodule detection, 
the inclusion of emphysema cases is important due to the additional number of FPs.

Key points 

• The sensitivity of nodule detection by AI was similar in emphysema and non-emphysema.

• AI had more FPs/scan in emphysema compared to non-emphysema.

• Sensitivity and FPs/scan by the human reader were comparable for emphysema and non-emphysema.

• Emphysema and non-emphysema representation in benchmark dataset is important for validating AI.
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Graphical Abstract

Background
Lung cancer is one of the deadliest cancers [1]. Lung 
nodules detected on computed tomography (CT) exam-
inations may be an early sign of lung cancer. Therefore, 
it is of great importance to detect these nodules on CT, 
even if most of these turn out to be benign [2]. Lung nod-
ule detection is a time-consuming task for radiologists. 
Many, artificial intelligence (AI)-based, automated lung 
nodule detection algorithms have been developed aim-
ing to help radiologists in their daily clinical routine or in 
screening setting. Most of these algorithms are based on 
the publicly available LUNA16 dataset [3]. However, it is 
unclear if these algorithms perform well in different set-
tings as they may contain biases that limit generalizability 
[4]. Because of these biases, the AI algorithms may not 
be accurate for use in all cohorts and should be used only 
in similar populations to the ones on which these algo-
rithms were developed and validated, unless adequate 
performance is confirmed in the target population [4].

The performance of different AI solutions for lung 
nodule detection was previously compared to that of 

human readers [5–7]. The sensitivity of AI solutions 
developed based on the LUNA16 dataset ranged from 
0.79 to 0.98 and the false positives (FPs)/scan from 1 to 
8 [7]. For commercial software, the sensitivity is usu-
ally higher than that of the radiologist but commonly at 
the expense of more FPs/scan. For example, Chamber-
lin et al. [8] showed that the sensitivity of AI lung nod-
ule detection software was 1.00 and specificity moderate 
(0.71), with good agreement between AI and expert radi-
ologists (Cohen’s κ = 0.74). So far, there is no evidence of 
the detection performance of AI software in subcohorts, 
such as individuals with emphysema.

Emphysema, a parenchymal lung disease often related 
to smoking, changes the overall appearance of the lung 
on CT images and is associated with a higher prevalence 
of lung nodules and scars [9, 10]. In low-dose chest CT 
screening studies, emphysema was present in over 20% of 
participants screened for lung cancer [11]. Due to archi-
tectural distortion and the presence of scars in emphy-
sema, AI or a human reader may miss nodules but could 
also find more FPs. Because scars may be interpreted as 
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nodules, irregularly shaped nodular findings, which could 
be cancer-mimicking postinflammatory scars, may com-
plicate the correct identification of nodules [12]. Further-
more, larger nodules exist in cases with emphysema [10], 
and in areas with severe emphysema, lung cancer tends 
to develop more often [13, 14]. It is therefore crucial to 
correctly detect nodules in individuals with emphysema 
and particularly in emphysematous regions, a task that an 
automated algorithm could help to accomplish, albeit at 
the possible expense of additional FPs [15].

The goal of this study is to evaluate whether sensitivity 
or FPs/scan in AI lung nodule detection software differs 
between scans of individuals with and without emphy-
sema, and to compare these results to those of a human 
reader, using a consensus expert panel review. The moti-
vation for conducting this study stems from the uncer-
tainty surrounding potential biases within AI software 
and its ability to generalize to diverse populations beyond 
its original training set. For this purpose, we used a com-
mercially available software product as a proof of princi-
ple for studying emphysema as a potential source of bias 
in AI performance.

Methods
Study population and CT acquisition
The dataset used in this study is part of the ImaLife 
(Imaging in Lifelines) cohort [16], a subcohort of Life-
lines with participants aged 45  years and above who 
underwent low-dose chest CT scanning between 2017 
and 2022. Lifelines is a multidisciplinary prospective 
population-based cohort study examining in a unique 
three-generation design the health and health-related 
behaviors of 167,729 persons living in the North of the 
Netherlands. It employs a broad range of investigative 
procedures in assessing the biomedical, socio-demo-
graphic, behavioral, physical, and psychological factors 
that contribute to the health and disease of the general 
population, with a special focus on multi-morbidity and 
complex genetics. Initiated in 2006, Lifelines conducts 
repeated follow-up rounds, where participants com-
plete additional questionnaires, provide biosamples, and 
undergo physical examinations.

ImaLife participants underwent a noncontrast chest 
CT scan using a third-generation dual-source CT 
(SOMATOM Force, Siemens Healthineers, Erlangen, 
Germany), with a low-dose protocol. The effective dose 
for the scans was between 0.6 and 1.8 mSv. CT acquisi-
tion parameters can be found in a previous report [16]. 
Information about demographics was available from the 
Lifelines database [17]. Informed consent was obtained 
from all participants prior to participating in the ImaLife 
study and the medical ethics committee of the University 
Medical Center of Groningen approved the study.

For this study, we selected individuals with at least 
moderate emphysema, as well as a comparison group 
without emphysema. These groups are described in more 
detail below.

Scan evaluation and subcohort selection
At the initial reading of the ImaLife CT scans, lung nod-
ules were detected and quantified by a trained techni-
cal medicine graduate (G.P.) with 3  years of experience 
under a radiologist’s supervision (M.R. with 6  years of 
experience reading chest CTs), using dedicated software 
(Pulmo3D, Syngo.via VB40, Siemens Healthineers). A 
smooth kernel Br40 was used for lung nodule detection 
and a hard kernel (Qr59) for nodule quantification. The 
reader registered a maximum of ten nodules per scan. If 
a participant had more than ten nodules, the ten largest 
were registered. Nodules were classified into size cat-
egories based on volume: 30–100 mm3, 101–300 mm3, 
and > 300 mm3. Nodules smaller than 30 mm3 were not 
characterized. For the current study, nodules larger than 
300 mm3 were disregarded since only a few cases were 
available, and detection is relatively easy for larger-sized 
nodules. The presence of at least trace emphysema was 
noted at the initial reading; all other individuals were 
noted as having no emphysema.

For 1,533 scans available in the ImaLife database, 
detailed emphysema classification was performed by a 
trained technical physician with 3  years of experience 
(H.J.W.) or a radiologist with 5 years of experience (X.Y.). 
Evaluations were performed with an extended, lobar-
based version of emphysema classification [18, 19]. The 
lobe with the most severe emphysema classification was 
considered for the overall emphysema classification for 
that participant, resulting in a classification according to 
Fleischner [19]. Cases without emphysema presence were 
also noted. For the current study, all cases from those 
1,533 with at least moderate emphysema (moderate, 
confluent centrilobular, or advanced destructive emphy-
sema) were selected. Cases with trace and mild emphy-
sema were excluded from our analysis.

To permit valid comparison between emphysema and 
non-emphysema cases, in view of the expected larger size 
of nodules in emphysema cases, we matched each nodule 
in emphysema cases to a similar sized nodule (± 10 mm3) 
in ImaLife individuals without emphysema. During the 
matching process, it was ensured that a nodule from the 
same volume subgroup was selected. For example, for a 
nodule sized 98 mm3 in an emphysema participant, we 
searched the database for a nodule in a non-emphysema 
participant with nodule size from 88 mm3 (as max 10 
mm3 lower) to 100 mm3 (upper limit of size category 
30–100 mm3). The maximum number of nodules per 
emphysema participant was ten (the ten largest were 
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noted). In the case of multiple nodules in emphysema 
participants, each individual nodule was size-matched 
with a nodule of similar size among the large group of 
non-emphysema participants. Thus, for multiple nod-
ules in an emphysema participant, matching could 
consist of nodules in different non-emphysema partici-
pants. Because non-emphysema participants with a size-
matched nodule could have additional, non-matched 
nodules (radiologists may have found more than 1 nod-
ule in that participant), the non-emphysema group con-
tained more nodules. We randomly selected participants 
in the non-nodule, non-emphysema group to match the 
number of participants without nodules in the emphy-
sema group.

AI nodule detection
Scans of included participants were sent to the AI-Rad 
Companion chest CT research application (Version 
08/2022, Siemens Healthineers). According to vendor 
recommendations, reconstruction kernel Qr59 was used. 
After processing, the AI tool returned the original scan 
overlayed with red boxes around the findings it consid-
ered as nodules. Similar to the human reader, the AI 
algorithm only registered a maximum of 10 nodules per 
scan by selecting the 10 largest nodules from the nodule 
candidates detected.

Evaluation of nodule detection discrepancies and nodule 
volume
Nodular findings detected by both AI and the human 
reader were considered true-positive nodules (TPs). Dis-
crepancies between findings for AI and the human reader 
were listed. Two experienced radiologists (R.V. with 17 
and G.J. with 13 years of experience in chest CT) blinded 
to the origin of the finding (AI or human reader) in con-
sensus decided if discrepancies were true nodules or 
not. Furthermore, they added a confidence score (from 
0, random guess to 5, extremely confident) and provided 
information on the type of finding (e.g., type of non-nod-
ular finding, nodule, or lymph node). Typical perifissural 
nodules (PFNs) and bronchovascular lymph nodes were 
included in our main analysis. These findings are non-
malignant [20, 21] and do not need follow-up if their size 
is below 524 mm3 [22]. Therefore, they can be considered 
less clinically relevant. In secondary statistical analyses, 
we excluded typical PFNs and bronchovascular lymph 
nodes.

Nodule size was based on the volume of the solid 
component of the nodule (if > 30 mm3) (either whole in 
case of solid nodule, or part in case of part-solid nodule) 
and on the non-solid volume in case of non-solid nod-
ule or a part-solid nodule with solid part less than 30 
mm3. For findings only detected by AI, volume size was 

retrospectively measured with syngo.via software (Ver-
sion VB60, Siemens Healthineers), to establish a com-
mon reference standard for AI and reader: that volume 
was then used to assign the finding into the appropriate 
volume size subgroup. For consistency, nodules smaller 
than 30 mm3 or larger than 300 mm3 detected only by AI 
were not included in our analysis. Findings found only by 
AI as < 30 mm3 but manually measured within syngo.via 
as > 30 mm3 were also excluded from analysis (n < 5).

Statistical analysis
After the consensus was read by the radiologists, sensi-
tivity, positive predictive value (PPV), FPs/scan, TPs, FPs, 
and false negatives (FNs) were determined. We used the 
definition of true negatives (TNs) as proposed by Cham-
berlin et  al. [8] who defined TNs as cases in which no 
nodules were reported by the initial human reading and 
no findings were found by AI. The primary analysis was 
performed by including lymph nodes. Subsequently, sec-
ondary analyses were performed after the exclusion of 
lymph nodes and, for the whole dataset, separately for 
the two size categories. To estimate the variability in met-
ric values, 95% confidence intervals (CIs) were calculated 
for sensitivity, and PPV, using Wilson’s method for pro-
portions with continuity correction [23]. To investigate if 
a difference exists in sensitivity between emphysema and 
non-emphysema groups for AI and for the reader, as well 
as between AI and reader for each of the emphysema/
non-emphysema groups, the overlap of CIs was utilized 
as a metric. If the ranges of two CIs did not overlap, we 
interpreted that as a significant difference. In addition, 
χ2 tests were performed to evaluate whether TP rate 
(observed TP/total TP), as a proxy of sensitivity, differed 
significantly between AI and reader for both emphysema 
and non-emphysema. A McNemar test was not deemed 
appropriate for this purpose because the comparison of 
two independent detection methods against the con-
sensus panel each yields separate FN and FP counts, 
which cannot be combined in a 2 × 2 matrix. The use of 
a human reader as a standard against which to compare 
AI performance also was considered suboptimal because 
of the focus of this investigation on the true performance 
of AI in nodule detection. Similarly, a formal statistical 
comparison of AI versus consensus panel and human 
reader versus consensus read was not practical due to the 
absence of TNs for the consensus panel. For comparing 
the number of FPs/scan, Mann–Whitney U testing was 
utilized for the comparison of AI between emphysema 
and non-emphysema groups (same for human reader), as 
well as for the comparison of AI versus reader between 
emphysema and non-emphysema groups. For categorical 
variables (sex, ever smoker) in the demographics table, 
the χ2 test was used. To check for the difference in means 
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between the emphysema and non-emphysema groups for 
numeric variables, the Mann–Whitney U test was uti-
lized since in a few cases the distribution of data stratified 
by emphysema condition was not normal (checked with 
the Shapiro–Wilk test). A p-value smaller than 0.05 was 
considered statistically significant. The statistical analy-
sis was performed in Python using the SciPy statistical 
library [24].

Results
Participant selection and characteristics
After the exclusion of trace and mild emphysema par-
ticipants (n = 608) and cases with at least moderate 
emphysema but without information about the presence 
of nodules (n = 4), this study included 39 emphysema 

participants with at least moderate emphysema (12 with 
advanced destructive/confluent emphysema and 27 with 
moderate emphysema). After matching for nodule size, 
82 non-emphysema participants were included. These 
were selected from the 882 individuals without emphy-
sema. The total sample size of 121 included therefore 
32.2% participants with emphysema and 67.8% non-
emphysema cases. The characteristics of participants of 
the emphysema/non-emphysema groups are shown in 
Table  1. The age of the participants was 60.6 ± 8.3  years 
(mean ± standard deviation), 58/121 (47.9%) were male, 
and 88/121 (72.7%) were ever smokers. Individuals with 
emphysema comprised more ever smokers and had more 
smoking pack years compared to individuals without 
emphysema.

Seventy-five nodules with a volume of 30–300 mm3 
were found based on initial reading in individuals with 
emphysema. Of these, 73 nodules (97.3%) could be size-
matched to a nodule in 65 participants without emphy-
sema. In some individuals, more than one nodule could 
be size-matched. Additional (non-matched) nodules 
were found in the participants without emphysema, 
resulting in a total of 131 nodules. In total, nine subsolid 
nodules (three part-solid, six non-solid) were included. 
Seventeen participants in the emphysema group lacked 
nodules, matched to 17 individuals without nodules in 
the non-emphysema group. A flowchart of the selection 
process can be seen in Fig. 1.

The distribution of nodule sizes in the emphysema and 
non-emphysema groups is shown in Fig. 2. Both groups 
showed similar nodule size and relative size distribution: 
emphysema group, median 58.0 mm3, interquartile range 
56.5 versus non-emphysema group, median 59.0 mm3, 
interquartile range 43.5 mm3 (p = 0.930).

Table 1  Participant characteristics for the emphysema/non-
emphysema groups

Missing values: smoking status n < 10, pack years n = 35
a 27 individuals (69.2%) showed moderate emphysema, and 12 (30.8%) 
individuals showed advanced/confluent emphysema. Bold values denote a 
significant difference (p < 0.050)
b Comparison of the proportion of males or ever smokers between emphysema 
and non-emphysema
c Comparison between mean values of a given continuous attribute between 
emphysema and non-emphysema groups

All participants
(n = 121)

Participants with 
emphysema 
(n = 39)a

Participants 
without 
emphysema 
(n = 82)

p-value

58 (47.9%) 23 (59.0%) 35 (42.7%) 0.140b

60.6 ± 8.3 62.7 ± 8.0 59.5 ± 8.3 0.053c

81.8 ± 14.2 78.5 ± 12.7 83.3 ± 14.6 0.144c

174.7 ± 9.8 176.3 ± 9.4 173.9 ± 9.8 0.199c

88 (72.7%) 35 (89.7%) 53 (64.6%) 0.010b

17.3 ± 16.5 28.9 ± 16.1 9.9 ± 11.7  < 0.001c

Fig. 1  Flowchart depicting participant selection process. Note that because matching was guaranteed for nodules from emphysema patients, 
and because some participants had more than one nodule, this procedure yielded more nodules in the non-emphysema participants
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Analysis of discrepancies in nodular findings
AI detected in total 196 nodular findings and the human 
reader 206. Overall, 109 (concordant) nodules were 
detected by both AI and human reader; 73 of 30–100 
mm3 nodules (24 in emphysema) and 36 of 101–300 
mm3 nodules (16 in emphysema). Four cases had at 
least 10 nodules detected during the initial reading (AI 
also found at least 10 nodules), while there were 2 cases 
in which AI detected 10 nodules, but the human reader 
fewer than 10.

There were 184 discrepant findings, i.e., findings found 
by either AI or human reader: 136 sized 30–100 mm3 (52 
in emphysema) and 48 of 101–300 mm3 (25 in emphy-
sema). Of the 184 discrepancies, 118 were classified as 
true lung nodules (64.1%) by the consensus panel. Of 
these 118 true nodules, 49 were detected by AI alone (22 
in emphysema) and 69 by the human reader only (29 in 
emphysema). Most of these additional true nodules were 
PFNs or bronchovascular lymph nodes (96/118, 81.4%). 

One finding measured by AI as < 30 mm3 but in syngo.
via as > 30 mm3 was excluded from our analysis. For three 
findings in the emphysema group and twelve findings in 
the non-emphysema group, the consensus panel was less 
than confident on the designation of the nodular finding 
(confidence score ≤ 3).

Performance evaluation and comparison
AI’s sensitivity was similar for the emphysema (0.68 (95% 
CI 0.57–0.77)) and non-emphysema (0.71 (0.62–0.78)) 
groups. A higher number of FPs/scan by the AI in the 
emphysema group compared to the non-emphysema 
group was observed (0.51 FPs/scan versus 0.22 FPs/scan, 
p = 0.028) (Table 2). The sensitivity of the human reader 
was similar for the emphysema and non-emphysema 
groups (0.76 (95% CI 0.66–0.84) versus 0.80 (0.72–0.86)). 
Likewise, the reader had a similar number of FPs in the 
emphysema and non-emphysema groups (0.15 FPs/scan 
versus 0.27 FPs/scan, respectively, p = 0.230). The 95% CI 

Fig. 2  Distribution of the number of nodules based on nodule size for emphysema and non-emphysema groups after matching, for findings 
detected on the initial reading. More nodules were included from the non-emphysema group due to the nature of the matching procedure

Table 2  Comparison of performance of artificial intelligence (AI) and human reader (HR) for emphysema and non-emphysema groups 
at nodule level

CI Confidence interval, PPV Positive predictive value, FPs/scan False positives per scan, TPs True positives, FPs False positives, FNs False negatives

Sensitivity
(95% CI)

PPV
(95% CI)

FPs/scan TPs FPs FNs All findings

AI

  Emphysema 0.68 (0.57, 0.77) 0.76 (0.65, 0.84) 0.51 62 (55.9%) 20 (18.0%) 29 (26.1%) 111 (100%)

  Non-emphysema 0.71 (0.62, 0.78) 0.84 (0.76, 0.90) 0.22 96 (62.3%) 18 (11.7%) 40 (26.0%) 154 (100%)

HR

  Emphysema 0.76 (0.66, 0.84) 0.92 (0.83, 0.97) 0.15 69 (71.1%) 6 (6.2%) 22 (22.7%) 97 (100%)

  Non-emphysema 0.80 (0.72, 0.86) 0.83 (0.75, 0.89) 0.27 109 (69.0%) 22 (13.9%) 27 (17.1%) 158 (100%)
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for the sensitivity of AI and the human reader overlapped 
to a certain extent, for both the emphysema and non-
emphysema groups. The sensitivity of AI was not sig-
nificantly different for either the emphysema (p = 0.320) 
or the non-emphysema group (p = 0.090). However, AI 
had significantly higher FPs/scan than the reader in the 
emphysema group (p = 0.020).

In the emphysema group, most FPs were found for AI 
(20/26, 76.9% of all FPs of both AI and human reader) 
and comprised fibrosis/scars (13/26, 50.0% of AI FPs). In 
the non-emphysema group, most FPs originated from the 
reader (22/40, 55% of all FP). “Other non-nodules” could 
represent bone, mucus in bronchi, arthrosis, vessel, con-
solidation, infection, fat, or atelectasis. Figure 3 illustrates 
discrepant findings of true nodules and examples of FPs 
found by only AI or human reader.

A secondary analysis was performed after excluding 
(benign) typical and bronchovascular lymph nodes from 
the nodule group (Table 3). This analysis showed a ten-
dency of higher sensitivity of AI in both emphysema and 
non-emphysema groups compared to the results of the 
main analysis. Also, the sensitivity in emphysema tended 
to be higher for AI than for the human reader, but there 
were no significant differences for either the emphysema 
(p = 0.310) or the non-emphysema group (p = 1.000).

Lastly, analyses on the whole dataset were performed 
separately for each nodule size category. This revealed 
differing outcomes for the 30–100 mm3 and 101–300 
mm3 nodule size category (Table  4). The sensitivity of 
AI for lung nodule detection was higher for the larger 
size category compared to the smaller size category in 
emphysema and non-emphysema while no clear differ-
ence in sensitivity was found for the human reader across 
size categories. Regardless of emphysema presence, the 
sensitivity of AI tended to be higher than that of the 
reader for the 101–300 mm3 category, while the reader 
tended to show higher sensitivity for the 30–100 mm3 
category. In the 101–300 mm3 category, AI had more 
FPs/scan than the human reader in the emphysema and 
non-emphysema groups (p = 0.010 for both). For nodular 
findings sized 30–100 mm3, the human reader had more 
FPs/scan than AI, in individuals without emphysema 
(p = 0.009).

Discussion
The results of our analyses show that the sensitivity of 
AI software for lung nodule detection in low-dose chest 
CT was similar in emphysema and non-emphysema, 
with higher sensitivity for larger-sized, relevant nodules 
(101–300 mm3). Similarly, the presence of emphysema 
did not appear to impact the sensitivity of the human 
reader. While overall, the sensitivity of the human reader 
tended to be higher than AI, this trend reversed after 

the exclusion of benign lymph nodes from the analysis. 
AI had more FPs/scan for participants with emphysema 
compared to the non-emphysema group, which was not 
present for the human reader. FPs/scan were higher for 
AI than the human reader in emphysema, particularly 

Fig. 3  Examples of discrepant nodular findings for artificial 
intelligence (AI) and human reader (HR): (a) true-positive finding 
detected by AI only (192 mm3), (b) true-positive finding detected 
only by HR (154 mm3), (c) false-positive finding by AI (90 mm3), 
(d) false-positive finding by HR (56 mm3). On the left side of each 
figure part is the cross-sectional CT image with the finding 
highlighted with an arrow, and on the right side is a magnified image
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for nodule volume 101–300 mm3, while FPs/scan for the 
human reader were higher for the 30–100 mm3 nodules 
in non-emphysema.

AI’s sensitivity for nodules in which follow-up is indi-
cated (101–300 mm3) was higher than for smaller-sized 
nodules and tended to be higher than that of the human 
reader in both emphysema and non-emphysema. These 
findings suggest that AI can assist radiologists particu-
larly in detecting relevant nodules, some of which need 
follow-up (101–300 mm3). However, it is worth noting 
that this gain in sensitivity was accompanied by a higher 
FP rate, especially in patients with emphysema. Because 
a higher FPs/scan rate was observed in the emphysema 
group, it could be hypothesized that the underlying caus-
ative factor of the higher FP rate for AI is related to the 
presence of emphysema. Most FPs for AI in the pres-
ence of emphysema were identified as fibrosis/scars. 
One interesting finding of our study is that the reader 
detected more FPs/scan in the volume subgroup 30–100 

mm3. These FPs were mostly “other” non-nodules. The 
presence of these FPs could be attributed to the fact 
that the human reader was stricter in noting a finding if 
it was above 100 mm3, as findings above 100 mm3 usu-
ally require follow-up, and more lenient if the finding was 
smaller than 100 mm3.

Our results show a relatively higher sensitivity of the 
human reader compared to AI, specifically for smaller 
nodules. One possible explanation is that the trained 
technical physician who performed the original evalua-
tion under the supervision of the radiologist might have 
spent extended time per scan for detecting nodular find-
ings, as a focus of the research study. This high sensitiv-
ity may also explain the higher FP rate for the human 
reader in the non-emphysema group. The human reader 
was very sensitive in detecting intrapulmonary lymph 
nodes. If we compare these results to the results in which 
lymph nodes (PFNs and bronchovascular lymph nodes) 
were excluded, the mean sensitivity of AI importantly 

Table 3  Comparison of test performance for emphysema and non-emphysema groups between artificial intelligence (AI) and human 
reader (HR) excluding typical perifissural nodules and bronchovascular lymph nodes

CI Confidence interval, PPV Positive predictive value, FPs/scan False positives per scan, TPs True positives, FPs False positives, FNs False negatives

Sensitivity
(95% CI)

PPV
(95% CI)

FPs/scan TPs FPs FNs All findings

AI

  Emphysema 0.80 (0.68, 0.89) 0.73 (0.61, 0.82) 0.51 53 (61.6%) 20 (23.3%) 13 (15.1%) 86 (100%)

  Non-emphysema 0.79 (0.69, 0.86) 0.81 (0.71, 0.88) 0.22 77 (66.4%) 18 (15.5%) 21 (18.1%) 116 (100%)

HR

  Emphysema 0.71 (0.59, 0.81) 0.89 (0.76, 0.95) 0.15 47 (65.3%) 6 (8.3%) 19 (26.4%) 72 (100%)

  Non-emphysema 0.80 (0.70, 0.87) 0.78 (0.68, 0.85) 0.27 78 (65.0%) 22 (18.3%) 20 (16.7%) 120 (100%)

Table 4  Comparison of results for nodule detections by artificial intelligence (AI) and human reader (HR) for emphysema and non-
emphysema for different nodule volume subgroups

CI Confidence interval, FPs/scan False positives per scan, PPV Positive predictive value

*Significant difference between AI and HR (p < 0.050)

Ground truth by radiologists for 
discrepancies

Sensitivity
(95% CI)

PPV (95% CI) FPs/scan All findings

AI 30–100 mm3

  Emphysema 0.59 (0.46, 0.71) 0.82 (0.67, 0.91) 0.21 71 (64.0%)

  Non-emphysema 0.65 (0.55, 0.74) 0.93 (0.84, 0.98) 0.06 113 (73.4%)

AI 101–300 mm3

  Emphysema 0.89 (0.71, 0.97) 0.68 (0.50, 0.81) 0.31 40 (36.0%)

  Non-emphysema 0.93 (0.75, 0.99) 0.67 (0.50, 0.80) 0.16 41 (26.6%)

HR 30–100 mm3

  Emphysema 0.79 (0.67, 0.88) 0.91 (0.79, 0.97) 0.13 68 (70.1%)

  Non-emphysema 0.81 (0.72, 0.87) 0.81 (0.72, 0.88) 0.24* 128 (81.0%)

HR 101–300 mm3

  Emphysema 0.68 (0.48, 0.83) 0.95 (0.73, 1.00) 0.03* 29 (29.9%)

  Non-emphysema 0.79 (0.59, 0.91) 0.92 (0.72, 0.99) 0.02* 30 (19.0%)



Page 9 of 11Sourlos et al. European Radiology Experimental            (2024) 8:63 	

increased in both emphysema and non-emphysema cases 
and tended to be better than that of the human reader in 
emphysema cases. These results could be explained if the 
AI software is optimized to detect true nodules of larger 
sizes and not typically benign lymph nodes, without the 
need for further diagnostic management [25].

Various studies have compared the performance of AI 
algorithms versus radiologists and highlighted higher 
sensitivity and FP rate when AI is used as a concurrent 
or second reader [26–29]. AI algorithms were found to 
have a mean number of FPs/scan ranging from 0.09 to 3.8 
and a mean sensitivity (on a nodule basis) ranging from 
0.54 to 0.96 [28]. In a study by Li et al. [30], it was shown 
that deep learning algorithms not derived only from the 
LIDC-IDRI dataset [31] achieved good performance in 
nodule detection when tested on an external dataset, 
with sensitivity ranging from 0.75 to 1.00. These results 
are in line with our study for the AI non-emphysema 
groups (sensitivity ranged from 0.62 to 0.78 and FPs/scan 
were 0.22).

One of the strengths of our study was the inclusion 
of study participants from a large general population 
cohort, not unlike a screening cohort, where AI software 
will be essential to enable the evaluation of a large num-
ber of CT scans. The CT scans of our participants were 
all acquired through a standardized acquisition protocol, 
with well-defined settings. Furthermore, discrepant nod-
ules were evaluated by the expert panel without knowl-
edge of the source of the finding (AI or human reader). 
Another strength is that despite the relatively small sam-
ple size, the higher FPs/scan for AI in the emphysema 
group was primarily associated with scars and therefore 
likely with the presence of emphysema itself [32]. This 
suggests that emphysema is indeed a factor to take into 
account when creating benchmark datasets for lung nod-
ule detection.

This study has several limitations. First, the classifica-
tion of emphysema was performed for most cases by one 
trained reader, which may have introduced some degree 
of subjectivity. However, since only the most extreme 
emphysema classifications (at least moderate emphysema 
versus no—not even trace—emphysema) were included 
in the study, this bias is likely negligible. Second, the size-
matching of nodules was suboptimal, because the match-
ing procedure resulted in more participants and nodules 
in the non-emphysema group. Also, two nodules in the 
emphysema group could not be matched with nodules 
of similar size in the non-emphysema group. A small 
set of subsolid nodules were also used in volume-based 
matching which could have resulted in selecting similar-
sized, but purely solid nodules in the emphysema group. 
Despite these limitations, the relative distribution of 
nodules with size 30–300 mm3 was found to be similar 

in emphysema and non-emphysema groups after match-
ing. Third, non-discrepant nodules by AI and human 
reader were not reviewed by radiologists and were con-
sidered actual nodules; these may have included some 
FPs. Conversely, some nodules may have been missed by 
both human reader and AI. In view of the purpose of this 
study, the consensus panel did not review all scans, only 
discrepancies. Fourth, the distribution of the severity of 
emphysema was biased toward low severity because par-
ticipants were derived from a general population study. 
Lastly, there was no information available on the train-
ing data used to develop the algorithm. However, the 
decreased performance of the AI algorithm in emphy-
sema cases most plausibly points to a lack of representa-
tion of emphysema cases in the training dataset.

Given the limitations presented above, as well as the 
limited number of patients with emphysema in our study, 
future research should focus on a larger emphysema 
cohort that includes also severe stages of emphysema. 
In a benchmark dataset that would be used to validate 
AI software for lung nodule detection, the inclusion of 
emphysema cases is crucial since we show that this can 
be a factor that influences its performance. Most of the 
published research on the performance of such algo-
rithms has not been externally validated, and therefore, 
sources of bias might not have been adequately addressed 
[33]. It is also recommended to assess the performance 
of other commercial software packages in lung nodule 
detection in emphysema and non-emphysema cases.

In summary, the lung nodule sensitivity of AI was simi-
lar in emphysema versus non-emphysema groups but AI 
had more FPs/scan in the emphysema group. These FPs 
can be explained by an increased identification rate of 
fibrosis/scars as nodular findings. If a benchmark dataset 
to validate the performance of AI software in lung nodule 
detection is to be created, the inclusion of emphysema 
cases is important to evaluate the expected higher FP rate 
in these cases.
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