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Abstract
Background  Postsurgical recurrence is of great concern for papillary thyroid carcinoma (PTC). We aim to investigate 
the value of computed tomography (CT)-based radiomics features and conventional clinical factors in predicting the 
recurrence of PTC.

Methods  Two-hundred and eighty patients with PTC were retrospectively enrolled and divided into training and 
validation cohorts at a 6:4 ratio. Recurrence was defined as cytology/pathology-proven disease or morphological 
evidence of lesions on imaging examinations within 5 years after surgery. Radiomics features were extracted from 
manually segmented tumor on CT images and were then selected using four different feature selection methods 
sequentially. Multivariate logistic regression analysis was conducted to identify clinical features associated with 
recurrence. Radiomics, clinical, and combined models were constructed separately using logistic regression (LR), 
support vector machine (SVM), k-nearest neighbor (KNN), and neural network (NN), respectively. Receiver operating 
characteristic analysis was performed to evaluate the model performance in predicting recurrence. A nomogram was 
established based on all relevant features, with its reliability and reproducibility verified using calibration curves and 
decision curve analysis (DCA).

Results  Eighty-nine patients with PTC experienced recurrence. A total of 1218 radiomics features were extracted 
from each segmentation. Five radiomics and six clinical features were related to recurrence. Among the 4 radiomics 
models, the LR-based and SVM-based radiomics models outperformed the NN-based radiomics model (P = 0.032 
and 0.026, respectively). Among the 4 clinical models, only the difference between the area under the curve (AUC) of 
the LR-based and NN-based clinical model was statistically significant (P = 0.035). The combined models had higher 
AUCs than the corresponding radiomics and clinical models based on the same classifier, although most differences 
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Background
Papillary thyroid carcinoma (PTC) is the most prevalent 
histological type of thyroid cancer, accounting for more 
than 80% of all thyroid malignancies. Unlike most other 
malignancies that focus on overall survival, postsurgi-
cal recurrence is of greater concern for PTC. Because of 
its indolent biological behavior, the mortality of patients 
with PTC is much lower, with an overall 10-year sur-
vival rate reaching ≥ 93% [1, 2]. However, the recurrence 
of PTC is relatively high, reported at 14–26% [1, 3–8], 
among whom, more than 30% may succumb to the dis-
ease [8]. One previous study with a total of 12 years of 
follow-up found that most patients developed recurrence 
within 5 years after surgery [9]. Furthermore, postsurgi-
cal recurrence exacerbates the psychological and eco-
nomic burdens on patients. Thus, it is crucial to identify 
patients with PTC who are at high risk of recurrence so 
that individualized treatment can be tailored, including 
initial surgical planning, postoperative complementary 
therapy, intensiveness of postoperative supervision, and 
other management strategies.

It has been reported that tumor factors (e.g., aggressive 
histology, extrathyroidal extension (ETE), locoregional 
tissues invasion, and distant metastases) and lymph node 
(LN) factors (e.g., LN metastases, the size and number of 
involved LN) are important risk factors for PTC recur-
rence after surgery [7, 8, 10–14]. They were also included 
into the American Thyroid Association (ATA) risk 
stratification system declared in 2015 [15]. Computed 
tomography (CT), a routine clinical imaging modality, 
is capable of depicting detailed and objective anatomi-
cal information and, accordingly, can potentially provide 
many prognostic factors of patients with PTC [16, 17].

Moreover, large amounts of available data in CT images 
remain underutilized. Radiomics allows the conver-
sion of digitally encrypted CT images into quantitatively 
mineable feature information on tumor morphology 
and pathophysiology, which may be related to clinical 
events in tumor management [18–20]. Radiomics based 
on CT has been demonstrated to be useful in predict-
ing outcome for hepatocellular carcinoma, lung cancer, 
esophageal carcinoma, and colorectal cancer [21–27]. 
Remarkably, in those cancers, models that combined 
radiomics features with clinical risk factors achieved 

better performance than conventional approaches. Mul-
tiple studies have demonstrated that radiomics models 
and nomogram are useful for the prediction of PTC prog-
nostic factors such as LN metastases and ETE [28–30]. 
And the usefulness of radiomics based on ultrasound for 
predicting PTC prognosis has been confirmed [31, 32].

However, to the best of our knowledge, no previous 
study has focused on CT-based radiomics to predict PTC 
recurrence. Hence, we aimed to investigate the value of 
CT-based radiomics features and conventional clinical 
factors in predicting the postsurgical recurrence of PTC.

Methods
Patients
This retrospective study was approved by our Institu-
tional Review Board and the requirement for patient 
informed consent was waived. Between January 2012 
and June 2015, 7286 consecutive patients underwent 
thyroid surgery at our institution. Our inclusion crite-
ria were as follows: (a) pathologically confirmed papil-
lary thyroid carcinoma with size ≥ 10 mm; (b) enhanced 
CT examination of the neck performed within 2 weeks 
before surgery; and (c) complete clinical and histopa-
thology information. We excluded patients (a) for whom 
CT images were unavailable or degraded with signifi-
cant artifacts; (b) who had a history of other malignan-
cies, and (c) who underwent anti-tumor treatment before 
surgery. Finally, a total of 280 patients were recruited in 
our study. These patients were randomly divided into a 
training cohort (169 patients) and a validation cohort 
(111 patients) at a ratio of 6:4. The screening process is 
illustrated in Fig. 1. We utilized a combination of medi-
cal records review and telephone callbacks to follow up 
patients. Recurrence was defined as a cytology/pathol-
ogy-proven disease or morphological evidence of lesions 
on imaging examinations detected within 5 years after 
surgery.

Acquisition of clinicopathological characteristics
Clinicopathological characteristics were obtained from 
the patients’ medical records, and included age, sex, 
tumor size, number of metastatic LN, surgical options 
(subtotal or semi-total thyroidectomy, or total thy-
roidectomy), T stage, N stage, presence of bilaterality, 

were not statistically significant. In the validation cohort, the combined models based on the LR, SVM, KNN, and NN 
classifiers had AUCs of 0.746, 0.754, 0.669, and 0.711, respectively. However, the AUCs of these combined models 
had no significant differences (all P > 0.05). Calibration curves and DCA indicated that the nomogram have potential 
clinical utility.

Conclusions  The combined model may have potential for better prediction of PTC recurrence than radiomics and 
clinical models alone. Further testing with larger cohort may help reach statistical significance.

Keywords  Radiomics, Computed tomography, Papillary thyroid carcinoma, Recurrence, Nomogram
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multifocality, extrathyroidal extension, background 
concomitant thyroid diseases (e.g., nodular goiter and 
Hashimoto’s thyroiditis), history of 131I radiotherapy, and 
family history of PTC. The T and N stages were deter-
mined based on the seventh edition of the American 
Joint Committee on Cancer staging system.

CT image evaluation
Preoperative enhanced CT was performed using three 
multi-slice spiral CT scanners (Discovery CT750 HD, 
Optima CT660, and LightSpeed VCT; GE Healthcare, 
Milwaukee, WI, USA). The imaging and post-processing 
protocols are detailed in Additional file 1. Two radiolo-
gists (Z.Y. and X.H.J., with 6 and 4 years of experience 
in head and neck imaging, respectively) independently 
reviewed the CT images from the picture archiving and 
communication system. Any differences were resolved 
by consensus through discussion and confirmed by L.L. 
(with 20 years of experience in head and neck imaging). 
All radiologists were blinded to the clinical outcomes. 
To be more precise and accurate, if multifocal lesions 
were present, we focused only on the largest lesion, while 
matching the corresponding tumor on the CT images to 
those examined by gross pathology based on location and 
size [13, 33]. The morphological CT image characteristics 
of the tumors were obtained, including shape (regular or 
irregular), margins (well-defined or ill-defined), presence 
of calcification, and CT-reported LN status (positive or 
negative). Positive LN status was defined by the presence 
of at least one of the following CT features: enhancement 
pattern (heterogeneous or rim), suspicious calcification, 
and cystic or necrotic changes, based on published crite-
ria [34–37].

Tumor segmentation and radiomics feature extraction
Reader 1 (W.W.L., with 15 years of experience in head 
and neck imaging) manually segmented the tumors on 
each consecutive transverse section of the contrast-
enhanced CT images using ITK-SNAP (version 3.6.0, 
http://www.itksnap.org), which was then reviewed by 
a senior radiologist (L.L.). Interobserver consistency in 
tumor segmentation was assessed by calculating the Dice 
similarity coefficient (DSC). Readers 1 (W.W.L) and 2 
(X.H.J.) independently segmented the tumors from the 
images of 30 randomly selected cases, before calculating 
the DSC between segmentations for absolute agreement 
from each case. A DSC index of more than 0.70 repre-
sented good consistency [38]. We carried out image pre-
processing and feature extraction in FeAture Explorer 
(version 0.5.2), which incorporates the open-source 
package Pyradiomics [39]. To ensure a consistent inten-
sity resolution across all tumor images, the voxel spacing 
was standardized using B-Spline interpolation, resam-
pling the images to a voxel size of 1 × 1 × 1 mm3. Addi-
tionally, for gray-level discretization, a fixed bin width of 
25 HU was chosen to reduce the noise and to normalize 
the intensity of the image.

Feature reduction and selection
We extracted 1218 radiomics features from each three-
dimensional segmentation. Least absolute shrinkage 
and selection operator (LASSO) regression was con-
ducted to identify the most significant features related 
to recurrence. LASSO regression analysis is a penalized 
technique for feature selection of high-dimensional data 
to avoid overfitting [40]. Features with zero variance or 
high collinearity with other features (i.e., no variation or 

Fig. 1  Flowchart of patient enrollment and allocation. CT: Computed tomography; PTC: Papillary thyroid carcinoma
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multicollinearity in feature values across patients) were 
removed from the analysis [41]. To reduce the redun-
dancy of radiomics features, Pearson’s correlation analy-
sis was conducted, and one of the paired features with 
a correlation coefficient > 0.6 was eliminated. Multivari-
ate logistic regression analysis was performed using the 
backward selection method to identify clinical features 
associated with recurrence. Akaike information was used 
as the stopping criterion.

Model construction and validation
Radiomics, clinical, and combined models were con-
structed separately using the following four classifiers 
for predicting PTC recurrence: logistic regression (LR), 
support vector machine (SVM), k-nearest neighbor 
(KNN), and neural network (NN). The radiomics model 
was established on selected radiomics features, the clini-
cal model was established on independent clinical fea-
tures, and the combined model was established on both 
radiomics and clinical features. Receiver operating char-
acteristic (ROC) curves were plotted, and the area under 
the curve (AUC) was calculated to evaluate the predictive 
performance of these models in the training and valida-
tion cohorts.

Model interpretation
A respective radiomics signature (named “Rad-score”) 
was constructed by combining selected radiomics fea-
tures. We then constructed a nomogram in R using the 
“rms” package, which involved integrating the Rad-score 
and the selected clinical risk factors. Calibration curves 
of the nomogram were obtained by plotting the predicted 
probability and actual observed proportion of recurrence 
using bootstraps with 1000 resamples. A good degree of 
calibration was achieved when the curve approximated 
the diagonal line, indicating high accuracy of the nomo-
gram [42]. Decision curve analysis (DCA) was imple-
mented in R using the “rmda” package, which involved 
the quantification of the clinical net benefits at a variety 
of risk threshold probabilities. The highest curve at a 
given threshold probability indicates the best predic-
tion model with potential clinical utility in predicting 
PTC recurrence [43]. Figure 2 shows the workflow of the 
radiomics analysis.

Statistical analysis
The Shapiro–Wilk test was used to determine whether 
the distribution of continuous variables was normal. 
Comparisons of the clinical features were performed 
using the Student’s t-test or Mann–Whitney U test for 
continuous variables and the chi-square test or Fisher’s 

Fig. 2  Workflow scheme of the radiomics analysis. KNN: K-nearest neighbor; LR: Logistic regression; NN: Neural network; PCC: Pearson’s correlation coef-
ficient; SVM: Support vector machine
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exact test for categorical variables, as applicable. The 
DeLong test was used to compare the AUC of differ-
ent models. The accuracy, specificity, and sensitivity of 
the models were calculated for each model. All statisti-
cal analyses were performed using R (version 4.0.2) and 
SPSS (version 26.0) software. All levels of statistical sig-
nificance were two-sided, and P-values < 0.05 were con-
sidered a statistically significant difference.

Results
Characteristics of the study cohort
A total of 280 patients with pathologically confirmed 
PTC, including 186 women (40.40 ± 13.71 years; range: 
19–77 years) and 94 men (41.40 ± 13.46 years; range: 
21–70 years), were enrolled in this study. One hundred 
and seventy-nine patients were regularly followed up at 
our hospital, and the other 101 patients were called for 
the prognosis information. The training and validation 
cohorts had similar clinicopathological-radiologic char-
acteristics of the patients, with no significant differences, 
which are summarized in Table 1. The clinicopathologic 
and morphological CT features of patients with and 

without disease recurrence were compared in Table  2, 
which showed significant differences in age, sex, tumor 
size, number of metastatic LN, T stage, N stage, bilater-
ality, history of 131I radiotherapy, and CT-reported LN 
status. For patients with and without recurrence, the fol-
low-up period was 6 to 59 months (median 14.5 months) 
and 60 to 112 months (median 78 months), respectively. 
Consequently, the follow-up durations for the study 
cohort ranged from 6 to 112 months, with 68 months as 
the median. During follow-up, recurrence was detected 
in 89 patients within 5 years after surgery.

Feature extraction and selection
Two readers showed good consistency in manual seg-
mentation with a DSC of 0.83 ± 0.04 (range: 0.76–0.90). A 
total of 1218 radiomics features were initially extracted, 
which are listed in Additional file 2. One-hundred and 
seventy features related to recurrence were selected after 
LASSO regression. No features had a near-zero variance, 
and one feature was removed from the dataset because 
of its high collinearity with other features. After Pear-
son’s correlation analysis, the following five radiomics 

Characteristic Training cohort
(n = 169)

Validation cohort
(n = 111)

P-value

Recurrence 0.941
Absence 115 (68.0) 76 (68.5)
Presence 54 (32.0) 35 (31.5)
Clinicopathologic features
Age (years)a 40.25 ± 13.71 41.47 ± 13.49 0.466
Sex 0.479
Male 54 (32.0) 40 (36.0)
female 115 (68.0) 71 (64.0)
Tumor size (mm)a 20.36 ± 10.20 22.31 ± 11.85 0.156
Bilaterality 0.572
Absence 85 (50.3) 52 (46.8)
Presence 84 (49.7) 59 (53.2)
Multifocality 0.383
Absence 65 (38.5) 37 (33.3)
Presence 104 (61.5) 74 (66.7)
Extrathyroidal extension 0.161
Absence 13 (7.7) 4 (3.6)
Presence 156 (92.3) 107 (96.4)
Number of metastatic LNb 11 (5–19) 10 (4–19) 0.874
Concomitant thyroid disease 0.107
Neither 43 (25.4) 30 (27.0)
Nodular goiter 80 (47.3) 62 (55.9)
Hashimoto’s thyroiditis 41 (24.3) 14 (12.6)
Both 5 (3.0) 5 (4.5)
Surgical option 0.302
Total thyroidectomy 140 (82.8) 97 (87.4)
Subtotal or semi-total thyroidectomy 29 (17.2) 14 (12.6)
T stage 0.697
T1a 3 (1.8) 0 (0)

Table 1  Baseline characteristics of patients in the training and validation cohorts
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Characteristic Training cohort
(n = 169)

Validation cohort
(n = 111)

P-value

T1b 6 (3.6) 3 (2.7)
T2 2 (1.2) 1 (0.9)
T3 137 (81.1) 96 (86.5)
T4a 21 (12.4) 11 (9.9)
N stage 0.897
N0 17 (10.1) 10 (9.0)
N1a 23 (13.6) 17 (15.3)
N1b 129 (76.3) 84 (75.7)
131I radiotherapy 0.359
Not received 88 (52.1) 64 (57.7)
Received 81 (47.9) 47 (42.3)
Family history 0.385
Absence 159 (94.1) 107 (96.4)
Presence 10 (5.9) 4 (3.6)
CT features
Shape 0.594
Regular 30 (17.8) 17 (15.3)
Irregular 139 (82.2) 94 (84.7)
Margin 0.588
Well-defined 24 (14.2) 19 (17.1)
Ill-defined 145 (85.8) 92 (82.9)
Calcification 0.172
Absence 81 (47.9) 44 (39.6)
Presence 88 (52.1) 67 (60.4)
CT-reported LN status 0.291
Negative 35 (20.7) 29 (26.1)
Positive 134 (79.3) 82 (73.9)
Unless otherwise indicated, data are the number of patients and data in parentheses are percentages
a Data are means ± standard deviation
b Data are medians, with interquartile range in parentheses

CT: computed tomography; LN: lymph nodes

Table 1  (continued) 

Characteristic All patients
(n = 280)

No recurrence
(n = 191)

Recurrence
(n = 89)

P-value

Clinicopathologic features
Age (years)a 40.74 ± 13.61 39.07 ± 11.91 44.31 ± 16.19 0.003*

Sex 0.019*

Male 94 (33.6) 55 (28.8) 39 (43.8)
female 186 (66.4) 136 (71.2) 50 (56.2)
Tumor size (mm)a 24.58 ± 14.61 22.74 ± 11.76 28.52 ± 18.84 0.002*

Bilaterality 0.005*

Absence 137 (48.9) 105 (55.0) 32 (36.0)
Presence 143 (51.1) 86 (45.0) 57 (64.0)
Multifocality 0.114
Absence 102 (36.4) 76 (39.8) 26 (29.2)
Presence 178 (63.6) 115 (60.2) 63 (70.8)
Extrathyroidal extension 0.119
Absence 17 (6.1) 15 (7.9) 2 (2.2)
Presence 263 (93.9) 176 (92.1) 87 (97.8)
Number of metastatic LNb 11 (4–19) 10 (3–17) 15 (8–24) < 0.001*

Concomitant thyroid disease 0.067

Table 2  Baseline characteristics of patients with and without disease recurrence
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Characteristic All patients
(n = 280)

No recurrence
(n = 191)

Recurrence
(n = 89)

P-value

Neither 73 (26.1) 44 (23.0) 29 (32.6)
Nodular goiter 142 (50.7) 96 (50.3) 46 (51.7)
Hashimoto’s thyroiditis 55 (19.6) 45 (23.6) 10 (11.2)
Both 10 (3.6) 6 (3.1) 4 (4.5)
Surgical option 0.678
Total thyroidectomy 237 (84.6) 160 (83.8) 77 (86.5)
Subtotal or semi-total thyroidectomy 43 (15.4) 31 (16.2) 12 (13.5)
T stage 0.001*

T1a 3 (1.1) 3 (1.6) 0 (0.0)
T1b 9 (3.2) 7 (3.7) 2 (2.2)
T2 3 (1.1) 3 (1.6) 0 (0.0)
T3 233 (83.2) 166 (86.9) 67 (75.3)
T4a 32 (11.4) 12 (6.3) 20 (22.5)
N stage 0.044*

N0 27 (9.6) 24 (12.6) 3 (3.4)
N1a 40 (14.3) 28 (14.7) 12 (13.5)
N1b 213 (76.1) 139 (72.8) 74 (83.1)
131I radiotherapy 0.044*

Not received 152 (54.3) 112 (58.6) 40 (44.9)
Received 128 (45.7) 79 (41.4) 49 (55.1)
Family history 0.576
Absence 266 (95.0) 180 (94.2) 86 (96.6)
Presence 14 (5.0) 11 (5.8) 3 (3.4)
CT features
Shape 0.842
Regular 12 (4.3) 9 (4.7) 3 (3.4)
Irregular 268 (95.7) 182 (95.3) 86 (96.6)
Margin 0.510
Well-defined 11 (3.9) 9 (4.7) 2 (2.2)
Ill-defined 269 (96.1) 182 (95.3) 87 (97.8)
Calcification 0.275
Absence 125 (44.6) 90 (47.1) 35 (39.3)
Presence 155 (55.4) 101 (52.9) 54 (60.7)
CT-reported LN status 0.009*

Negative 31 (11.1) 28 (14.7) 3 (3.4)
Positive 249 (88.9) 163 (85.3) 86 (96.6)
Unless otherwise indicated, data are the number of patients and data in parentheses are percentages
a Data are means ± standard deviation
b Data are medians, with interquartile range in parentheses
*Statistically significant difference

CT: computed tomography; LN: lymph nodes

Table 2  (continued) 

features associated with recurrence were selected: orig-
inal-shape-sphericity, log-sigma-2-0-mm-3D-GLCM 
(Grey-Level co-occurrence matrix)-informational mea-
sure of correlation 2, wavelet-HLL-firstorder-mean, 
log-sigma-3-0-mm-3D-firstorder-90 percentile, and 
wavelet-LLL-firstorder-skewness. A flowchart of the 
radiomics feature selection process is shown in Addi-
tional file 3. After multivariate logistic regression analysis 
using backward selection, six clinical features, including 
age, number of metastatic LN, CT-reported LN status, 

T stage, presence of bilaterality, and multifocality, were 
identified to be related to recurrence (Table 3). The first 
three radiomics features and the presence of multifocality 
were negatively correlated with PTC recurrence, whereas 
the other features were positively correlated.

Model development and validation
The ROC curves for the radiomics, clinical, and com-
bined models in the training and validation cohorts are 
shown in Figs.  3 and 4. The predictive performances 
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sigma-3-0-mm-3D-firstorder-90 percentile + 0.001 × 
wavelet-LLL-firstorder-skewness.

A nomogram was constructed by combining the Rad-
score with six clinical features using multivariate logis-
tic regression to provide individualized risk estimates 
(Fig.  6A). The calibration curves of the nomogram 
approximated the diagonal line in Fig.  6B, especially in 
the validation cohort, indicating high accuracy for recur-
rence prediction. According to the DCA results (Fig. 7), 
the LR-based combined model provided the highest 
net benefit in comparison to the other two models and 
simple strategies (tracking all patients or none) when the 
patients’ threshold probability was within a reasonable 
range.

Discussion
In this study, we identified 5 radiomics features and 6 
clinical risk factors that were associated with postsurgi-
cal recurrence of PTC. Radiomics, clinical, and combined 
models were constructed using four classifiers (LR, SVM, 
KNN, and NN) to predict PTC recurrence after the initial 
surgery. In the validation cohort, all models had favorable 
accuracy (0.676–0.766) and specificity (0.842-1) but rela-
tively low sensitivity (0-0.486). The combined model inte-
grating radiomics and clinical features exhibited highest 
AUC in the validation cohort. The nomogram incorpo-
rating all features enable us to obtain patient’s risk of 
postoperative recurrence in a short period of time after 
surgery, which will provide certain help to evaluate treat-
ment schedules and follow-up protocols.

Only 280 of 7286 assessed patients were included in the 
final study. According to the ATA guidelines for the man-
agement of patients with differentiated thyroid cancer 
[15], the majority of patients with PTC did not undergo 
CT examination before surgery, which was the main 
exclusion factor of our investigation. Together with the 
influence of other factors (including incomplete clinical 
data, image artifacts, etc.), most patients were excluded. 
However, patients with larger and more advanced tumors 
tend to receive CT examination to detect the involve-
ment extent. Our findings are valuable for predicting 
postoperative recurrence probability of these patients 
with PTC.

In our study, one shape-based feature (i.e., original-
shape-sphericity), one texture feature (i.e., log-sigma-2-
0-mm-3D-GLCM-informational measure of correlation 
2), and three first-order features (i.e., wavelet-HLL-fir-
storder-mean, log-sigma-3-0-mm-3D-firstorder-90 per-
centile, and wavelet-LLL-firstorder-skewness) were 
selected as relevant predictors of PTC recurrence, and 
the first three were negatively correlated with the out-
comes. Sphericity, which describes and quantifies the 
spherical shape of a tumor, has been reported as a stable 

Table 3  Clinical features associated with recurrence identified 
by multivariate logistic regression analysis using backward 
selection
Clinical 
features

β Wald SE P-value OR (95% CI)

Age 0.026 3.373 0.014 0.07 1.027 
(0.999–1.057)

Bilaterality 1.168 2.049 0.816 0.15 3.216 
(0.770-22.095)

Multifocality -1.399 2.874 0.825 0.09 0.247 
(0.035–1.050)

Number of 
metastatic LN

0.044 4.119 0.022 0.04 1.045 
(1.002–1.091)

CT-reported 
LN status

1.816 2.789 1.088 0.09 6.149 (1.060-
117.379)

T stage 0.911 4.047 0.453 0.04 2.487 
(1.109–6.495)

Intercept -7.598 13.445 2.072 < 0.001 0.001 (0-0.019)
LN: Lymph node; OR: Odds ratio; SE: Standard error

of the models in the validation cohort are detailed in 
Table  4. Figure  5 shows the P-value calculated using 
Delong test to compare the AUC values of the models. 
Among the 4 radiomics models, the LR-based and SVM-
based radiomics models outperformed the NN-based 
radiomics model (P = 0.032 and 0.026, respectively). 
Among the 4 clinical models, only the difference between 
the AUC of the LR-based and NN-based clinical model 
was statistically significant (P = 0.035). The combined 
models had higher AUC values than the corresponding 
radiomics and clinical models based on the same clas-
sifier, although most differences were not statistically 
significant. However, the SVM-based combined model 
significantly outperformed the clinical model, and the 
NN-based combined model had significant improvement 
than the radiomics model (P = 0.034 and 0.041, respec-
tively). This finding indicates that the combination of 
radiomics and clinical features have potential improve-
ment in predicting recurrence of PTC. In the validation 
cohort, the AUCs of the combined models based on 
the LR, SVM, KNN, and NN classifiers were 0.746 (95% 
[confidence interval (CI)]: 0.640–0.852), 0.754 (95% CI: 
0.649–0.859), 0.669 (95% CI: 0.552–0.785), and 0.711 
(95% CI: 0.607–0.816), respectively. The accuracies were 
0.739, 0.766, 0.730 and 0.766, respectively. However, the 
AUCs of these combined models had no significant dif-
ferences (all P > 0.05).

Model interpretation with the nomogram and DCA
The formula for calculating the Rad-score is as follows:

log (Rad-score) = 11.504 + -12.463 × original-
shape-sphericity + -4.323 × log-sigma-2-0-mm-3D-
GLCM-informational measure of correlation 2 + 
-0.049 × wavelet-HLL-firstorder-mean + 0.014 × log-
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radiomics shape feature that is rarely influenced by slice 
thickness, volume, or resampling [44]. A less spherical 
shape corresponds to an irregular tumor morphology, 
which is usually associated with a more aggressive nature 
of PTC, such as a larger tumor size and gross extrathyroi-
dal invasion. Thus, consistently, a lower tumor spheric-
ity was associated with a higher risk of recurrence in our 
study. In addition, GLCM features can quantify textural 

information and can be used to identify intra-tumor het-
erogeneity for a variety of cancer types [23, 45–47]. The 
information measure of correlation is a GLCM-based 
feature associated with the joint probability of the occur-
rence of pixel pair entropy. A lower value of this feature 
indicates a higher heterogeneity in the distribution of 
intensities of PTC. In our study, PTC with high risk of 
recurrence after surgery had higher heterogeneity in 

Fig. 3  Receiver operating characteristic (ROC) curves for the radiomics models (A) and clinical models (B). AUC: Area under the receiver operating char-
acteristic curve; KNN: K-nearest neighbor; LR: Logistic regression; NN: Neural network; SVM: Support vector machine
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the intra-lesion texture, which needs further confirma-
tion. Besides, quantifying gray-level frequency distribu-
tion, three first-order features selected were associated 
with the risk of postsurgical recurrence. Two of these 
features were extracted after wavelet transformation to 
measure more complex tumor heterogeneity parameters 
by reflecting the image properties at different scales and 
orientations [24, 25]. The value of these five radiomics 
features in predicting recurrence in patients with PTC 
needs confirmation in the future.

In this study, age, number of metastatic LN, and T stage 
were identified as high-risk clinicopathological factors for 

PTC recurrence, which is concordant with the results 
of previous findings [6, 7, 10, 11]. Another study has 
reported that the number of metastatic cervical LNs and 
the ratio of metastatic-to-total dissected cervical LNs are 
the main risk factors for PTC recurrence among patients 
younger than 55 years of age, while the size of the thyroid 
lesions (T stage) was recognized as a predictor in patients 
older than 55 years of age [14]. In addition, bilaterality 
and multifocality were associated with PTC recurrence, 
however, the roles of which in predicting recurrence of 
PTC are controversial [48–51]. Notably, multifocal-
ity was negatively correlated with PTC recurrence risk 

Table 4  Performance of the models for predicting PTC recurrence in the validation cohort
Model Classifier AUC 95% CI ACC SPE SEN

Low High
Radiomics models LR 0.706 0.601 0.812 0.739 0.908 0.371

SVM 0.710 0.604 0.816 0.721 0.961 0.200
KNN 0.617 0.499 0.735 0.676 0.842 0.314
NN 0.567 0.454 0.679 0.685 1.000 0

Clinical
models

LR 0.709 0.597 0.821 0.748 0.895 0.429
SVM 0.669 0.556 0.782 0.694 0.934 0.171
KNN 0.642 0.522 0.763 0.739 0.855 0.486
NN 0.665 0.552 0.778 0.730 0.895 0.371

Combined models LR 0.746 0.640 0.852 0.739 0.895 0.400
SVM 0.754 0.649 0.859 0.766 0.921 0.429
KNN 0.669 0.552 0.785 0.730 0.842 0.486
NN 0.711 0.607 0.816 0.766 0.947 0.371

ACC: Accuracy; AUC: Area under the receiver operating characteristic curve; CI: Confidence interval; KNN: K-nearest neighbor; LR: Logistic regression; NN: Neural 
network; SEN: Sensitivity; SPE: Specificity; SVM: Support vector machine

Fig. 4  Receiver operating characteristic (ROC) curves for the combined models. AUC: Area under the receiver operating characteristic curve; KNN: K-
nearest neighbor; LR: Logistic regression; NN: Neural network; SVM: Support vector machine
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in this study. One possible reason is that most patients 
with multifocal tumors underwent total thyroidectomy 
(174/178) and therefore had a lower risk of locoregional 
recurrence compared to patients who underwent thyroid 
lobectomy because of more thorough surgical involve-
ment. Furthermore, the proportion of multifocal lesions 
(63.6%) was much higher than that of previous studies 
(less than 40%) [52–55], and there may be a selection bias 
that affects the final accuracy of the results, which needs 
to be further confirmed in future studies. CT-reported 
LN status, a preoperative prognostic risk factor, may 
prompt the surgeons to determine the extent of surgical 
resection and LN dissection. It was obtained from medi-
cal images before surgery and was also incorporated into 
the models, suggesting the morphology of lymph nodes 
on CT images may be useful in predicting PTC recur-
rence after surgery.

Additionally, one previous study reported a posi-
tive relationship between PTC recurrence and ETE 

predicted by radiomics-based nomogram [30]. In our 
study, ETE was not relevant to the risk of recurrence, 
probably because of the inclusion of microscopic ETE, 
which has been reported to have no effect on PTC 
recurrence in several studies [55–57]. Kim et al. con-
cluded that microscopic ETE was not associated with 
recurrence (p = 0.081), whereas macroscopic ETE was 
an independent risk factor for poor prognosis with 
a 13-fold increased relative risk of recurrence [57]. 
However, some studies argued that patients with PTC 
who have microscopic ETE are at an increased risk of 
recurrence compared to patients without ETE [58, 59]. 
Therefore, the role of ETE in predicting the recurrence 
of PTC requires further investigation through special-
ized design.

Our study has some limitations that warrant dis-
cussion. First, we used CT images with a 5-mm slice 
thickness because those with a thinner thickness were 
unavailable for most of our cohort, which might have 

Fig. 5  The P-values calculated by comparing the AUC between models using the Delong test. (A: radiomics model, B: clinical model, C: combined model) 
The P-value was calculated by comparing the AUC of the model with that of the same type of model based on another classifier. (D: LR classifier, E: SVM 
classifier, F: KNN classifier, G: NN classifier) The P-value was calculated by comparing the AUC of the model with that of another model based on the same 
classifier. *Statistically significant difference. AUC: Area under the receiver operating characteristic curve; KNN: K-nearest neighbor; LR: Logistic regression; 
NN: Neural network; SVM: Support vector machine
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influenced the detectability of the tumor and the accu-
racy of segmentation. However, all tumors were visible 
on at least two consecutive images because we only seg-
mented lesions larger than 10 mm in diameter. And the 
manual segmentation had good accuracy and reproduc-
ibility because of a confirmation by a senior radiologist 
and a good interobserver consistency (DSC = 0.83). Sec-
ond, for those patients with multiple lesions, we focused 
only on the single largest lesion, because it is challenging 
to delineate all tumors, which may not accurately reflect 
the tumor burden. Third, the recurrence rate (31.8%) is 
higher than that reported in some previous studies [1, 
3–8]. This may be partly attributed to the exclusion of 
microcarcinomas in our study, which exhibit a relatively 
good prognosis. Finally, after four different feature selec-
tion methods, out of a total of 1218 radiomics features 
extracted from each segmentation, only 5 were found 
to be related to recurrence of PTC. Independent exter-
nal validation datasets are lacking, which merits further 
investigation.

Conclusions
Five radiomics features and six clinical risk factors were 
identified to be associated with postsurgical recurrence 
of PTC. The combined model may have potential for bet-
ter predicting PTC recurrence than radiomics and clini-
cal models alone. Further testing with larger cohort may 
help reach statistical significance.
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