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To the editor
OVs are natural or engineered viruses that selectively 
replicate within tumors [1]. However, the insufficient 
replication of OVs inside tumors remains a major obsta-
cle, impeding their efficacy [2–4]. Hence, identifying the 
molecules that are targetable while replicating restrictive 
represents a viable strategy [5]. Herein, we developed 
a neuron-detargeted OV from herpes simplex virus 1 
(HSV-1), and found its efficacy-restricting factors in viral 
replication and immune checkpoint pathways. Addi-
tionally, we designed an effective antitumor regimen by 
precisely combining OV, PARPi, and a programmed cell 
death protein 1 (PD-1) inhibitor, significantly extend-
ing the survival of mice in TNBC, GBM, and melanoma 
models, potentially supporting direct clinical translation.
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Abstract
Oncolytic viruses (OVs) offer a novel approach to treat solid tumors; however, their efficacy is frequently suboptimal 
due to various limiting factors. To address this challenge, we engineered an OV containing targets for neuron-
specific microRNA-124 and Granulocyte-macrophage colony-stimulating factor (GM-CSF), significantly enhancing its 
neuronal safety while minimally compromising its replication capacity. Moreover, we identified PARP1 as an HSV-1 
replication restriction factor using genome-wide CRISPR screening. In models of glioblastoma (GBM) and triple-
negative breast cancer (TNBC), we showed that the combination of OV and a PARP inhibitor (PARPi) exhibited 
superior efficacy compared to either monotherapy. Additionally, single-cell RNA sequencing (scRNA-seq) revealed 
that this combination therapy sensitized TNBC to immune checkpoint blockade, and the incorporation of an 
immune checkpoint inhibitor (ICI) further increased the survival rate of tumor-bearing mice. The combination of 
PARPi and ICI synergistically enhanced the ability of OV to establish durable tumor-specific immune responses. 
Our study effectively overcomes the inherent limitations of OV therapy, providing valuable insights for the clinical 
treatment of TNBC, GBM, and other malignancies.
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Fig. 1 (See legend on next page.)
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We engineered SH100 by treating HSV-1 ICP34.5 
under the control of microRNA-124 which specifically 
expresses in neurons but is often silenced in tumors 
(Fig.  1A; Additional file 1: Fig. S2A) [6, 7]. One-step 
growth curves showed that SH100 proliferated as the 
wild-type virus (HSV-1 KOS) (Fig.  1B). Next, we evalu-
ated the function of GM-CSF inserted in the SH100 and 
confirmed that SH100 expressed GM-CSF potently in 
different cell lines (Additional file 1: Fig. S2B-I). Notably, 
compared to its parent virus, the safety of SH100 greatly 
improved as indicated by the minimum presence in the 
trigeminal ganglia (TG) and brain (Fig. 1C, D; Additional 
file 1: Fig. S3). In contrast, its oncolytic activity was sig-
nificantly enhanced in various cell types (Additional file 
1: Fig. S4 A-H).

Using genome-wide CRISPR screening, we found poly 
(ADP-ribose) polymerase 1 (Parp1) which plays a vital 
role in DNA repair pathways and NAD+ metabolism was 
among the top candidates (Fig. 1E; Additional file 1: Fig. 
S5A; Additional file 2: Table S1) [8, 9]. Since PARP1 is 
the only target with clinically available small molecules, 
we focused on PARP1 in subsequent studies. We pre-
treated 4T1 and AT3 cells, respectively, with olaparib 
(OLA), an inhibitor of PARP1/PARP2, before HSV-1 
infection, and found that OLA significantly enhanced the 
viral replication (Fig. 1F, G; Additional file 1: Fig. S5B-F). 
Additionally, we confirmed the same observation with 
additional tumor cell lines in vitro and tumor models in 
vivo (Fig. 1H, I; Additional file 1: Fig. S5G-L). Extra stud-
ies demonstrated that knocking down PARP1 but not 
PARP2 boosted viral replication (Fig. 1J, K).

Next, we evaluated the synergistic antitumor effect 
of SH100 and OLA using a 4T1 TNBC lung metastasis 
model (Fig.  2A). Remarkably, the dual therapy exhib-
ited a significantly reduced lung metastasis compared to 
SH100 alone, without affecting the body weight of the 
mice (Fig. 2B-D). We also demonstrated this synergistic 
effect in a GL261n-1 GBM model (Additional file 1: Fig. 
S6A-C). In addition, we examined the innate immune 
responses within primary tumors and found that intra-
tumor injection of SH100 triggered the innate immune 

sensing, without detecting a significant difference to the 
SH100 + OLA group. (Additional file 1: Fig. S6D-I).

We then used scRNA-seq to analyze the status of T 
cells in 4T1 lung metastases models (Additional file 1: 
Fig. S7A-D). We found multiple immune checkpoint 
genes were upregulated in CD4+Treg after dual therapy 
(Fig.  2E). Therefore, we supplemented the dual therapy 
with a PD-1 inhibitor. Indeed, we found triple therapy 
could further reduce lung metastases compared to dual 
therapy (Additional file 1: Fig. S8A, B). Additionally, we 
found increased lymphocyte infiltration, increased CD8+ 
PD-1+ T cells, and upregulation of immunosuppressive 
genes associated with M2-like macrophages in primary 
tumors (Additional file 1: Fig. S8, S9). As lung metastasis 
was still detected in nearly all mice, we reasoned it was 
due to delayed PD-1 antibody administration. Therefore, 
we optimized the regimen by injecting PD-1 antibodies 
only one day instead of five days after SH100 administra-
tion and evaluated efficacy in 4T1 and AT3 TNBC mod-
els, respectively (Fig. 2F; Additional file 1: Fig. S10A) [10]. 
The dual and triple regimens significantly suppressed pri-
mary tumor growth and alleviated lung metastasis in the 
AT3 model without significant toxicity (Fig. 2G-I; Addi-
tional file 1: Fig. S10B, C). However, the triple therapy 
showed the highest survival rates in both 4T1 and AT3 
models, compared to dual therapy and the PD-1 inhibi-
tor (Fig. 2J; Additional file 1: Fig. S10D), which was also 
validated in the B16F10n-1 melanoma model (Additional 
file 1: Fig. S10E-H).

To investigate tumor-specific immunological mem-
ory, we performed rechallenge study and found nearly 
all mice in combination groups were tumor-free except 
one with weak signals (Fig. 2K, L). IFN-γ enzyme-linked 
immunospot (ELISPOT) and cytometry by time of flight 
(CyTOF) analysis indicated that the combination therapy 
established long-term and systematic tumor-specific 
immunological memory (Fig.  2M; Additional file 1: Fig. 
S11-S12).

In summary, we developed a microRNA-regulated 
OV and found a triple combination therapy that effi-
ciently overcame multiple constraints and significantly 
enhanced the antitumor effects. Our study may enhance 

(See figure on previous page.)
Fig. 1 Construction of a neuron-detargeted recombinant oncolytic HSV-1 and identification of its restriction factor PARP1. A Schematic illustration for the 
mechanism of constructing SH100. Donor sequence containing hGM-CSF, GFP and miR124T was inserted in both copies of the ICP34.5 gene, which was 
facilitated by CRISPR. The intermediate product SH100-GFP (left) was treated with Cre to remove the GFP cassette to acquire SH100 (right). B Comparing 
replication of HSV-1 KOS and the isolated SH100 strain on Vero cells with one-step growth curve. MOI = 0.05. n = 3 per each time point. C, D Analysis of 
SH100 replication in neurons. After cornea infection of HSV-1 KOS and SH100 in the mice (7 dpi in Figs. 1C and 9 dpi in Fig. 1D), viral mRNA was detected 
by RT-qPCR (C), and the virus distribution in the brain was detected by immunofluorescence (D). n = 5 mice per group. ICP5 was indicated by red, DAPI 
was indicated by blue. E Average MAGeCK analysis for candidate restriction factors from genome-scale CRISPR screening. Top-ranked candidates were 
labelled. F, G 4T1 and AT3 cells were treated with 100 µM OLA for 12 h and infected with HSV-1 K26GFP (MOI = 0.8) for an additional 24 h (n = 3), followed 
plaque assay. H, I Mice received OLA or PBS intraperitoneal injection (i.p.) for 3 days, followed by intra-tumor injection (i.t.) of SH100 (5 × 107 PFU per 
mouse). After 2 days, tumors were collected and virus load was detected by qPCR of HSV-1 genomic DNA in 4T1 tumor model (H) (n = 9 mice per group) 
and AT3 tumor model (I) (n = 6 mice per group). J, K The impact of different shRNA on HSV replication. 4T1 cell lines were produced by transducing of shR-
NA-encoding lentiviral vectors and then infected with HSV-1 K26GFP (MOI = 0.8) for 24 h (n = 3), followed by Western blot (J) and plaque assay (K). P values 
were obtained by unpaired two-tailed t test (B, C, F, G, H, I and K). n.s., non-significant; *P < 0.05, **P < 0.01, ***P < 0.001. Data presented as the means ± SEM
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Fig. 2 (See legend on next page.)
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the clinical efficacy of oncolytic therapy, providing better 
clinical translation for cancer patients.
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GM-CSF  Granulocyte-macrophage colony-stimulating factor
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ICI  Immune checkpoint inhibitor
HSV-1  Herpes simplex virus 1
PD-1  Programmed cell death protein 1
TG  Trigeminal ganglia
PARP1  Poly (ADP-ribose) polymerase 1
OLA  Olaparib
ELISPOT  Enzyme-linked immunospot
CyTOF  Cytometry by time of flight
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