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Abstract 

Background  A promoter is a specific sequence in DNA that has transcriptional regulatory functions, playing a role 
in initiating gene expression. Identifying promoters and their strengths can provide valuable information related 
to human diseases. In recent years, computational methods have gained prominence as an effective means for identi-
fying promoter, offering a more efficient alternative to labor-intensive biological approaches.

Results  In this study, a two-stage integrated predictor called “msBERT-Promoter” is proposed for identifying promot-
ers and predicting their strengths. The model incorporates multi-scale sequence information through a tokenization 
strategy and fine-tunes the DNABERT model. Soft voting is then used to fuse the multi-scale information, effectively 
addressing the issue of insufficient DNA sequence information extraction in traditional models. To the best of our 
knowledge, this is the first time an integrated approach has been used in the DNABERT model for promoter identi-
fication and strength prediction. Our model achieves accuracy rates of 96.2% for promoter identification and 79.8% 
for promoter strength prediction, significantly outperforming existing methods. Furthermore, through attention 
mechanism analysis, we demonstrate that our model can effectively combine local and global sequence information, 
enhancing its interpretability.

Conclusions  msBERT-Promoter provides an effective tool that successfully captures sequence-related attributes 
of DNA promoters and can accurately identify promoters and predict their strengths. This work paves a new path 
for the application of artificial intelligence in traditional biology.
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Introduction
A promoter is a specific DNA sequence that initiates 
transcription and controls the timing and location of 
gene expression in an organism [1]. One common pro-
moter sequence in eukaryotic genes is the TATA box, 
which attracts transcription factors, leading to the forma-
tion of RNA polymerase transcription complexes and the 
initiation of transcription [2]. Promoters in eukaryotic 
cells can vary in length (100–1000 base pairs) and are cat-
egorized into three main types: proximal promoters, dis-
tal promoters, and core promoters. These promoter types 
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play distinct roles in DNA transcription and the activ-
ity of RNA polymerase. Extensive research shows that 
disruptions in promoter function can lead to a range of 
diseases, such as gastric cancer [3] and B cell lymphoma 
[4], by affecting gene expression. Identifying promoters is 
crucial for understanding gene expression regulation as 
they often cooperate with regulatory elements via chro-
matin loops and play important roles in developmental 
diseases, tumorigenesis, and spatiotemporal gene expres-
sion [5–9]. However, accurately predicting promoters 
remains a challenging task.

With the rapid development of next-generation 
sequencing tools, biologists can use them for related 
research, with the main methods being RNA polyadenyla-
tion (5′-phosphate phosphatase) sequencing (PPP-seq) 
[10], Cappable-seq [11], and chromatin immunoprecipi-
tation sequencing (ChIP-seq) [12]. However, most wet 
lab experiments are expensive and time-consuming, and 
with the exponential growth of biological sequences in 
the post-genomic era, it is necessary to propose compu-
tational methods to address the issue [13–17].

In order to address the issue, several computational 
models have been developed in the past decade for early 
prediction of promoters. For example, Lin et al. [18] uti-
lized support vector machine (SVM) and pseudo k-tuple 
nucleotide composition (PseKNC) to identify δ24 pro-
moters in prokaryotes. iPromoter-2L [19] is a two-layer 
promoter predictor that employs multi-window pseudo 
k-tuple nucleotide composition to distinguish promoters 
from non-promoters and classify six types of promoters. 
iProEP [20] predictor constructs a feature matrix using 
the PseKNC and position-correlation scoring function 
(PCSF) methods. It then utilizes the increment feature 
selection strategy and minimum redundancy maximum 
relevance (mRMR) algorithm to search for the optimal 
feature subset, followed by SVM classification to dis-
criminate promoters from non-promoters. MULTiPly 
[21] is a multi-layer approach that combines local infor-
mation, such as k-tuple nucleotide composition, with 
global information encoded by dual-profile Bayesian 
and K-nearest neighbor features. It employs the F-score 
method for feature selection and utilizes SVM for predic-
tion. Although the aforementioned methods are indeed 
capable of identifying promoters, they heavily rely on tra-
ditional feature encoding techniques and machine learn-
ing models. These approaches often necessitate intricate 
feature engineering steps and lack the incorporation of 
contextual semantic relationships.

In recent years, Bidirectional Encoder Representations 
from Transformers (BERT) [22] has demonstrated out-
standing performance in various natural language pro-
cessing (NLP) tasks [23]. Due to the similarity between 
biological sequence data and textual data, it also shows 

promising results in biological scenarios [24, 25]. For 
example, the PreRBP-TL [26] model incorporates self-
attention mechanisms in its architecture to enhance 
the recognition of RNA-binding proteins (RBPs). This 
approach enables more effective feature learning and 
identification, improving the accuracy of predicting RBPs 
across different species. miProBERT [27] utilizes fine-
tuned BERT for accurate identification of microRNA 
promoters, outperforming other prediction methods 
for gene promoters. RBP-TSTL [28] utilizes a two-stage 
transfer learning framework for the genome-scale pre-
diction of RNA-binding proteins, effectively leveraging 
self-attention mechanisms to improve prediction accu-
racy. Rm-LR [29] integrates local and global information 
through bilinear attention networks to accurately predict 
various types of RNA modifications, achieving state-of-
the-art results on eight RNA modification datasets. These 
research achievements demonstrate the powerful ability 
of BERT to capture complex patterns in sequence data, 
making it an effective benchmark model.

Promoters can be categorized as strong promoters or 
weak promoters based on their levels of transcriptional 
activation and expression. Accurately predicting pro-
moter strength is essential for comprehending gene 
transcription regulation mechanisms and constructing 
expression regulatory networks. Hence, besides iden-
tifying promoters, predicting their strength is also sig-
nificant. In recent years, several classification methods 
have been proposed for predicting promoter strength. 
For instance, Le et al. [30] interprets DNA sequences as 
combinations of continuous FastText N-grams and clas-
sifies them using deep neural networks. BERT-Promoter 
[31] combines the BERT model with Shapley Additive 
exPlanations (SHAP) [32] analysis for feature extrac-
tion and uses random forests for classification, achiev-
ing good performance in both promoter identification 
and promoter strength prediction. iPromoter-CLA [33] 
employs deep capsule networks and bidirectional long 
short-term memory networks to identify promoters and 
their strengths in DNA sequences. Although these meth-
ods can identify promoters and predict their strengths, 
there is still room for improvement in terms of prediction 
accuracy.

Previous studies mainly used pre-trained models to 
extract features and simply input them into the model 
for prediction, without exploring the strategy of ensem-
ble learning for pre-trained models. However, ensemble 
learning often exhibits better performance than the base 
models. In our research, we propose a novel predictor 
called “msBERT-Promoter,” which is a two-stage predic-
tor with the first stage used for promoter classification 
and the second stage for predicting promoter strength. 
The basic framework we adopt is the BERT pre-trained 
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model. By employing different tokenization strategies, 
the original sequence is divided into tokens of varying 
lengths to integrate local and global information. These 
tokenized sequences are then encoded to form differ-
ent feature matrices, which are subsequently fed into 
BERT layers to extract potential information between 
sequences. To obtain more reliable results, we use a soft 
voting ensemble method to combine the predictions of 
different base models and study the interpretability of the 
model through visual attention heatmaps. Our experi-
ments on prokaryotic promoter datasets assessed the 
algorithm’s performance. The first layer of our model 
achieved an ACC of 96.2%, a MCC of 0.923, and an AUC 
of 0.994. In the second layer, the model predicted pro-
moter strength with an ACC of 79.8%, a MCC of 0.595, 
and an AUC of 0.874. The prediction accuracy of both 
layers surpasses that of state-of-the-art predictors for 
promoter identification and strength prediction within 
the same dataset.

Materials and methods
Benchmark dataset
Selecting an appropriate baseline dataset for training 
and testing the model is crucial in developing effective 
predictors for application in biological sequences. In 
this study, we evaluated the performance of our model 
using the benchmark dataset of the iPSW (2L)-PseKNC 
[34] method. RegulonDB (version 9.4) [35] is a database 
containing information on the transcriptional regula-
tory network of Escherichia coli and is one of the most 
commonly used resources in the field of bacterial gene 
regulation research. To train and test our model, we need 
to collect the required promoter sequences from Regu-
lonDB. A promoter is a DNA regulatory region approxi-
mately 100–1000 base pair long, from which we selected 
81 bp core promoter sequences as the input samples.

To eliminate redundancy in the samples, we must 
cluster highly similar sequences to retain representa-
tive sequences. For this purpose, we used CD-HIT [36] 
to remove sample fragments with similarity greater than 
85%, resulting in 3382 core promoter samples being 
retained as the positive sample dataset. In order to per-
form a binary classification task, we extract 3382 81-bp 

sequence fragments from the non-core promoter data-
set to form the negative sample dataset. These sample 
datasets together constitute the benchmark dataset. The 
benchmark dataset was then divided into testing and 
training datasets with a ratio of 1:4. Finally, as shown 
in Fig.  1A, the training dataset contains 2704 promoter 
samples (1272 strong promoters and 1432 weak promot-
ers) and 2706 non-promoter samples, while the testing 
dataset contains 678 promoter samples (319 strong pro-
moters and 359 weak promoters) and 676 non-promoter 
samples.

The BERT model
BERT is a bidirectional natural language processing 
(NLP) model based on the Transformers structure. 
Unlike traditional Transformers that consist of multiple 
encoders and decoders, BERT only retains the encoder 
part. BERT inherits the multi-head attention mechanism 
and feed-forward neural network from Transformers, 
while also adding the function of bidirectional learning.
[37]. This feature enables the BERT model to mine deeper 
contextual semantic information and achieve state-of-
the-art performance in multiple NLP tasks.

To build a universal pre-training model, BERT adopts 
two training tasks, namely next sentence prediction 
(NSP) and masked language model (MLM). In the MLM 
task, the sentence needs to be converted into token 
representation. Then, a special token [CLS] is added 
at the beginning of each sentence to capture the entire 
sequence information. Another special token [SEP] is 
added at the end of the sentence to separate different sen-
tences and understand the boundaries and correlations 
of multiple sentence inputs. Then, 15% of the tokens in a 
sentence are randomly masked with the [MASK] token, 
and the model is trained to predict these masked words 
from the remaining sentence based on the context. How-
ever, since many downstream tasks depend on analyz-
ing the relationship between two sentences to model, a 
binary classification task for predicting the next sentence 
is proposed to enable the model to have this ability. To 
meet these two requirements, the embedding layer of 
BERT includes three layers of information: token embed-
ding, position embedding, and segment embedding. 

(See figure on next page.)
Fig. 1  Schematic illustration of msBERT-Promoter framework. A Constructing benchmark datasets. B Two-stage ensemble classifier explanation. 
In the first stage, BERT is first pre-trained on a large corpus of text data, then fine-tuned on a specific task using labeled data, and finally used 
for making predictions. The model obtained after fine-tuning in the first stage serves as the pre-trained model for the second stage, where further 
fine-tuning is performed. C Detailed process from fine-tuning to prediction. Firstly, relevant DNA segments are extracted from the human genome 
as the original DNA sequence. These sequences are then tokenized into tokens of lengths 3, 4, 5, and 6, which are fed into an embedding layer. The 
multi-head self-attention mechanism is applied to extract text information from each token length separately and make predictions. Finally, the soft 
voting ensemble strategy is employed to obtain the final prediction by combining the predictions from different token lengths
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Fig. 1  (See legend on previous page.)
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Token embedding converts tokenized sentences into 
fixed-dimensional vectors, position embedding identifies 
the position of each token in the sentence, and segment 
embedding distinguishes the different positions of the 
two sentences, mainly used in the NSP task. The results 
of these three parts are added and normalized to obtain 
the final input embedding. Then, after capturing the 
contextual information of the current position through 
multi-head attention mechanism and reducing the risk of 
overfitting through residual connections and layer nor-
malization, the input is transformed linearly in the Feed 
Forward to extract deeper features.

Pre‑training of DNABERT
DNABERT [38] follows the training process of BERT but 
removes the NSP training task to develop a pre-training 
model specifically for genomic sequences. To accommo-
date biological contexts, DNABERT treats k consecutive 
nucleotides as a group, known as a k-mer, and chooses 
k values of 6, 5, 4, and 3. The initial input requested by 
DNABERT consists of a set of sequences represented as 
k-mer tokens. As a result, each token is transformed into 
a numeric vector, and each sequence is represented as 
a matrix. These matrices are then fed into a multi-head 
self-attention mechanism to capture contextual informa-
tion. The relevant formulas are as follows:

where

In the above formulas, “headi” refers to the attention 
layer, and “Q” represents the query vector, which meas-
ures the degree of association between the current posi-
tion and other positions. “K” represents the key vector, 
which is used to measure attention allocation. “dk” rep-
resents the dimensionality of the vectors. “V” represents 
the value vector, which is weighted and summed based 
on the association between “K” and “Q.” The matrix mul-
tiplication of the two matrices, “Q” and “KT,” yields the 
attention scores between the word vectors and other 
positions. These attention scores are then transformed 
into a probability distribution using the softmax function, 
where the sum of probabilities is 1. The probability indi-
cates the magnitude of correlation between the word vec-
tor and another word, with values closer to 1 indicating 
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a stronger correlation. Finally, the result is multiplied by 
“V” to obtain the new encoded vector for that position.

Since DNABERT in this study consists of 12 encoding 
layers, the attention mechanism is executed 12 times, 
resulting in 12 heads as output. These 12 results are con-
catenated together and compressed using a linear trans-
formation matrix “WO” to form a fully connected layer, 
which serves as the input for the next prediction step. The 
fully connected layer not only reduces the dimensionality 
of the feature vectors but also greatly enhances robust-
ness. The parameters used in this process are not shared, 
allowing each head to independently learn different fea-
tures. Therefore, the multi-head attention mechanism 
can learn more comprehensive contextual relationships 
while ensuring operational efficiency. Finally, four pre-
trained models were obtained: DNABERT-6mer, DNA-
BERT-5mer, DNABERT-4mer, and DNABERT-3mer.

Fine‑tune of DNABERT
In this study, we fine-tuned the aforementioned four 
pre-trained models to adapt them to specific task sce-
narios. Firstly, the dataset was split into four different for-
mats: 6-mer, 5-mer, 4-mer, and 3-mer, by dividing each 
81  bp-long sequence. The promoter dataset and non-
promoter dataset were then separately inputted into the 
pre-trained models for fine-tuning, resulting in four base 
models in the first layer: DNABERT-6mer-1, DNABERT-
5mer-1, DNABERT-4mer-1, and DNABERT-3mer-1. 
Subsequently, the strong promoter and weak promoter 
data were further inputted into the four base mod-
els obtained in the first layer for additional fine-tuning, 
resulting in four base models in the second layer: DNA-
BERT-6mer-2, DNABERT-5mer-2, DNABERT-4mer-2, 
and DNABERT-3mer-2.

Soft voting ensemble method
In the previous context, the pre-trained DNABERT 
models were fine-tuned to obtain eight fine-tuned pre-
trained models. To make more accurate predictions, 
we employed ensemble learning to combine these pre-
trained models. For the classification task, we chose the 
soft-voting classifier, which combines and votes on the 
prediction results generated under the conditions of 
k = 3, 4, 5, and 6. Soft-voting ensemble learning requires 
that the prediction results of each model in the ensemble 
can be transformed into probability values. For the prob-
ability values of each class, a weighted average is calcu-
lated, and its mathematical formula is as follows:

(4)H(x) = argmaxj

(

T
∑

i=1

w
j
i × h

j
i(x)

)

, h
j
i(x) ∈ [0,1]
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In the formula, T represents the number of base clas-
sifiers hi , and j represents a certain class of input data. ωj

i 
represents the weight of the jth class input for the base 
classifier hi , where ωj

i takes values in the range [0, 1]. hji(x) 
represents the probability estimate of the base classifier 
hi for the jth class input, where hji(x) takes values in the 
range [0, 1]. The weight ωj

i is multiplied by hji(x) to obtain 
the proportion probability estimate of the ith classifier 
for the jth class input among the T base classifiers. After 
summing up these T products, we obtain the weighted 
average probability for a single input. Since the input 
data, as the independent variable, can be divided into j 
classes, we can obtain j weighted average values. Then, 
the argmax function is applied to determine the class 
corresponding to the maximum value, which is output as 
the final result.

Performance evaluation metrics
To evaluate the performance of the model, we used five 
commonly used evaluation metrics, including accuracy 
(ACC), sensitivity (Sn), specificity (Sp), Matthews cor-
relation coefficient (MCC), and area under the receiver 
operating characteristic curve (AUC) [39–43]. The for-
mulas for these metrics are as follows:

where TP, TN, FN, and FP represent the numbers of 
true positives, true negatives, false negatives, and false 
positives, respectively. Sn represents the proportion of 
positive samples correctly identified. Sp represents the 
proportion of negative samples correctly identified. ACC 
represents the proportion of all samples that are correctly 
classified. MCC measures the correlation between the 
true values and the predicted values, with a range of [− 1, 
1]. Additionally, to comprehensively compare the perfor-
mance of different models, it is necessary to calculate the 
evaluation metric based on the area under the receiver 
operating characteristic (ROC) curve, which displays the 
ratio of true positives to false positives. The AUC value 
ranges from 0 to 1, with a higher AUC indicating bet-
ter predictive performance of the underlying model. In 

(5)Sn =
TP

TP+ FN

(6)Sp =
TN

TN+ FN

(7)ACC =
TP+ TN

TP+ TN+ FP+ FN

(8)

MCC =
TP× TN− FP× FN

√
(TP+ FP)× (TP+ FN)× (TN+ FP)× (TN+ FN)

general, higher values of these five metrics indicate better 
model performance.

Experimental setup
Experiments were conducted using an NVIDIA GeForce 
GTX 4090 with 24 GB memory. Adam optimizer with a 
0.01 weight decay was used to update model parameters. 
A linear schedule with a 0.1 warmup percent was used to 
decrease the learning rate linearly after linearly increas-
ing during a warmup period. The maximum sequence 
length was set to 81. The training phase was bounded 
by a maximum of 100 epochs, with an early stopping 
mechanism in place to halt the training if no discernible 
improvement in AUC was observed over a period of ten 
consecutive epochs. Additional files 1: Tables S1 and S2 
provide a comprehensive overview of the detailed hyper-
parameter configurations.

Results and discussion
Comparison with the baseline predictors on promoter 
classification and promoter strength classification
To demonstrate the superiority of DNABERT, we com-
pared it with several typical deep learning models, 
including Transformer [44], Bert_DPCNN [45], GCN 
[46], Text_GCN [47], GAT [48], DNN [49], LSTM [50], 
and GRU [51]. The architectures of these deep learning 
models were implemented by the DeepBIO server [52] to 
ensure a fair comparison. As shown in Fig. 2A, in terms 
of promoter classification, DNABERT outperformed all 
typical pretrained models and deep learning methods 
in terms of Sn, Sp, ACC, AUC, and MCC metrics. For 
example, compared to Transformer, DNABERT achieved 
a 9.6% improvement in ACC and an 11.7% improvement 
in MCC. Compared to Bert_DPCNN, DNABERT showed 
a 3.4% improvement in ACC. Furthermore, compared to 
GAT, DNABERT demonstrated a 9% improvement in 
ACC. In terms of promoter strength classification, DNA-
BERT outperformed Transformer by 16.7% in ACC and 
33.3% in MCC. Compared to Bert_DPCNN, DNABERT 
achieved a 15.9% improvement in ACC. Additionally, 
compared to GAT, DNABERT showed a 22.4% improve-
ment in ACC (refer to the Additional files 2: Table S3 and 
S4 for detailed data).

It is worth noting that compared to other deep learn-
ing methods, graph-based deep learning methods gen-
erally exhibit poorer performance. This is because DNA 
sequences often do not contain inherent graph-related 
information and therefore cannot be properly repre-
sented as graphs. This indirectly introduces some noise, 
which interferes with prediction. On the other hand, 
common approaches for processing natural language 
have achieved better performance, such as Transformer, 
LSTM, and GRU. This is because biological sequences 
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have a great similarity to natural language in essence. 
Therefore, processing biological sequence data like natu-
ral language often yields better results. Among the meth-
ods for processing natural language, attention-based 

methods often achieve better performance due to their 
powerful ability to understand context. In addition, 
DNABERT, having been pre-trained on a large amount of 
biological data, tends to exhibit superior performance in 

Fig. 2  A Comparison of prediction performance of eight baseline predictors in promoter identification and promoter strength prediction. B 
Performance comparison of ensembles of different base models. The top three figures show the prediction results for promoter identification, 
while the bottom three figures show the prediction results for promoter strength prediction. C Attention map of four encoding schemes, 
including 3-mer, 4-mer, 5-mer, and 6-mer, respectively
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biological scenarios compared to other attention-based 
methods. In conclusion, these results indicate that DNA-
BERT effectively harnesses the potential of pretrained 
models. It exhibits superior predictive capability for pro-
moter sequences compared to typical pretrained models 
and deep learning methods.

Comparison with previously published predictors 
on benchmark dataset
In order to demonstrate the effectiveness of our model, 
we compared it with other state-of-the-art predic-
tors on the same benchmark dataset, including Le 
et  al. [30], iPSW (PseDNC-DL) [53], BERT-Promoter 
[31], iPSW(2L)-PseKNC [34], and iPromoter-CLA 
[33]. Among the predictors mentioned above, iPSW 
(PseDNC-DL) and iPSW(2L)-PseKNC focused on solv-
ing the problem by utilizing optimal features based on 
nucleotide compositions. Meanwhile, Le et al. attempted 
to address the issue by using a combination of fastText 
model and convolutional neural network (CNN). iPro-
moter-CLA uses a combination of capsule neural net-
work and recurrent neural network (RNN) to identify 
promoters and their strengths. In comparison, our model 
msBERT-Promoter eliminates the need for complex fea-
ture encoding projects required by the aforementioned 
methods. Moreover, most of the above methods use 
traditional machine learning or deep learning method, 
without using self-attention mechanism to understand 
semantic relationship within the sequence. To ensure 
fairness, we conducted a comparison experiment using 
the same dataset and evaluation metrics.

Our model outperformed previous models in terms of 
ACC, Sn, ROC, and MCC for both first-stage promoter 
recognition and second-stage promoter strength in the 
independent test dataset. As seen in Table 1, all indicators 
have achieved good performance, among which achieved 
a specificity of 0.951, sensitivity of 0.973, accuracy of 
0.962, AUC of 0.994, and MCC of 0.923 in the first layer, 
whereas the second layer achieved the average specificity 
of 0.786, sensitivity of 0.814, accuracy of 0.798, AUC of 
0.874, and MCC of 0.595. These results demonstrated the 
effectiveness of our proposed model in promoter identifi-
cation and promoter’s strength classification.

It is noteworthy that the features extracted by deep 
learning generally outperform traditional handcrafted 
features, as we have observed in Table  1. In common 
deep learning methods, utilizing attention mechanisms 
often leads to better performance. This is one of the rea-
sons why BERT-Promoter and iPromoter-CLA meth-
ods outperform previously proposed methods. With the 
rapid development of large language models, pre-trained 
models in biological contexts often demonstrate supe-
rior performance in biological sequence classification 

problems. Through unsupervised learning on biological 
data, these models can enhance their understanding of 
biological data, thereby exhibiting better performance in 
downstream tasks related to biology.

Ablation experiment identified the effectivity 
of msBERT‑Promoter
Firstly, we conducted ablation experiments to dem-
onstrate the effectiveness of the soft voting ensemble 
method. We systematically explored all possible combi-
nations and observed that as the number of base models 
decreased, the performance of these models weakened 
to varying degrees. As we can see in Fig. 2B, in terms of 
promoter identification, there was a decrease in model 
accuracy by 3–14%, AUC by 1–10%, and MCC by 6–26%. 
For promoter strength prediction, the model’s accu-
racy decreased by 4–14%, AUC by 2–16%, and MCC by 
4–28%. These results indicate that msBERT-Promoter 
effectively integrates the predictive performance of 
diverse base models through the soft voting ensemble 
strategy, resulting in a more robust and high-performing 
integrated model.

Consequently, in order to validate the efficacy of 
sequential connectivity in two-stage fine-tuning, we con-
ducted an additional set of experiments. Specifically, we 
performed fine-tuning on both the promoter identifica-
tion dataset and the promoter strength prediction data-
set separately, denoting them as msBERT-Promoter-X. 
The experimental outcomes are detailed in Table 2. Nota-
bly, in the realm of promoter strength prediction, the 
predictive performance of msBERT-Promoter surpassed 
that of msBERT-Promoter-X. This observation under-
scores the capacity of sequential connectivity to leverage 
insights acquired during the initial fine-tuning stage to 

Table 1  Comparison to previously published predictors

Predictors Sn Sp Acc AUC​ MCC

1st layer

  iPSW(2L)-PseKNC 0.814 0.849 0.831 0.905 0.663

  Le et al 0.828 0.881 0.854 / 0.709

  iPSW (PseDNC-DL) 0.833 0.868 0.851 0.925 0.702

  BERT-Promoter 0.843 0.866 0.855 / /

  iPromoter-CLA 0.869 0.851 0.860 0.929 0.721

  Ours 0.973 0.951 0.962 0.994 0.923

2nd layer

  iPSW(2L)-PseKNC 0.622 0.792 0.712 0.776 0.421

  Le et al 0.694 0.764 0.731 / 0.460

  iPSW (PseDNC-DL) 0.658 0.782 0.724 0.790 0.444

  BERT-Promoter 0.709 0.816 0.769 / /

  iPromoter-CLA 0.776 0.688 0.735 0.796 0.470

  Ours 0.814 0.786 0.798 0.874 0.595
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enhance comprehension of the subsequent task, resulting 
in a 6.63% enhancement in prediction accuracy, a 5.05% 
increase in AUC, and a notable 12.88% rise in MCC.

Moreover, to corroborate the validity of the sequence 
in sequential connectivity, we executed a secondary set 
of experiments. Initially, we fine-tuned the promoter 
strength prediction dataset, followed by inputting the 
promoter identification dataset into the previously fine-
tuned model, denoted as msBERT-Promoter-Y. As delin-
eated in Table 2, across both the promoter identification 
and promoter strength prediction stages, the predictive 
performance of msBERT-Promoter consistently outper-
formed that of msBERT-Promoter-Y. This discrepancy 
can be elucidated from dual perspectives. Primarily, 
regarding promoter strength prediction, the absence of 
prior enrichment with promoter identification data hin-
dered the profound understanding of promoter sequence 
data by msBERT-Promoter-Y, thereby impeding its capa-
bility to delve deeply into the task of predicting promoter 
strength. Subsequently, in the context of promoter iden-
tification, the constrained comprehension of promoter 
data during the initial stage of learning promoter strength 
prediction tasks in msBERT-Promoter-Y might have 
engendered negative feedback within its learned experi-
ence, potentially hampering its assimilation of promoter 
identification data and consequently resulting in inferior 
predictive performance compared to msBERT-Promoter.

In summary, the results derived from this series of 
experiments underscore the robust rationale and supe-
rior performance of our model.

Attention mechanism analysis
To improve the interpretability of the model and pinpoint 
crucial sequence sites for identifying promoters and pre-
dicting their strength, we performed an attention mecha-
nism analysis, visualizing the attention weights of various 
tokenizer schemes. From Fig. 2C, it can be observed that 
the high attention weight regions for the four models on 
the same sample are at positions 1–4, 7–13, 80–81, and 

43–51. This indicates that they capture completely differ-
ent sequence information through different tokenization 
schemes. Shorter sequence fragments provide the models 
with a large amount of local information but lack relevant 
global information. On the contrary, longer sequence 
fragments grasp broader global information. Different 
input lengths result in changes in the positions of key fea-
tures in the encoded sequences, which in turn cause vari-
ations in attention distribution.

Therefore, it is crucial to effectively integrate the infor-
mation extracted from different approaches. To achieve 
this, we designed several sets of experimental schemes. 
First is by directly adding all extracted features and then 
feeding them into a fully connected layer for prediction 
(called as Ensemble_A). To ensure fairness, all param-
eters of the fully connected layer are kept consistent with 
DNABERT’s default parameters. Since directly adding all 
features may lead to feature redundancy, in the second 
set of experiments, we incorporated a feature selection 
algorithm. We used the LightGBM algorithm to rank 
the added features based on importance and selected 
782-dimensional features with importance greater than 
0. Subsequently, the selected features were inputted 
into the fully connected layer for prediction (called as 
Ensemble_B). As shown in Table 3, experimental results 
indicate that directly adding features extracted by all base 
predictors can indeed enhance prediction performance. 
Moreover, after introducing the feature selection step, 
the redundancy among features was somewhat alleviated. 
However, the final performance still did not surpass that 
achieved using a soft voting ensemble strategy. This is 
because operations at the feature level often lead to fea-
ture redundancy or insufficient feature information. In 
contrast, the soft voting ensemble strategy integrates at 
the final prediction level, which avoids compromising the 
final performance due to feature redundancy, thus dem-
onstrating better performance.

In summary, through attention analysis, we pro-
vide insights into the interpretability of the models 
and emphasize the importance of utilizing a soft vot-
ing ensemble strategy to integrate different base learn-
ers for improving promoter identification and promoter 
strength prediction.

The interpretability analysis of soft voting ensemble 
strategy
In order to gain a more intuitive understanding of how 
soft voting contributes to improving prediction accuracy, 
a series of visualizations were implemented. Firstly, an 
UpSet plot was used to describe in detail the prediction 
distribution of each base predictor in terms of promoter, 
non-promoter, strong promoter, and weak promoter. 
As shown in Fig.  3A, in the first stage (promoter 

Table 2  Ablation study of the two-stage prediction scheme

Predictors Sn Sp Acc AUC​ MCC

1st layer

  msBERT-Promoter-X 0.9728 0.9509 0.9616 0.9943 0.9234

  msBERT-Promoter-Y 0.9538 0.9384 0.9485 0.9832 0.9029

  ours 0.9728 0.9509 0.9616 0.9943 0.9234

2nd layer

  msBERT-Promoter-X 0.7796 0.7044 0.7316 0.8237 0.4658

  msBERT-Promoter-Y 0.7796 0.7044 0.7316 0.8237 0.4658

  ours 0.8138 0.7861 0.7979 0.8742 0.5946
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identification stage), 1354 samples were tested, where 
345 samples were predicted as promoters and 273 sam-
ples were predicted as non-promoters by all four base 
predictors simultaneously. These samples cannot have 
their predicted labels changed by the soft voting ensem-
ble strategy; hence, they do not affect the final prediction 
performance. Additionally, there were 736 samples pre-
dicted differently by the base predictors (as promoters or 
non-promoters), which can potentially improve the final 
prediction performance through soft voting. Similarly, in 
the second stage (promoter strength prediction stage), 
out of 678 tested samples, 65 and 81 samples were pre-
dicted as strong promoters or weak promoters by all four 
base predictors simultaneously. These samples cannot 
have their final predictions changed by soft voting, but 
532 samples predicted differently by the base predictors 
(as strong promoters or weak promoters) can potentially 
improve the overall prediction accuracy.

After analyzing that the soft voting strategy has the 
potential to enhance overall prediction performance, we 
further explored how the soft voting strategy improves 
the model’s overall performance by visualizing the kernel 
density estimates of prediction probabilities for all sam-
ples by eight base learners.

As shown in Fig.  3B, in the first stage, the 3-mer, 
4-mer, and 5-mer base predictors effectively differen-
tiate between positive and negative samples. The pre-
diction probabilities for positive samples are mainly 
concentrated in the range of 0.05–0.15, while for nega-
tive samples, they are mainly concentrated in the range 
of 0.95–0.98. This demonstrates the model’s excellent 
ability to discriminate between different sample classes. 
However, the 6-mer base predictor does not clearly dis-
tinguish between positive and negative samples. The 
prediction probabilities for positive samples are mainly 
around 0.47, while for negative samples, they are con-
centrated in the range of 0.5–0.52 and 0.61–0.63. Despite 
the 6-mer base predictor showing similar performance to 
other base predictors, it can be further improved through 

the soft voting ensemble strategy. By combining the pre-
diction probabilities of the four base predictors and lev-
eraging the strengths of the 3-mer, 4-mer, and 5-mer 
predictors in terms of prediction probability distribution, 
the weaknesses of the 6-mer predictor can be compen-
sated for, leading to an 11–14% improvement in pro-
moter identification accuracy. Conversely, although the 
3-mer, 4-mer, and 5-mer predictors can effectively dif-
ferentiate between different sample classes, there are still 
some samples that are difficult to classify correctly. The 
6-mer base predictor can assist in improving the overall 
prediction performance on these minority samples, dem-
onstrating the collaborative role of each base predictor. 
In the second stage, all four base predictors can differ-
entiate to a certain degree between positive and nega-
tive samples, but there are still some samples that are not 
properly classified, and the number of misclassified sam-
ples is relatively higher compared to the first stage due to 
the increasing difficulty of the prediction task. However, 
as shown in the Additional files 3: Table S5 and S6, using 
the soft voting ensemble strategy in the second stage also 
results in an 11–14% improvement which further vali-
dates the effectiveness and superiority of the soft voting 
strategy.

t‑SNE visualization of extracted features
To intuitively compare and analyze how different base 
predictors extract features from biological sequences, we 
used t-SNE for visualizing the extracted sequence fea-
tures. Specifically, we extracted the 768-dimensional fea-
tures from the twelfth encoding layer of the model and 
reduced them to two dimensions using t-SNE for easy 
analysis of how the model classifies sequence data. The 
experimental results are shown in Fig. 4.

From the visualization, we can clearly see that during 
the promoter identification stage, all base predictors 
are able to separate positive samples from negative 
samples. During the promoter strength prediction 
stage, the model still overall distinguishes between 

Table 3  Ablation study of the soft voting ensemble scheme on promoter identification and promoter strength prediction

Predictors Promoter identification Promoter strength prediction

Sn Sp Acc AUC​ MCC Sn Sp Acc AUC​ MCC

DNABERT_3mer 0.8718 0.8567 0.8641 0.92 0.7284 0.6319 0.6790 0.6563 0.7139 0.3112

DNABERT_4mer 0.8641 0.8057 0.8323 0.907 0.6672 0.7195 0.6713 0.6888 0.7333 0.3765

DNABERT_5mer 0.8854 0.7776 0.8227 0.8943 0.6542 0.6679 0.6683 0.6681 0.7210 0.3316

DNABERT_6mer 0.8896 0.834 0.8597 0.9230 0.7215 0.6328 0.7415 0.6799 0.7530 0.3716

Ensemble_A 0.9169 0.8953 0.9023 0.9523 0.8437 0.7209 0.7623 0.7487 0.8102 0.4923

Ensemble_B 0.9241 0.9417 0.9318 0.9718 0.8901 0.7984 0.7591 0.7742 0.8542 0.5428

Soft voting (ours) 0.9728 0.9509 0.9616 0.9943 0.9234 0.8138 0.7861 0.7979 0.8742 0.5946
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Fig. 3  The interpretability analysis of soft voting ensemble strategy. A The UpSet plot visualizes the intersection of the predictive results from four 
base models for promoter, non-promoter, strong promoter, and weak promoter. Among them, the horizontal bar chart represents the number 
of elements contained in different sets, while the vertical bar chart represents the number of elements contained in the intersections of different 
sets. The black dots connected by black vertical lines indicate which sets are intersecting. B The kernel density estimation plot visualizes 
the probability distribution of predictions from four base models for promoter, non-promoter, strong promoter, and weak promoter, with the top 
four representing the first stage and the bottom four representing the second stage
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positive and negative samples, but the proportion 
of misclassified samples increases. This is due to the 
increased difficulty of the prediction task. It is worth 
noting that regardless of the promoter identification or 
strength prediction stage, the 3-mer base predictor is 
able to separate all samples into two distinct classes, 
with a larger distance between samples of different 
classes. On the other hand, the remaining base predic-
tors only roughly separate samples into two classes, 
with samples of different classes being closer together. 
This phenomenon further explains the distribu-
tion observed in the kernel density estimation plot in 
Fig.  3B. Because the 3-mer base predictor can clearly 
separate all samples into two classes, its predicted 
probability values are more spread out, and the over-
lapping region between positive and negative samples 
is relatively small. In contrast, the other base predic-
tors exhibit samples of different classes being close to 
each other, which indicates sensitivity to the learned 
boundary function. Consequently, this leads to a mini-
mal difference in predicted probability values between 
positive and negative samples, resulting in a larger 
overlapping region observed between them in the ker-
nel density estimation plot. Therefore, the t-SNE vis-
ualization provide further insights into how different 
base predictors extract and classify sequence features 
in the stage of promoter identification and strength 
prediction.

Conclusion
The primary work of this research is to introduce a 
two-stage prediction framework aimed at the identifi-
cation of promoters and the subsequent prediction of 
their strengths. To achieve this, we adopt a multi-scale 
feature extraction approach by segmenting the DNA 
sequence into different tokens, including 3-mer, 4-mer, 
5-mer, and 6-mer, which are then inputted into the pre-
trained model DNABERT. The results from different base 
predictors are integrated using a soft voting method. 
Through attention mechanisms analysis, it was discov-
ered that the model effectively integrates both local and 
global information of the promoter sequence. Compared 
to other traditional deep learning-based methods, our 
model demonstrates better benchmark performance and 
generalization ability. Additionally, a range of analyses 
conducted during this study demonstrate that our pre-
dictions surpass those of existing state-of-the-art predic-
tors, particularly in regards to promoter identification 
and strength prediction. This method contributes to our 
understanding of the prediction mechanisms of pre-
trained models in the context of biological sequences and 
effectively addresses bioinformatics problems with out-
standing performance.
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