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Many organisms live in habitats with limited nutrients or space, competition for these resources is ubiquitous. Although spatial
factors related to the population’s manner of colonizing space influences its success in spatial competition, what these factors are
and to what extent they influence the outcome remains underexplored. Here, we applied a simulated competitive model to explore
the spatial factors affecting outcomes of competition for space. By quantifying spatial factors, we show that colonizing space in a
more dispersed manner contributes to microbial competitive success. We also find that the competitive edge deriving from a more
dispersed manner in colonization can compensate for the disadvantage arising from either a lower growth rate or lower initial
abundance. These findings shed light on the role of space colonization manners on maintaining biodiversity within ecosystems and
provide novel insights critical for understanding how competition for space drives evolutionary innovation.

ISME Communications; https://doi.org/10.1038/s43705-021-00063-7

INTRODUCTION

Competition is a ubiquitous phenomenon observed for both
microorganisms and macro-organisms [1, 2]. It is considered to
represent a key factor driving biodiversity [3, 4] and evolution
[5, 6]. Competition often occurs when individual organisms
compete for identical resources [7-10]. It is characterized by the
consumption of a limiting resource by one population, resulting in
a decrease in the fitness of its competitors. Nutrient and space are
the main two resources necessary but usually limited for
organisms, and they are tightly related to each other. A population
colonizing more space will commonly obtain more nutrients and
energy to support their growth [10-12]. The space competition of
macroscopic organisms has been reported in many papers [2, 12].
However, due to the limitation of the reproduction rate of
macroscopic organisms and the size of the competitive space, the
sample size in macroscopic ecology research is often relatively
small [13], which is not conducive to drawing general conclusions
from a wider field of vision (tens of thousands of samples).
Microorganisms grow fast and are small in size. Thanks to rapid
advances in microscopy and high-throughput sequencing, micro-
bial ecology has developed rapidly, which has also contributed to
the understanding of macroscopic communities. For microorgan-
isms, they often settle on surfaces and form a dense biofilm,
where nutrient and space are often limited [14], and thus strong
microbial competition is always common here.

To win in a game of microbial competition, numerous
competitive strategies have been evolved by microorganisms.
For example, microbes can gain competitive advantages by
privatizing nutrient resources [15, 16], and microbes may obtain
fitness benefits by diversifying metabolic mode [17, 18]. In
addition, motility [19, 20] and adhesion [21, 22] also help
microorganisms win the competition. All the competitive

strategies above that these organisms have evolved are biotic
factors that affect the outcome of microbial competition.

In addition to the biotic factors, microbial competition is also
affected by abiotic factors. Several reports have shown that
certain abiotic factors, such as temperature and pH, influence
the outcome of microbial competition by changing the intrinsic
properties of organisms like growth rates [23, 24]. A recent study
has shown that emigration rates, i.e., rates at which individuals
of a population depart from a particular community, influence
the outcome of microbial competition, without changing the
fitness of the competing organisms [25]. However, whether
there are other abiotic factors that do not influence the
population growth rates but will also affect the outcome of
microbial competition, remains to be elucidated. Understanding
this question is critical to explain how slow-growing microbes
compete against their fast-growing counter-partners and exist in
all environments [26-28].

Ecological processes occur not only in time but also in space.
Abiotic spatially related factors may also be potential factors
independent of biological intrinsic properties but affecting
outcomes of the competition for space. Our previous study
indicated that even if the initial abundance and inherent fitness of
two populations were identical, outcomes of the spatial competi-
tion were not completely random but significantly influenced by
the relative positions and time orders for the emergence of
different genotypes [29]. Similar phenomena have been observed
in the macroscopic plant ecology, such as chance seed dispersal
and early site history [30], emphasizing the role of temporal order-
of-arrival and stochastic processes [31, 32]. These findings
suggested that specific events that occurred during the space
colonization affected which population colonized more space.
However, what these events are and how they affect the outcome
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of spatial competition, has not been studied enough in previous
research, and then more research is needed.

Microbial spatial competition is very similar to the traditional
Chinese board game, Go, in which two players compete for
occupying more space on a board. In the Go game, the players’
strategies in layout and middle stage are crucial to gaining more
territory and winning the game [33]. Therefore, we hypothesized
that factors related to the manner of microorganisms exploring
and colonizing free space, such as initial spatial positions and the
subsequent directions of expansion, play a significant role in their
competitive outcome.

In this study, we constructed an individual-based model (named
“BacGo") to simulate two microbial populations competing for
limiting space and explore the influence of spatially related factors
on the competition for space. Our work provides a quantitative
view of how the manner in which a microbial strain colonizes new
space affects the outcome of competing with other strains.

METHODS

Basic settings and simulation workflows of the BacGo model
To simulate the spatial competition between two populations, the BacGo
model was built based on 2D lattices [34], following our previous
framework [29]. In our model, a microhabitat was conceptualized as a
20X 20 array. One microbial individual was allowed to occupy a specific
spatial grid box (as shown in the left panel of Fig. 1a). Two populations
were assumed to compete for this ‘microhabitat’, where they were allowed
to grow and reproduce (the middle panel of Fig. 1a). For simplicity,
nutrients are assumed to be unrestricted in the model and the growth rate
of each cell was assumed to be constant, then

dB;
d_tl = H;jX Bl'a
where B; is the biomass of the ith individual; y; is the growth rate of the ith
individual. In the basic model, the y; was set to be the same for all cells of
both populations, of which the default value was 0.1 fg/fg:-min [35]. The
initial biomass of each individual was set as 150fg [35]. After enough
cycles for biomass accumulation, one cell reproduced when its biomass
reached the upper threshold of 2B,. After cell division, the mother cell
stayed in the original grid box, while the daughter cell randomly selected
one of the 8 (5 when the mother cell is on the edge, and 3 when the
mother cell is in the corner) directly adjacent grids. If the selected grid has
been occupied, the newborn cell will compete for the grid with its
aborigine and have a 50% probability to survive. In addition, random death
events were considered and set at a very low probability of 1e  [36].
According to the basic settings of the model, the competitive processes
(simulation workflows) went through two stages (Fig. 1b). In the first stage
(named “occupation stage”), cells grew, divided, and occupied the space
from initial positions at time point t;, until the space was fully occupied by
both populations at time point t,. In the second stage (named “exclusion
stage”), cells from both populations competitively excluded each other,
until one population completely filled the entire space (named ‘winner’) at
time point ts. All variables and parameters used in the model were listed in
Table S1, the defined indexes were summarized in Table S2, and the
abbreviations were summarized in Table S3.

Simulation protocols and data recording

To simulate the processes of two populations competing for the
‘checkerboard’, time-lapse numerical simulations lasted for at least
50,000 steps, until one population fully occupied the entire space. The
model was implemented by C+-+ language, and the source code is
available on https://github.com/Neina-0830/BacGo-model. Simulations
were run on an Ali cloud server running Windows Server 2019. Custom
functions were included in the Codes to record the position coordinate of
every cell, biomass of every cell, as well as the relative abundance of each
population at each time point. These simulation data were analyzed and
visualized using custom Wolfram Mathematica scripts (https://github.com/
Neina-0830/BacGo-model). Moreover, images of the cell distributions at
each time point were generated from custom Wolfram Mathematica
scripts (https://github.com/Neina-0830/BacGo-model). Videos were created
from the time-series image sequences and assembled in software Image J
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(v2.35). Videos were reprocessed with H.264 encoding using FormatFactory
(v5.7.5) to make sure the suitable size.

Definition of measurements and parameters

Measurements that characterize outcomes of the competition. To statisti-
cally characterize the competitive outcome at t;, we defined two
measurements. In each simulation, the relative abundance of each
population at ‘full-occupied’ time point (t;) was extracted, and the
abundance asymmetry index, AbunR, was calculated as follows:

Abun1>

AbunR = log <Abun
2

where Abun; is the relative abundance of the focus population (the first
population) at t, and Abun, is the relative abundance of its competitor at
t,. AbunR of a population >0 means that the focus population had a higher
relative abundance than its competitor at t,.

When applicable, 100 replicated simulations were performed for one
initial cell distribution, and competition outcomes were summarized to get
the winning frequency of both populations. Then, the winning asymmetry
index, WinR, was calculated as follows:

WinR = log <M> R
winpro,

where winpro, is the winning frequency of the focus population in the 100

replicated simulations starting from the same initial distribution, while

winpro, is the winning frequency of its competitor. When the WinR of a

population is positive, this population has a higher winning probability

than its competitor.

Parameters describing different colonization manners on spatial competition.
To investigate the effect of different colonization manners on spatial
competition, we defined serval parameters quantifying spatially factors. To
characterize the initial population distributions, a nondimensional para-
meter, ScatR, was defined to assess the asymmetry of scatter level of the
initial cell distribution between a population and its competitor, calculated
by

a,
ScatR = | —,
ca 09(02)’

where a; and a, are the average Euclidean distance of all cells from the
average position in the population of two populations respectively (see
more details in Supplementary information S1), which characterize the
scattered level of initial cell distribution of each population. The ScatR >0
indicates that the population is initially distributed more scattered than its
competitor, and the absolute value of ScatR represents the degree of the
difference in the scatter level of the initial cell distribution between the
two populations.

To capture the random events occurring during population expansion in
the “occupation stage”, a parameter FreeR was defined to characterize the
difference in the degree of ‘expansion freedom’ between one population
and its competitor, given by

ty
> freedomu)
= —— |

FreeR = Iog< e
o freedom; ;
where freedom;; is the average number of empty grids around the
daughter cells born in time point t of the focus population, while
freedom;; is that number of its competitor. The FreeR index >0 indicates
that the population possesses greater ‘expansion freedom’ against its
competitor in the given simulation, and the higher absolute value suggests
a higher difference in expansion freedom between the two populations.
In order to integrate the effect of initial cell distribution and ‘expansion
freedom’, a new parameter, named ‘Space Accessibility’, was defined. The
asymmetry of ‘Space Accessibility’, SAR, evaluated the competitive edge
derived from ‘Space Accessibility’ of the population across the whole
“occupation stage”, given by

2, A
20 SAye )

where SA;; and SA,, are the ‘Space Accessibility’ for the focus population
and its competitor at time point t, respectively. Details of the definition of

SAR = Iog<
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Fig.1 Logic and basic assumptions of the model. a Overall framework of the model. We considered two populations competing for a limited
2D space. The space was initialized by a 1:1 mix of cells from two populations, which were randomly scattered in the 2D panel (left panel).
Cells from the two populations exhibited the same growth rate. Cell division occurred when its biomass reached a threshold, during which the
daughter cell randomly selected one of the directly adjacent grids. If the selected grid had been colonized, the newborn cell competed for the
grid with its original occupant and have a 50% probability to survive (middle panel). We aimed to see which population ultimately colonized
the entire space (right panel) and for this purpose investigated the relationship between the colonization manner of one population and its
competitive success. b The process of spatial competition can be divided into two stages, namely the ‘occupation stage’ and the ‘exclusion
stage’ Small black arrows indicate the direction of population exploitation; t;, t;, and ts refer to the initial time point, the “full occupied” time
point, and the winner colonizes the entire space time point in the process of competitive interaction, respectively. ¢ A representative snapshot
shows the difference in the initial distribution between the two populations. The orange population was more scattered than the purple one.
d Representative snapshot showing the difference in ‘expansion freedom’ between the two populations. Daughter cells (labeled as light
purple) of the purple population were characterized by a higher degree of expansion freedom than the daughter cells (labeled as light
orange) of the orange population.

SAk: (k=1 means the focus population and k=2 means its competitor) According to the above definition, the ScatR, FreeR, and SAR of the focus
can be found in Supplementary information S1. SAR is >0 means that the population are all inverse to its competitor, and the competition results of
population generally possesses higher ‘Space Accessibility’ than its AbunR and WinR are also inverse to each other. Therefore, we can draw a
competitor. conclusion by focusing only on all the parameters of the focus population,
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which is completely consistent with the conclusion reached when
considering all the parameters of the two populations.

Comparison between SmartBac and NormalBac

To test the effect of space colonization manners from another perspective,
one population was defined to be “smart population” (named as SmartBac
thereafter), whose daughter cells were always able to colonize the space to
ensure that the whole population retained optimal spatial distribution with
higher ‘Space Accessibility’. To achieve this goal, SmartBac was controlled
to colonize space in a more dispersed manner. After each daughter cell
was born, every possible scenario for its follow-up position was assessed
by calculating the SAi. value of the formed cell distribution. Then the
distribution with maximum SA . value was selected as the next colonizing
step of the SmartBac.

To test whether SmartBac behaves better in spatial competition,
individual-based simulations were performed by considering a competi-
tion process between SmartBac and NormalBac (a normal population), who
possessed a purely random manner of colonization of space same as the
definition in the basic model. We called the spatial competition between
SmartBac and NormalBac the SmartGo. As a control, the corresponding
null model simulations, completely random simulations of two popula-
tions, were also performed between Normalbac and Normalbac. Finally, we
compared parameters of the focus SmartBac in SmartGo with those of the
focus NormalBac in the null model to reach a conclusion.

In order to explore the impact of spatial dispersion on competition from
a wider perspective, we further defined a parameter GrowAdVyormaiac tO
reflect the growth rate advantage of NormalBac relative to SmartBac,
calculated by

Gr ONormalBac — Gr OSmartBac

GrowAdVormalgac =
Gr OsmartBac

where Gronormaigac and Grosmarsac are the growth rate for NormalBac and
SmartBac, respectively. We designed simulations of competition between
SmartBac with a certain growth rate and NormalBac with different growth
advantages, to investigate the advantage of SmartBac in an efficient,
dispersed strategy. We also defined a SmartBac attribute, namely the
proportion of SmartBac (see Supplementary Information S1 for details),
and designed Is of simulations of competition between NormalBac and
different proportions of SmartBac to explore competitive outcomes of
different intermediate strategies. Finally, we analyzed the outcomes of
these simulations.

Statistical analysis

The chi-square test was carried out using the chisqg.test function in stats
package of R 4.0.2. Unless indicated otherwise, unpaired, two-tailed, two-
sample Student’s t test was performed for comparative statistics using the
t.test function in stats package of R 4.0.2. To avoid the impact of the data
size on significance analysis, all of the t-tests were carried out with 1000
values randomly selected from each group sample. Linear correlation
analyses between different parameters were implemented using the Im
function in stats package of R 4.0.2. The Cohens'D statistic was calculated
using the cohensD function in Isr package of R 4.0.2. The multiple
regression analysis and multicollinearity test were performed using IBM
SPSS Statistics 27.0.

RESULTS

Simulating competition for space using the “BacGo” model
To investigate how spatial positioning of populations affects the
outcome of microbial competition, we simulated two populations
competing for space with a limiting size by building an individual-
based model (named “BacGo”). The model was implemented in
discrete grid boxes of a 20 x 20 array. As shown in Fig. 1a, our
simulations were based on three basic assumptions. First, the two
competing populations possess the same inherent growth rate
and equal initial cell numbers, thus the only differences between
them are their manners of colonizing free space. Second, the
newly born daughter cell is located around its mother cell but with
a random direction of spatial positioning [34], resulted in a
microcolony with different spatial patterning. Lastly, if the selected
box has been occupied, the newborn cell will compete for the box
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against the original occupants of the box and possesses a
probability of 50% to survive [37].

We first explored the outcome of spatial competition, which
started by randomly distributing two populations on the grids
with the same initial cell numbers of 10 for each. Based on our
basic assumptions and the predictions of competitive exclusion
theory [38], we hypothesized that only one population could win
the competition and finally occupy all grids. As shown in 20,000
independent simulations with random initial distributions, we
discovered that at the end of each simulation, only one population
survived (Video S1 and Video S2). The Chi-square test showed no
significant difference (P=0.211) between the simulated winning
times (10,177 of 20,000 simulations) and the random winning
times (10,051 of 20,000 simulations) of the focus population. This
result conformed with our initial assumption that cells possess a
probability of 50% to survive in competing with original
occupants. When we replicated simulations initiated with the
same cell distribution, we found that the winning probabilities for
each population changed in line with the initial distributions
(Fig. S1). However, the winning probabilities never reached 100%
no matter how the initial distribution changes. Together, these
results suggested that unknown random factors may affect the
final outcome of the competition.

Next, we analyzed the dynamics of microbial colonization
during our simulations. As summarized in Fig. 1b, we divided the
competition process into two stages, the “occupation stage” and
the “exclusion stage” (see Methods). To statistically characterize
the competitive outcome at t;, we defined the winning
asymmetry index, WinR, and the abundance asymmetry index,
AbunR (see Methods). As shown in Fig. S2a, we found a strong
positive correlation (R? = 0.740, P <0.001) between AbunR and
WinR, indicating that if any population is more abundant at the
“full occupied” time (tp), it is more likely to finally win the
competition (i.e, occupy the entire space at t3) (Fig. S2b). These
results strongly suggested that one population may obtain an
asymmetric benefit from the random manners of colonizing space
in the “occupation stage”, a benefit that assists this population in
colonizing more space at t,, thus largely determining the ultimate
outcome of the competition.

All of these initial explorations of the model indicated that, in
addition to the growth rate [39] and initial cell numbers [40], the
random manners of colonizing space in the “occupation stage”
may provide a considerable competitive edge for a population to
colonize space.

‘Space Accessibility’ affects outcomes of spatial competition

A larger initial distance of cells is conducive to success in
competition. We next investigated that what manners of
colonizing space will help to win the competition. Since the
competition outcome changes with different initial cell distribu-
tions (Fig. S1), we first explored how the differences in features of
initial cell distributions affect the outcome of subsequent spatial
competition. Our model assumed that the direct competition
between different cells occurred only when cells are located
adjacent to each other (assumption 2 and assumption 3). Based on
these assumptions, if cells from one population possess greater
distance among each other (in other words, distributed more
scattered), the undesirable intrapopulation competition can be
avoided, and thus they may possess a higher probability to
occupy more space. Therefore, we hypothesized that if one
population exhibited a higher degree of scatter at time point t;, it
will potentially occupy more space at time point t,, resulting in a
higher probability to emerge as the winner.

To compare levels of scatter (Fig. 1c) of the initial cell
distribution between two populations, we defined the scatter
asymmetry index, ScatR (see Methods). To investigate whether the
initial scatter level affects the competition outcome, we selected
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Fig. 2 Effect of the initial cell distribution and expanding direction of the daughter cells on competitive success of one population. a
Correlation between ScatR and AbunR. Results represented the sum of 21,500 simulations containing 215 different initial cell distributions, of
which the ScaR values of the focus population varied from —1.009 to 1.053. b Correlation between ScatR and WinR. Data were generated from
simulations identical to those shown in (a), and each WinR value was summarized from the competition outcome of 100 replicated
simulations with a given initial cell distribution. ¢ Correlation between FreeR and AbunR. Results represented the sum of 36,300 independent
simulations with 363 different initial cell distributions, but their ScaR values were all equal to zero (Fig. S3). d Comparison of FreeR in the
winning and losing cases of the focus population. Competition outcomes were generated from simulations identical to those shown in (c).
Statistical analysis was performed using a two-sample Student’s t test: ***p < 0.001.

215 initial cell distributions randomly, which covered a gradient of
ScatR values of the focus population ranging from -1.009 to 1.053
(Blue lines in Fig. S3). We then performed 100 replicated
simulations for each initial distribution, to reveal the relationship
between the competition outcome and ScatR. Our results showed
that AbunR was positively associated with ScatR at significant
levels (Fig. 2a; R?>=0.284, P < 0.001), indicating that the population
initialized with more scattered cell distribution would occupy
more space at t,. Moreover, a positive relationship was also
observed between WinR and ScatR (Fig. 2b; R = 0.291, P < 0.001),
further suggesting that the benefit obtained from more scattered
initial cell distribution contributed to the ultimate dominance of
this population.

The higher degree of expansion freedom helps populations to win
space competition. In addition to initial distance, we found that
for a given initial distribution, AbunR considerably varied across
different expansion processes, indicating that in addition to the
randomness in the initial cell distribution, the random events
occurring during population expansion in the “occupation stage”
also affected the competition outcome. Our model assumed that
after a successful division of one cell, all adjacent grids around the
mother cell are randomly selected to accommodate the newly
born cell (Fig. 1a; assumption 2). If the selected box has been
occupied, the newborn cell will compete for the box with the
aborigine of the box and has a 50% probability to survive
(assumption 3). We defined the number of empty grids surround-
ing the newborn cell as the degree of expansion freedom. Thus, if
the daughter cell possesses a higher degree of expansion
freedom, the probability for its offspring to survive will be higher
(Fig. 1d; the purple cell). In contrast, if the degree of expansion
freedom of the daughter cell is low, it has to compete for space
with other cells for further reproduction and expansion, which
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should be less favored for the space competition afterward
(Fig. 1d; the orange cell). This assumption leads to a prediction
that the population whose daughter cells possess a higher degree
of expansion freedom will be more likely to win the competition.

To test this prediction, we defined the expansion freedom
asymmetry index, FreeR (see Methods). We selected 363 initial cell
distributions with a zero ScatR (Fig. S3) from 1,000,000 random
distributions and performed 100 replicated simulations with each
initial distribution. During these simulations, we recorded the
degrees of expansion freedom of every newborn cell during the
‘occupation stage’ (Fig. 1d; Fig. S4) and then compared the FreeR
of the focus population with its AbunR in each simulation. We
observed a strong positive relationship between FreeR and AbunR
(Fig. 2¢; R> = 0.679, P < 0.001), suggesting that the population with
greater ‘expansion freedom’ would occupy more space at t,.
Furthermore, the FreeR of the focus population was significantly
higher when it won than it lost (Fig. 2d; t-value = 5.343, df =999,
P <0.001), which is consistent with our prediction.

Together, these results demonstrated that the randomness
during the “occupation stage” of spatial competition, including
the initial scatter level and the degree of expansion freedom, can
affect the outcome of competition for space.

Populations with higher ‘Space Accessibility’ have a higher winning
probability in spatial competition. Because both the initial scatter
level and the degree of expansion freedom affect the number of
empty grids that surrounded individuals of the focus population at
each time point, we then searched for a more general parameter
that considered both of the two factors. We applied a
mathematical induction algorithm to define a new parameter,
Space Accessibility (SAxt, k=1 means the focus population and k
=2 means its competitor; Fig. S5). Individuals of a population are
further away from the aggregation area, where more grids have
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Fig. 3 Effect of the ‘Space Accessibility’ on the competitive success of a population. a Correlation between SAR and AbunR. Results were
summarized in 20,000 independent simulations. b Comparison of SAR in the winning and losing cases of the focus population Competition
outcomes were generated from simulations identical to those shown in (a). Statistical analysis was performed using a two-sample Student’s t

test: ***p < 0.001.
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Fig. 4 Microbial colonization of space in a more dispersed manner contributes to the competitive success of the SmartBac. a Comparison
of the SAR of SmartBac in SmartGo and the focus NormalBac in the null model in the “occupation stage” b Comparison of the AbunR at t, of
SmartBac in SmartGo and the focus NormalBac in the null model. Results were summarized in 10,000 independent simulations of SmartBac
competing with NormalBac and 10,000 independent simulations of NormalBac competing with NormalBac. Statistical analysis was performed

by a two-sample Student’s t test: ***P < 0.001.

been occupied, the ‘Space Accessibility’ of this population is
higher. The ‘Space Accessibility’ at each time point (SAy:) assesses
the maximum probability of cells of one population colonizing all
the empty grids in the subsequent steps from this time point to
the “full occupied” time (t,), which reflects the ease with which
offspring cells occupy these empty positions. Next, we integrated
SA: value over time (obtaining SA) for each population. To
estimate which population generally was more likely to occupy
the empty positions during the “occupation stage”, we next
defined an index called SAR (see Methods). A SAR index greater
than zero indicates that the focus population has a higher
probability of reaching empty positions than its competitor across
the “occupation stage”.

To investigate whether the difference in ‘Space Accessibility
affects the competition outcome, we performed 20,000 simula-
tions covering SAR values of the focus population ranging from
—1.808 to 1.754. In these simulations, we found that ScatR
(Fig. S6a; R>=0.271, P<0.001), as well as FreeR (Fig. S6b; R* =
0.986, P < 0.001), was positively correlated with the SAR, suggest-
ing that SAR reflected the change of both ScatR and FreeR. To test
the influence of ‘Space Accessibility’ for competition, we next
analyzed the relationship between SAR of the focus population
and its AbunR at t, time point. The results showed an extremely
significant positive correlation between SAR and AbunR (Fig. 3a;
R*=0.833, P < 0.001), suggesting that the population with higher
‘Space Accessibility’ would occupy more space at t,. The
correlation coefficient between AbunR and SAR was higher than
the coefficients of both AbunR-ScatR and AbunR-FreeR, indicating

’
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that SAR represented a more suitable parameter to evaluate
competition outcomes. Furthermore, the SAR of the focus
population was significantly higher when it won than it lost
(Fig. 3b; t-value =8.392, df =999, P<0.001), further indicating
that the ‘Space Accessibility’ predicted the outcome of spatial
competition between two populations with a high degree of
reliability.

We also performed numerous well-designed simulations (see
Supplementary Information S2 for details) to test whether the
effect of ‘Space Accessibility’ on the outcome of spatial competi-
tion was statistically significant under various initial conditions
(robustness test), including varied initial growth rates, total
numbers of initial cells, as well as sizes of the space (Table S4).
Our analysis showed that the effect of ‘Space Accessibility’ on the
outcome of spatial competition was significant (Table S4; Fig. S7),
and largely unperturbed by changes in initial growth rates, space
sizes, and initial total numbers of cells (not exceed 10% of the
maximum population size). In summary, colonizing space in a
more dispersed manner contributes to microbial competitive
success.

A ‘smart population’ occupies more space. Next, we tested
whether ‘Space Accessibility’ determined the competition outcome
from another perspective. We designed simulations of competition
between SmartBac and NormalBac (called ‘SmartGo’; see Methods).
We hypothesized that SmartBac would obtain a higher competitive
edge from its superior strategy of space colonization, and win the
competition for space against NormalBac.
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Fig.5 Comparison of the effect of space colonization manners with the effect of the varied growth rate and initial abundance. a Diagram
indicating meanings of the defined three parameters. Values of each parameter >0 denote that the focus population possesses the
corresponding competitive edge compared with its competitor. b-c Comparison of the relative importance of space colonization manners,
growth rates, and initial abundances for outcomes of the microbial competition. Gradients of SAR, GroR, as well as InifR, were set in
89,100 simulations and each point indicated one simulation result in the corresponding set of the three parameters. Values of AbunR (b), as
well as final competition outcomes (c), were also recorded to estimate how these three factors collectively affect microbial competition.

As expected, SmartBac won (Video S3) 7302 times during 10,000
mathematical simulations of the SmartGo model, accounting for
73.02%. While, in the corresponding null model (competition
between NormalBac and NormalBac), the focus NormalBac won
5088 times during 10,000 mathematical simulations, accounting for
50.88%. In these 20,000 simulations, SAR values of the SmartBac in
the SmartGo model were significantly higher than those of the focus
NormalBac in the null model (Fig. 4a; t-value = 30.104, df =999, P <
0.001). Furthermore, the AbunR values of SmartBac in SmartGo
model were also significantly higher than those of focus NormalBac
in null model (Fig. 4b; t-value = 40.763, df = 999, P < 0.001).

We also designed simulations of competition between SmartBac
and NormalBac, and the latter has a growth advantage. A parameter
GrowAdVpormaisac Was defined to reflect the growth rate advantage
of NormalBac relative to SmartBac (see Methods). The results
showed that as the GrowAdVnomapac increased, the winning
probability of SmartBac decreased (Fig. S8). The winning probability
curve of SmartBac intersects the line of 50% winning probability at
(0.0083, 0.5), which means that SmartBac can compete with
NormalBac, which has a 0.83% growth advantage, by compensating
for the growth disadvantage with a more dispersed strategy.

In order to explore the impact of ‘Space Accessibility’ on
competition from a wider perspective, we further defined an
attribute for SmartBac, namely the proportion of SmartBac (see
Methods). We ran 60,000 simulations of competition in total
between NormalBac and different proportions of SmartBac (see
Supplementary Information S1). The results showed that populations
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with higher proportions of SmartBac had average higher SAR values
across all competitive simulations (Fig. S9a). Moreover, the popula-
tion with a higher proportion of SmartBac had a higher probability
of winning in the competition with Normalbac (Fig. S9b).
Together, the results further indicated that microbial colonization
of space in a more dispersed manner helped to win the competition.

Space colonization manners, growth rates, and initial
abundances synergistically affect spatial competition
It is well established that microbial competition for space is
influenced by the growth rate and initial abundance of competing
populations. The population possessing a faster growth rate, or
higher initial abundance will outcompete other strains present
within the newly occupied space. To assess the relative contribu-
tion of space colonization manners, growth rates, and initial
abundances in spatial competition, to microbial competitive
success, we performed simulations in which the growth rates
and initial abundances of the two populations were set to be
different (see Supplementary Information S1 for details). In these
simulations, we defined the parameter GroR as the difference in
growth rate between a population and its competitor, as well as
defined InifR to characterize the difference in initial abundances
(see Supplementary Information S1; Fig. 5a). In addition, we
calculated SAR of the focus population in each simulation to
quantify the asymmetry of ‘Space Accessibility’.

As shown in Fig. 5, even when one population exhibited a lower
growth rate, or was characterized by the lower initial abundance,
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colonization of space in a more dispersed manner, such as choosing
positions for new cells to have a higher ‘Space Accessibility’, may
neutralize these disadvantages and allow this population to occupy
more space at t, (Fig. 5b), thus winning the spatial competition
(Fig. 5¢). To more clearly display comparison results between the
spatial advantage obtained by the dispersed strategy and the
growth rate or initial abundance advantage, we added two-
dimensional plots of GroR and SAR, InifR and SAR in Fig. S10.

The collinearity analysis showed that when strains differed in their
initial abundances, SAR and InifR exhibited significant collinearity
(VIF =13.062, VIF is short for variance inflation factor). To eliminate
this collinearity effect, we generalized our definition of SAR by
defining a new parameter perSAR (see Supplementary Informa-
tion S1), which is equal to SAR when the initial cell number of both
populations are same (InifR = 0), but allows for better quantification
of the asymmetry of ‘Space Accessibility’ when InifR is unequal to
zero. A subsequent collinearity test showed that the collinearity
among the variables perSAR, GroR, and InifR disappeared (Table S5).
Moreover, the population possessing a higher perSAR value was
characterized by a higher probability for ultimate survival at the end
of the simulation and won the competition even when its growth
rate or initial abundance was lower (Fig. S11).

We next performed multiple regression analysis to quantify the
relative contributions of these three factors during the spatial
competition (Table S5). Our analysis showed that the ratio of
relative contributions of perSAR, GroR, and InifR to AbunR was
~1.027, 55.393, and 1.027 (1:53.94:1), suggesting that the
competitive disadvantage derived from lower GroR of a popula-
tion could be eliminated by possessing 53.94 times higher perSAR,
and the competitive disadvantage derived from lower InifR could
be neutralized by 1-time higher perSAR. Together, these results
indicated that microbial colonization of space in a more dispersed
manner could benefit the competitive success of slow-growing
species or species possessing lower seeding abundance.

In summary, compared with the evident competitive edge
derived from a faster growth rate and higher initial abundance of
one competitor, colonization of space in a more dispersed manner
(e.g., possessing higher ‘Space Accessibility’) also played a critical
role in determining the success rate during the competition for
space between microbial strains.

DISCUSSION

In this study, we investigated whether and how space colonization
manners affected the outcome of spatial competition among
different microbial populations. Our results suggested that
populations that optimize dispersal by colonizing space in a more
dispersed manner, could win the spatial competition even if they
grow slightly slower than their competitors.

We considered exploring the spatially related abiotic factors of
spatial competition, which were inspired by a traditional Chinese
board game, Go. In the game Go, two players need to rationally
consider the strategy of how to place their game pieces in order
(strategically determines where to place a piece at each step [33])
to win the game by occupying more area on the board. This
process is in close analogy to the ecological processes that two
biological populations competitively colonize an uninhabited
space. Inspired by the golden rule [33] of winning a Go game,
“golden corner, silver side, and grass belly”, we proposed the
hypothesis that manners of organisms colonizing free space play a
significant role in their competitive outcome.

The more dispersed manner, which means preference to
expansion into empty position, is interesting but hardly surprising.
There are more space resources around the microorganisms in the
empty position, and the probability of direct competition is greatly
reduced. Like microbes migrating to a new feeding ground, they
can grow and reproduce at full capacity until other competitors
move in and competition starts. Furthermore, our competition
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simulation occurs between two populations, which is simple but
reliable. Pairwise interaction is the basis of multi-species interac-
tion, and it is very important to study the competitive interaction
between two populations to reveal the rules of multi-species
interaction [41]. Microcosm experiments have found that indivi-
dual pairwise interactions are often consistent across community
complexity [42, 43]. Similar methods for summarizing the
prediction framework using paired interactions and extending it
to multi-species communities have been reported in other
literature [44, 45]. However, higher-order interactions are also
important in the ecosystem [46, 47], and sometimes the
community theory of higher-order interactions is contrary to the
classic theory that is based on pairwise interactions [48]. Thus, the
model of spatial competition between two species is not enough.
We will further develop and refine this model in the direction of
multi-species or higher-order interactions in the future.

Initial spatial pattern and random processes during microbial
population expansion are important for spatial competition [7, 49].
For example, one recent study explored how an Escherichia coli
population colonized the surface of a flat agarose pad and
investigated how two E. coli populations compete for limited
space [7]. In that study, cells with smaller initial patches are more
likely to be winners, which agrees with our model prediction, as
more scattered initial distribution normally leads to smaller
patches at the beginning of colonization. In addition, random
processes such as spatial wandering of so-called ‘pioneers’ at the
expanding frontier of a colony [49, 50], will determine the spatial
competition among the founder cells. Our findings presented here
suggest that the direction toward which the newly divided cells
migrate represents an important random event in the expansion
of a colony, critically affecting the spatial competition between
different populations. The populations generating offspring cells
with greater ‘expansion freedom’ will occupy more space at t, and
thus gaining an advantage over other strains competing for space.
Therefore, space colonization is a vital stochastic factor that
governs the interactions between competing microbes, as well as
the structure of their communities.

Ecological competition can result in the evolution of phenotypes.
Several studies using experimental evolution have documented
evolution in spatial competition. For example, a mutant repeatedly
arose in a biofilm formed by Pseudomonas fluorescens Pf0-1, able to
maintain a presence at the surface of the biofilm, thus gaining
access to limiting nutrients and space [51]. Here, we hypothesized
that the evolution of colonizing space in a more dispersed manner
may benefit the spatial competition of microbes. Our simulations
indicated that an evolved population (SmartBac), that always
migrated to the grids with higher ‘Space Accessibility’, would be
selectively favored (Fig. 4). Recent studies have provided clues
supporting this evolution strategy. Quorum sensing (QS), a signaling
system that regulates gene expression and coordinates population
behavior in response to changes in population density, is very
common among microbes [52-55]. QS signals can be used to detect
the free areas, that the free area is larger, the concentration of QS
signals should be lower. The slime mold Physarum polycephalum can
navigate complex labyrinths to find the optimal path to a food
source [56]. In these cases, microorganisms can sense the population
density and migrate in a directional manner, suggesting the
possibility of the evolution for colonizing space in a more dispersed
manner. To test this hypothesis, a long-term experimental evolution
assay performing spatial competition of two populations at the
individual level should be designed.

The surface colonization processes of bacteria are very
common in nature [57]. Several previous studies have shown
that the aggregation of cells on surfaces helps to resist
environmental stress such as desiccation, antibiotics, and preda-
tion [58-60]. One study combining the cell-tracking technique
and computer simulations showed that P. aeruginosa deposits a
trail of Psl as it moves on a surface, which leads to aggregation of
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cells in a rich-get-richer process [61]. In harsh environments,
surface-attachment of planktonic cells was shown to be biased
toward lower distances to previously attached cells [62]. In our
model, however, we did not consider the presence of any other
environmental stress except the limitation of space size. In this
ideal scenario, we got a completely different conclusion, that the
“dispersed” strategy helps the population gain an advantage in
the spatial competition, which helps to extend the current
ecological theory. A previous study demonstrated that two V.
cyclitrophicus populations have different ecological strategies to
interact with microscale nutrient patches in the ocean [63]. The L
population is better at accessing localized resources at the
individual patch level and the S population is better at dispersing
and discovering new patches. This ecological competition-
dispersal tradeoff provides a simple explanation for co-
existence [63]. It is also interesting to determine trade-offs
between the environmental stress resistance and microbial
competition. Further work should combine the effects of
“dispersed” behaviors in the competition for space and the
“aggregation” behaviors resisting the environmental stresses, to
reveal the contributions of competition and environmental
adaptation in surface colonization quantitively.

Previous studies have shown that predictions made for macro-
organisms at least partly also apply to microorganisms [64].
Although we built our model based on a set of assumptions
considering the lifestyle of microorganisms, similar assumptions
have been used in models of plant ecology [65]. Thus, specific rules
derived from the simulations may also have implications for
understanding the space colonization of macroorganisms. Data of
54 natural forest areas from ForestGEO (https://forestgeo.si.edu/)
confirms that seeding with more scattered initial distribution
contributes to faster space colonization of trees, which is consistent
with the conclusion of our microbial competition model (Fig. S12).
Therefore, our findings can also be generalized to explain how
multicellular individuals compete for space and may help to design
ecological restoration strategies, such as artificial forestation.

Our analysis of spatial competition of two populations indicated
that the competitive disadvantage derived from a slower growth
rate could be neutralized by higher ‘Space Accessibility’. As a
result, colonizing space in a more dispersed manner will benefit
the competitive success of a slower-growing species. This result
provided a novel perspective that a smarter manner for space
colonization may contribute to the survival of those slow-growing
species. Spatial-structured environments, such as biofilm or soil,
commonly exhibit higher spatial heterogeneity [66-69], character-
ized by numerous homogeneous microhabitats [70]. The competi-
tion outcome in each microhabitat varies due to random space
colonization, allowing the co-existence of species with different
growth rates at a large spatial scale. Therefore, our results also
provide novel insights into the maintenance of biodiversity in
spatial-structured environments.

Our results clearly demonstrate that disadvantaged strains can
use innovative strategies when colonizing newly discovered
space, compensating for disadvantageous biotic conditions, and
thus considerably improving its changes in the evolutionary arms
race. These findings shed light on the role of spatial positioning in
maintaining biodiversity within natural communities, as well as
provide new insight on how spatial competition between different
populations drives evolutionary innovation.
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