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Single-cell and spatial architecture of primary
liver cancer
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Primary liver cancer (PLC) poses a leading threat to human health, and its treatment options

are limited. Meanwhile, the investigation of homogeneity and heterogeneity among PLCs

remains challenging. Here, using single-cell RNA sequencing, spatial transcriptomic and bulk

multi-omics, we elaborated a molecular architecture of 3 PLC types, namely hepatocellular

carcinoma (HCC), intrahepatic cholangiocarcinoma (ICC) and combined hepatocellular-

cholangiocarcinoma (CHC). Taking a high-resolution perspective, our observations revealed

that CHC cells exhibit internally discordant phenotypes, whereas ICC and HCC exhibit dis-

tinct tumor-specific features. Specifically, ICC was found to be the primary source of cancer-

associated fibroblasts, while HCC exhibited disrupted metabolism and greater individual

heterogeneity of T cells. We further revealed a diversity of intermediate-state cells residing in

the tumor-peritumor junctional zone, including a congregation of CPE+ intermediate-state

endothelial cells (ECs), which harbored the molecular characteristics of tumor-associated

ECs and normal ECs. This architecture offers insights into molecular characteristics of PLC

microenvironment, and hints that the tumor-peritumor junctional zone could serve as a

targeted region for precise therapeutical strategies.
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Primary liver cancer (PLC), one of the leading causes of
death among all cancers worldwide, mainly comprises
heterogeneous hepatocellular carcinoma (HCC, 75 ~ 85%),

intrahepatic cholangiocarcinoma (ICC, 10 ~ 15%), and combined
hepatocellular-cholangiocarcinoma (CHC, 1 ~ 3%)1–5 with com-
mon and/or distinct molecular characteristics. Most of them are
adenocarcinoma with inflammatory features (hepatitis virus
infection and cholangitis), have common origins (hepatic pro-
genitor cells) or conversions between mature hepatocytes and
cholangiocytes. The sophistication of the molecular regulatory
network and inadequate understanding of the relationship
between PLC and the tumor microenvironment (TME) impede
the exploration of its mechanism, drug access and therapy
responses6–14. Recently, there has been a rising interest in the
combination of immune checkpoint blockades (ICBs) and tyr-
osine kinase inhibitors (TKIs)15,16, which has been proved more
effective for treating HCC and ICC than monotherapy17–19 but
remains unsatisfactory with discordant responses. Targeting
immune cells or stromal cells, by modulating their functionality,
numbers, or subtype, is being explored as an effective therapeutic
strategy against cancer. However, such an approach is faced with
numerous challenges – not only because of TME’s pro-
tumorigenic and anti-tumorigenic effects, but also the intrale-
sional, intra-tumoral, inter-tumoral, individual heterogeneity, and
other unknown key points (epigenetic, mutation, and metabolic
variation, et al.)20. In particular, considering fresh sample
requirements, CHC is rarely investigated in a high resolution due
to its relatively low incidence and pre-operative diagnosis
uncertainty4. Therefore, a thoroughly investigated landscape is
urgently needed for understanding PLC.

Single-cell RNA sequencing (scRNA-seq) has emerged as a
potent approach to exploring cancer and its microenvironment in
a single-cell resolution21–26 but with a deficiency in a morpho-
logical resolution for exploring solid tumors. Spatial tran-
scriptomics (ST), a lately-developed high-throughput technology
of RNA sequencing, overcomes such limitation with reliability in
spot-cellular (10-200 cells) resolution27–29. However, both tech-
nologies are inadequate in the respects of epigenetics, proteomics
and metabolomics. Thus, we reasoned that multi-omics with
bulk-tissue resolution profiling might have the potential for
addressing such deficiencies. Here, we present an elaborated
landscape of PLC, simultaneously featuring HCC, ICC and CHC
and covering a diversity of viral characteristics and tumor sizes.
This endeavor offers an opportunity for a panoramic view of and
parallel comparison among different PLC types rather than
investigation in separation21–23,25. Multiscale integration of
single-cell transcriptomics and immune repertoire, spot-cell ST
and bulk-tissue multi-omics were incorporated to construct a
valuable reference compendium for a comprehensive under-
standing of PLC. Multiplex fluorescent RNA in-situ hybridization
(RNAscope ISH) and fluorescent multiplex immunohistochem-
istry (mIHC) were also employed to validate patterns of gene
expression and tissue architecture (Fig. 1a).

Results
Multimodal landscape profiling of primary liver cancer. Single
cells (SC) were isolated from a portion of paired fresh tumor,
peritumor and peripheral blood from 7 donors with pathologi-
cally confirmed PLC (P121-P123 ICC, P124-P125 HCC, P126-
P127 CHC), meanwhile a portion of metastatic lymph node was
collected from P126. After one month, postoperative peripheral
blood was also collected (P124, P125, P127, 2 samples from
P123). A total of 27 samples were performed with scRNA and
scV(D)J sequencing (Fig. 1a, b, Supplementary Data 1a). Internal
validation tissues (another portions of tissues from SC cohort)

and external validation tissues were collected to verify the dif-
ference discovered from SC data using RNAscope ISH. Detailed
information of the profile is provided in Supplementary Table 1.
After quality control and unsupervised processing with optimal
settings (Supplementary Fig. 1a), the SC dataset comprises
289,156 high-fidelity sequenced cells (247,515 from 22 peri-
operative samples) and 110,013 V(D)J-detected cells (SC immune
repertoire, 91,152 TCRs and 18,861 BCRs). After the first clus-
tering of 247,515 cells, there were 4 major cell populations
comprised of 25 supra-clusters, including 3 supra-clusters related
to malignant cells (M1, M2 and M3, marked with GPC3,
AKR1B10 and KRT19), 19 supra-clusters of immune cells (9 TNK
supra-clusters comprised of T, NK and NKT cells, marked with
CD3, NACM1; 8 myeloid supra-clusters comprised of monocyte,
macrophage, and dendritic cells, marked with LYZ; and 2 B cell
supra-clusters, marked with CD19), 1 supra-cluster of hepatic
stellate cells (HSC, also known as fibroblast cells, marked with
TAGLN), and 2 supra-clusters of endothelial cells (EC, marked
with CLEC4G). Of these, 64,443 cells were collected from HCC,
86,302 from ICC, and 96,770 from CHC (Fig. 1c-g, Supplemen-
tary Fig. 1b). Normalized mutual information (NMI, 0-1) was
employed to assess clustering robustness. We scored and applied
regression to single-cell cycle phases. After calculation, the NMI
score between before and after regression was 0.85, which implies
a relatively small effect of cell-cycle heterogeneity, thus we opted
not to correct it in the downstream analysis. Notably, every
supra-cluster was derived from all donors, indicating that the
clustering was driven by cell types rather than by batch effects
(Fig. 1h). The second clustering was then conducted in these 4
major cell populations (25 supra-clusters) respectively to obtain
corresponding sub-clusters with more precise assignment for
further analysis.

To explore the spatial heterogeneity of PLCs, ST was
performed with 5 extra tissues from 2 donors (P128 HCC,
P129 ICC) (Fig. 1b, Supplementary Table 1, Supplementary
Data 1a). A total of 21,571 ST spots were obtained from P128T,
P128P1, P128P2, P129TP1 and P129TP2, at a median depth of
10,995 UMIs/spot and 3,092 genes/spot. The 3 slices of P128 were
tumor-peritumor tissue separated, and 2 peritumor slices are
consecutively collected, undergoing experimental repetition for a
better data reliability (P128P1 and P128P2); the 2 slices of P129
came from where tumor-bordered peritumor, one slice from the
main lesion (P129TP1), the other from the sub-lesion (P129TP2).
Moreover, consecutive sections of ST cryo-tissues were also
collected to verify the spatial expression pattern of ST data using
fluorescent mIHC. Based on the histological structure of slices, we
addressed 4 annotated spatial regions: tumor (T) zone, peritumor
(P) zone, tumor-peritumor junctional (J) zone and stroma (S)
zone. Slices from case P128 presented a feature of fatty
infiltration, thus we differentiated non-fatty (n-F) areas from
fatty (F) areas (Fig. 2a). To anchor dissolved single-cell clusters to
their spatial locations by integrating the data from two modalities
(scRNA-seq and ST), mutual nearest neighbor (MNN) and
multimodal intersection analysis (MIA)28 were then performed.
As expected, most non-parenchymal cells and immune cells were
positioned in S or J zone (Supplementary Fig. 1c). Spatial spots
were further deconvoluted based on the supra-clusters of scRNA-
seq data30. We found that spots in T zone have a higher
proportion of singlets, while spots in J and P zones showed more
doublets that contain diverse cell types. Among 13985 predicted
doublet spots (22249 assigned spots in total), those comprised of
M3 and fibroblasts, M1 and fibroblasts, and M1 and endothelial
cells are the majority, indicating the co-localization of these cells
(Supplementary Fig. 1d, e).

To expand the borders of the molecular architecture of PLC,
bulk tissue multi-omics were performed on 15 matched solid
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tissues (P121-P127), ranging from genome to metabolome: assay
for transposase-accessible chromatin with high throughput
sequencing (ATAC-seq) and reduced representation bisulfite
sequencing (RRBS) in epigenomics, whole-exome sequencing
(WES) in genomics, whole RNA-seq in transcriptomics, isobaric
tandem mass tags (TMT)-based global proteomics, and LC-MS in

metabolomics (Fig. 1a). From perspectives of different omics, the
unsupervised clustering was conducted to explore heterogeneity
at the tissue level. A chaotic distribution was found in
epigenomics (peaks in the promoter region, methylation,
miRNA7, and circRNA) and metabolomics, while a tissue-type-
associated distribution was presented in mRNA, lncRNA and
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proteomics (Supplementary Fig. 2a, b), suggesting alterations in
mRNA, lncRNA and proteomics have relatively larger effects on
the phenotype. Analysis of somatic mutation found that the
missense mutation was the most frequent variant, and that T127
presented a maximum number of single nucleotide variants
(SNV) while N126 presented a minimum number of SNV and
unsuspicious copy number variations (CNVs) compared with
other samples (Supplementary Fig. 2c). Likewise, inferCNV
predicted the P126N (i.e. N126 in bulk sequencing) had the
minimum number of CNV using SC data compared with P121T
(i.e. T126 in bulk sequencing) compared with P121T (i.e. T121 in
bulk sequencing) (Supplementary Fig. 2d). Moreover, 8 distinct
mutational signatures (S1-8) were identified by nonnegative
matrix factorization. Of these, HCC-related S7 displayed a high
cosine similarity (0.873) to Cosmic22 which related to exposure
to aristolochic acid in previous HCC reports31,32 (Supplementary
Fig. 2e). Together, these results suggest our bulk data is consistent
with the SC data, and with known PLC genomic patterns to a
certain degree.

Tumor-peritumor junctional zone exhibits a complex pattern
of spatial expression. To annotate the spatial expression pattern
of regions, we conducted clustering analysis on each ST slice,
finding that cluster spots of tumor tissue were more concentrated,
while cluster spots of peritumor tissue appeared more disperse in
terms of spatial distribution (Fig. 2a, b). This might result from
the clonal evolutionary pattern of tumors33. Cluster spots in
UMAP showed a tissue-associated distribution, in which spots of
J zone were clustered and relatively separated from those of T and
P zones (Fig. 2a-c). The corresponding relationship between
clusters and annotated regions was also validated by principal
component analysis, consistent with previous ST study28 (Sup-
plementary Fig. 3a). Likewise, RNA velocity34 displayed a one-
way progression from P to J to T in P129. These results suggested
that J zone might have specific functional characteristics in cell
developmental fate in contrast with T and P zones.

By gene set variation analysis (GSVA), 2 consecutive slices of
peritumor tissue (P128P1 and P128P2) showed similar features in
the enrichment of hallmark and metabolic gene sets. As expected,
their enrichment was weaker than that in the slice of matched
tumor tissue (P128T, Fig. 2d). For instance, gene sets including
fatty acid metabolism, bile acid biosynthesis and cholesterol
homeostasis were distinct features of P128T slice, consistent with
a previous report on HCC35. Since disrupted cholesterol home-
ostasis has been reported as an aggressive characteristic of HCC
with poor prognosis. We investigated 7 key genes related to
cholesterol homeostasis, and all of them showed significant
upregulation in P128T in comparison with the genes in paired
peritumor tissues (Fig. 2e). Regarding the enrichment of gene sets
in P129TP slices (ICC), it closely related to annotated regions,
and clusters from same P or T zone shared similar characteristics
internally. T zone showed the enrichment of mTORC1 signaling,
MYC targets, G2M checkpoint, E2F targets, and DNA synthesis,
which related to cell proliferation or oncogenesis; P zone showed

the enrichment of gene sets in abnormal metabolism, such as bile
acid biosynthesis and cholesterol metabolism, indicating cells
bordered tumor might be affected by cells in T zone and
orchestrate with them. Of note, clusters in J zone (C4, C8, C10,
C11 in P129TP1; C9, C10 in P129TP2) exhibited a higher
diversity than those in T or P zone. C8 and C10 in P129TP1 were
specifically enriched with angiogenesis, myogenesis, and
epithelial-mesenchymal transition (EMT), while the rest clusters
presented relatively modest characteristics (Fig. 2d). Furthermore,
fluorescent mIHC was conducted to validate our findings at a
protein level using consecutive cryosection. It suggests the spatial
pattern of 3 selected markers (related to fibroblast activation) in
consecutive cryo-section is consistent with the spatial expression
pattern in ST slices (Fig. 2f). These results support the ability to
identify functional phenotypes of spatial regions based on
ST data.

To further validate the spatial pattern of gene set enrichment,
we applied single-cell regulatory network inference and clustering
(SCENIC) to assessing the activity of gene sets of cells regulated
by transcription factors (TFs), and we found it was consistent
with the results of gene set enrichment. Two consecutive slices of
peritumor tissue (P128P1 and P128P2) showed a similar pattern
of transcriptional regulation (TCF4, FLI1, JUND, FOS and SOX9).
EEF1AKMT3, BHLHE40, and HMGB2 were activated in 11
tumor-related clusters of P128T. HMGB2 was reported to be a
pro-inflammatory DNA binding factor and related to cholesterol
efflux36 and poor cancer prognosis37, consistent with our above-
described abnormal cholesterol homeostasis in P128T. Likewise,
C8 from J zone in P129TP1 presented active regulons regulated
by MEF2C, ETS1, IKZF1, JUNB ELK3 and KLF2. These TFs were
associated with fibroblastic assembly, in line with the large
amount of collagen fibers aggregated in J zone, while the rest
clusters in J zone presented a transcriptional activity with less
active TFs (Fig. 2d). Together, these results suggest J zone
exhibited a relatively complex pattern of spatial expression
compared with T or P zone. ST enables a stereoscopic
investigation into the difference in phenotypes between HCC
and ICC sample.

CHC cells present internally discordant phenotypes while HCC
and ICC have tumor-specific features. The cohort covering three
types of PLC enabled parallel analysis among them. Three supra-
clusters involving malignant cells from the first clustering were
labeled as M1 (C3, 28,920 cells), M2 (C12, 6723 cells), and M3
(C17, 2986 cells) (Fig. 3a). We observed significant heterogeneity
among M1, M2 and M3, in which M2 showed higher prolifera-
tion of G2M or S phase than M1 and M3 (Fig. 3b). The het-
erogeneity was also validated by the specific high expression of
MKI67 in M2 (Supplementary Fig. 3b). Therefore, their down-
stream analysis was performed separately. The heterogeneity also
existed at both intertumoral and individual levels. Through the
second clustering, M1 was distinctly separated into 19 sub-
clusters in UMAP, 9 of which clustered in a patient-specific way,
and sub-clusters from M2 and M3 likewise (Fig. 3a,

Fig. 1 Molecular architecture of PLC. a Experimental workflow using scRNA-seq, multi-omics and ST, validated by RNAscope ISH and mIHC.
b Demographic and clinical characteristics of 9 donors and related sample collection of tumor, peritumor, lymph node and peripheral blood (P121-P127 for
scRNA-seq and multi-omics, and P128-P129 for ST). c UMAP distribution of single cells from 7 donors’ perioperative samples (P121-P127). d UMAP
distribution of ST spots from 2 donors (P128-P129). e UMAP distribution of cell populations (247,515 cells from 22 peri-operative samples). T, T cells; NK,
natural killer cells; B, B cells; myeloid, myeloid cells; endothelial, endothelial cells; fibroblast, fibroblast cells or hepatic stellate cells; M1, M2, M3, supra-
clusters related to malignant cells. f UMAP distribution based on tumor type, cell cycle phase, tissue type. It shows an equilibrium distribution that was not
affected by these factors. g UMAP distribution based on canonical marker gene of supra-clusters. h Bar plots of supra-clusters based on tissue type,
patient, tumor type, cell cycle phase and cell number. ST, spatial transcriptomics; UMAP, uniform manifold approximation and projection; G1, gap 1 Phase;
S, synthesis phase; G2M, gap 2 and mitotic phase. Mix, mixed and unassigned cells or clusters.
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Supplementary Fig. 3c). Cells from these patient-specific sub-
clusters mostly originated from tumor tissues, suggesting that
these sub-clusters were mainly composed of malignant cells.
Despite there were 3 sub-clusters (C4, C11, and C12) of M1
derived from peritumor tissues, but they were identified as mixed
cell sub-clusters which presented a concentrated distribution in

UMAP, and we did not observe sub-clusters of normal hepato-
cytes and cholangiocytes from the peritumor tissues in our PLC
cohort (Supplementary Fig. 3c), in agreement with a previous
study on HCC38. These mixed cell sub-clusters occur, likely due
to limitations of current knowledge and technology. In addition,
we applied inferCNV to identify somatic chromosomal CNV
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based on our scRNA-seq data of 9 patient-specific sub-clusters
mentioned above, finding that cells from different patients varied
in deletions and amplifications of chromosome. Our ICC profile
displayed the particular CNV loss of chromosome 3 compatible
with prior study on ICC10 (Fig. 3c).

InferCNV also helped to differentiate malignant cells from
non-malignant cells, enabling the targeted analysis of 9 malignant
sub-clusters from the second clustering of M1. Next, we separated
these heterogeneous sub-clusters based on their types of PLC,

finding the enrichment of abnormal metabolic processes in HCC
sub-clusters (C1, C10, and C14), such as metabolism of
isoprenoid, organic hydroxy compound, and monocarboxylic
acid metabolism. In contrast, cells from ICC sub-clusters (C2, C6,
C8, and C16) manifested the enrichment of abnormal oxygen
metabolism and EMT (Fig. 3d). These results were largely
consistent with the spatial expression pattern that we described
above. Further, we employed SCENIC to predict transcription
patterns of tumor cells, finding a series of key TFs of HCC

Fig. 2 Spatial patterns of tumor, peritumor and tumor-peritumor junctional zones. a Annotated solid tissue cryosection on ST slices. T, tumor zone; P,
peritumor zone; J, tumor-peritumor junctional zone (zone between blue and red dotted lines); S, stroma zone (black or white dotted lines); n-F, no-fatty
infiltration region; F, fatty infiltration region; P128T, tumor tissue slice from P128; P128P1, peritumor tissue slice 1 from P128; P128P2, peritumor tissue slice
2 from P128; P129TP1, tumor-peritumor junctional zone tissue slice from P129 main lesion; P129TP2, tumor-peritumor junctional zone tissue slice from
P129 sub-lesion. Scale bars, 1 mm. b, c Clustering (b) and UMAP distribution (c) of ST spots. Colors represent different clusters. d GSVA of P128 (upper
left) and P129 (upper right). SCENIC analysis of P128 (lower left) and P129 (lower right). Light gray indicates lower enrichment and red indicates higher
enrichment. e Expression of key genes related to cholesterol homeostasis in HCC ST slices. f Spatial expression pattern of marker genes related to
fibroblast activation in P129TP2 ST slice (upper) and corresponding consecutive cryosection slice (lower). ACTA2, smooth muscle aortic alpha-actin; FN1,
fibronectin-1; VIM, vimentin; Scale bars, 1000 µm.

Fig. 3 Distinct phenotypes of PLC’s malignant cells at a single-cell level. a UMAP distribution of M1, M2 and M3. Clustered cells present a distinctive
patient-specific way. b Bar plot of cell cycle phase in terms of M1, M2 and M3. c Identification of somatic chromosomal CNV based on scRNA-seq data of
patient-specific malignant sub-clusters from M1. d Metascape pathway enrichment based on malignant sub-clusters from M1. black frame, relatively
enriched pathways in ICC sub-clusters; white frame, relatively enriched pathways in HCC sub-clusters. e SCENIC analysis of malignant sub-clusters from
M1. f Pseudotime trajectory of malignant sub-clusters from M1.

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-023-05455-0

6 COMMUNICATIONS BIOLOGY |          (2023) 6:1181 | https://doi.org/10.1038/s42003-023-05455-0 | www.nature.com/commsbio

www.nature.com/commsbio


tumorigenesis, such as TFs in regulation of cell dedifferentiation
(SPI1, HMGB3, and YBX1) and in abnormal bile acid metabolism
(NR1H4, NR1I3, FOXA3 and DDIT3). Meanwhile, ICC sub-
clusters presented a different pattern featuring JUN, JUNB, JUND,
FOS, FOSB, GATA2, KLF6, MAFK, ATF3, and TFAP2A, the first
5 of which were enriched in AP-1 transcription factor family that
may be related to epigenetic disruption and matrix
formation39,40(Fig. 3e). Two CHC sub-clusters (C3 and C5) had
a distinctive regulatory pattern compared with those from HCC
and ICC. The gene set enrichment of CHC sub-clusters (e.g.,
abnormal monocarboxylic acid metabolism and response to
oxygen levels) involved that of both HCC and ICC sub-clusters
(Fig. 3d), while CHC sub-clusters in SCENIC displayed active
regulons regulated by TFs that are different from those in HCC
and ICC. Notably, the difference in TFs also remained between 2
CHC sub-clusters (C3 and C5) (Fig. 3e). It implies that CHC
malignant cells might have internally discordant phenotypes,
different from HCC and ICC malignant cells which have
relatively consistent phenotypes respectively, partly due to the
difference in clonal origins4.

Next, we investigated known driver genes based on bulk
somatic mutations, obtaining a total of 91 oncogenes (Supple-
mentary Fig. 3d). The expression of oncogenes in the sub-clusters
of M1 were also detected in scRNA-seq. For instance, bulk-
detected KRAS (T121), JAK1 (T122), and IDH1 (T123) were
found in corresponding ICC-specific sub-clusters (C2, C6 and
C16), and tumor suppressor genes such as ARID1A (T124) and
SMARCA4 (N126) were found transcriptionally inactive in
corresponding sub-clusters41–43 (Supplementary Fig. 3e). Meta-
bolic process of monocarboxylic acid was discovered in bulk HCC
samples (ATAC-seq, mRNA-seq, and proteomics), consistent
with HCC sub-clusters (C1, C10, and C14). Extracellular
structure organization was also found a significant enrichment
in ICC and CHC bulk tissues, compared to that in HCC
(Supplementary Fig. 3f). Furthermore, CibersortX algorithm was
employed to predict relative proportions of each SC supra-
clusters in the bulk RNA-seq data. Malignant proportion from
ICC bulk tissues (T121-T123) were mainly predicted in supra-
cluster M3, and its counterpart from HCC (T124-T125) mainly in
supra-cluster M1. Of note, CHC bulk tissues (T126-T127)
presented a mixed proportion, validating that CHC had
combined characteristics from ICC and HCC (Supplementary
Fig. 3g). In the pseudotime trajectory, HCC and ICC were located
at opposite ends of the trajectory, while CHC were partly located
in the third end, and partly in the ICC end (Fig. 3f). Together,
these results suggest that HCC and ICC have distinct phenotypes
respectively. ICC features the enrichment of epithelial-
mesenchymal transition, while HCC features metabolic abnorm-
alities (i.g. monocarboxylic acid), and CHC presents internally
discordant phenotypes compared to the other 2 PLC types.

Cancer-associated fibroblasts harbor a tumor-type-specific
feature. To investigate molecular signatures of fibroblasts in
PLC, we re-clustered supra-cluster F (2259 cells), and obtained 8
sub-clusters (C1-C8). Sub-clusters displayed distinct characteristics
of gene expression, and were identified with canonical marker
genes (Fig. 4a, b). In our CNV analysis, cells of subclusters pre-
sented less CNV than heterogeneous malignant cells, suggesting
that they were fibroblasts rather than malignant cells44 (Fig. 4c).
Unlike malignant cells with heterogeneity at both tumoral and
individual levels, fibroblasts from the same PLC type showed
homogeneity over different patients (e. g. C1 was composed of cells
from all three ICC patients), and these cells of sub-clusters were
mainly obtained from tumor tissues, indicating that these fibro-
blasts were cancer-associated fibroblasts (CAFs) (Fig. 4d).

Consistent with prior understanding of CAF abundance in
ICC21, the largest three sub-clusters were from ICC tumor tissues
(C1, C2, C3, 60.29%), while only one sub-cluster (C4, 12.04%)
was of HCC-specific derivation, and C5 was derived from CHC
and its metastatic lymph nodes and ICC (Fig. 4d). Most sub-
clusters resided in an active state and presented known functions,
such as blood vessel development, extracellular matrix organiza-
tion and response to wounding (Fig. 4e). Next, we explored the
molecular characteristics of CAFs derived from different tumor
types. CAFs from ICC exhibited enriched features of morphogen-
esis, skeleton development, and response to growth factor, while
those from HCC presented enriched features of myeloid
leukocyte activation and metabolic process, and those from
CHC harbored both features mentioned above. Notably, ICC-
derived CAFs appear to acquire more matrix remodeling
functions, with a decreased level of immune activation (Fig. 4f-
h). We also used the monocle 2 algorithm to establish a pseudo-
temporal ordering of CAFs. ICC-derived and HCC-derived CAFs
were located at opposite ends of the pseudotime trajectory,
evidencing their differences in gene expression profiles. CHC-
derived CAFs were located in the middle of the trajectory,
validating that it involved dual features of ICC- and HCC-derived
CAFs in gene expression profiles (Fig. 4i). Hence, we convincingly
show that the functions of CAFs are driven by tumor types and
their tumor microenvironment.

To explore the existence of CAF subtypes and the specificity of
their marker genes, we constructed the tumor-tissue microarray
of external cohort including 90 HCC (1 missing clinical
information) and 48 ICC patients’ tumor tissues (1 tumor-
tissue microarray defect) (Supplementary Table 2). We targeted
MYH11 (C1), CLO10A1 (C2) and TAGLN (a common fibroblast
co-localization marker gene) using RNAscope ISH, finding that
MYH11 and COL10A1 were expressed separately, and that
TAGLN was co-expressed (Fig. 4j). Statistically, ICC-derived
MYH11+C1-CAFs significantly increased compared with HCC-
derived counterpart, however, there was no statistical difference
between ICC- and HCC-derived COL10A1+C2-CAFs (Fig. 4k). It
pointed to the possibility of identifying CAF subtypes of ICC,
considering the lack of fibroblast-specific markers21,44. Moreover,
MNN and MIA analysis showed CAFs were more located in T
and J zones (Supplementary Fig. 4a), and CibersortX analysis
showed ICC bulk tumor samples had a higher proportion of
fibroblasts compared with HCC counterpart, validating the SC
data that ICC was the main CAFs’ source contributing to matrix
remodeling and tumor progression (Supplementary Fig. 3g). Cell
interaction analysis displayed CAFs had tight interaction with
cells of myeloid and TNK supra-clusters (Supplementary Fig. 4b).
TIMP1-FGFR2 appeared to be an important pair between ICC-
derived CAFs and these immune cells, which plays an essential
role in the regulation of cell proliferation, differentiation,
migration and apoptosis (Supplementary Fig. 4c), Of interesting,
targeting FGFR2 was reported as a potent therapeutic potential
for ICC with FGFR2 fusions or rearrangements45. Overall, we
extensively investigated single-cell molecular signatures of CAFs
in PLC, and found them more prevalent in ICC than in other
PLCs. We also found a relatively abundant MYH11+ CAFs
spreading in ICC. All these hinted that CAFs-targeted therapeutic
strategies might be more effective in ICC treatment.

Endothelial cells in the tumor-peritumor junctional zone
reside in an intermediate state. To decipher the atlas of endo-
thelial cells of PLC, we re-clustered two EC-related supra-clusters
(13,030 cells), and obtained 15 sub-clusters, including CLEC4G+
liver sinusoidal ECs (LSECs: C1, C2, C3, C9, and C13), tumor-
associated ECs (TAECs: C4, C7, and C10), intermediate-state ECs
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(C5 and C8), and other ECs (Fig. 5a). As expected, ECs were most
derived from peritumor and tumor tissues, and there was no
statistical difference in EC proportion among tumor types
(Fig. 5b). TAECs presented tumoral heterogeneity, among which

C4 was mainly comprised of cells from ICC tumor tissues, and C7
from HCC tumor tissues. However, both LSECs and
intermediate-state ECs did not display distinct heterogeneity at
tumoral and individual levels (e.g., C1 was mainly composed of

Fig. 4 Identification of cancer-associated fibroblasts from PLCs. a UMAP distribution of re-clustered fibroblasts. ICC-derived, intrahepatic
cholangiocarcinoma derived fibroblasts; HCC-derived, hepatocellular carcinoma derived fibroblasts; CHC-derived, combined hepatocellular-
cholangiocarcinoma derived fibroblasts. b Stacked violin plot showing expression of canonical marker genes and differential expression of genes of sub-
clusters. c Comparison of somatic chromosomal CNV between fibroblasts and tumor cells. d Bar plots of fibroblast sub-clusters based on tissue type,
patient, tumor type. e Metascape pathway enrichment based on differentially expressed genes of each sub-cluster. f Differences of metascape pathway
enrichment between HCC-CAFs and ICC-CAFs. CAFs, cancer-associated fibroblasts. g Differences of metascape pathway enrichment between CHC-CAFs
and ICC-CAFs. h Differences of metascape pathway enrichment between CHC-CAFs and HCC-CAFs. i Pseudotime trajectory of CAFs derived from 3 PLC
types. HCC-T, cells from HCC-derived tumor tissue; ICC-T, cells from ICC-derived tumor tissue; CHC-T, cells from CHC-derived tumor tissue. j RNAscope
ISH stained with marker genes of subcluster C1-CAFs and C2-CAFs. Staining shows expression of C1 marker gene MYH11, C2 marker gene CLO10A1, and a
common co-localization marker gene TAGLN. All nuclei were DAPI-stained. Scale bars, 200μm (upper), 20μm (lower). k Box plots presenting differential
expression of MYH11+ C1 CAFs (left) and COL10A1+C2 CAFs (right) between HCC-T (n= 89 biologically independent samples, 2 replicates) and ICC-T
(n= 48 biologically independent samples) external cohort. Two-sided t-test: ns, no significant; ****, p < 0.0001. Lower, inside and upper horizontal line of
the box plot indicate first quartile, median, and third quartile, separately.
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cells from all 7 patients’ peritumor tissues) (Fig. 5c). From the
single-cell perspective, both TAECs and LSECs showed genomic
stability and less copy number variation. Therefore, we con-
sidered LSECs as a negative reference for chromosomal alteration
investigation (Supplementary Fig. 5a-c).

Next, we focused on TAECs, LSECs and intermediate-state
ECs, employing GSVA, SCENIC, pseudotime trajectory and RNA
velocity to analyze their differences in molecular signature. GSVA
analysis showed that hallmark gene sets of EMT, myogenesis,
apical junction, coagulation, hedgehog and mitotic spindle were
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enriched in TAECs (Fig. 5d). As described above, we found ECs
and malignant cells were very likely to be co-localized in one ST
spot (Supplementary Fig. 1e). Additionally, we found that ECs
had tight communication with fibroblasts, M1, M2 and TNK
through ligand-receptor interaction analysis (Supplementary
Fig. 5d). CD74-MIF was also found to be the most pervading
pairs between ECs and fibroblasts, which played a critical role in
MHC class II antigen processing and inflammatory regulation of
fibroblast proliferation (Supplementary Fig. 5e). These results
suggest endothelial cells residing in tumor zone might closely
interact with tumor cells or CAFs, acquiring more molecular
alteration and participating in tumor ecosystem. The
intermediate-state ECs significantly expressed genes enriched in
early and late estrogen response, which may be associated with
tumorigenesis46. However, LSECs did not exhibit distinct gene set
enrichment of hallmark or metabolism (Fig. 5d). We further
filtered genes from hallmark gene sets associated with TAECs,
observing an increase in gene expression profiles from LSECs to
intermediate-state ECs to TAECs (Fig. 5e). SCENIC analysis
identified MAF and NR2F1 as the key TFs of LSECs in cell
differentiation, especially for T-helper-2 (Th2) cell, and KLF2 was
identified as the key TF of TAECs in promoting T-cell
quiescence47. These results indicate the phenotype differences
between LSECs and TAECs. Of interest, intermediate-state ECs,
in which CEBPD, ATF3, FOSB, and MYC were identified as the
underlying TFs functioning cell cycle regulation and self-renewal
properties, is functionally similar to the recently reported fetal-
like endothelial cells25 (Fig. 5d). In the pseudotime trajectory,
LSECs and TAECs were located at opposite ends of the trajectory,
with intermediate-state ECs in the middle (Fig. 5f). In addition,
RNA velocity depicted that intermediate-state ECs exhibited two
directional flows toward LSECs and TAECs (Fig. 5g). All the
evidence implies that intermediate-state ECs involved two-edged
potential of functionality from LESCs and TAECs.

We further investigated whether the functionality of
intermediate-state ECs might connect to their spatial distribution
pattern. Through MNN and MIA algorithm, we inferred that
intermediate-state ECs were located in J zones of P129TP1 (C10)
and P129TP2 (C9) (Fig. 5h). To verify that, we selected 3 SC-
matched tumor-peritumor tissue slices (covering 3 tumor types),
and detected intermediate-state sub-cluster C5 marker (CPE) and
two EC co-localization markers (VWF and STAB2) using
RNAscope ISH. We found that CPE expression was spatially
consistent with the expression of VWF and STAB2, and CPE was
more highly expressed in J zone than in T or P zone (Fig. 5i, j,
Supplementary Fig. 5f), which accorded with our inference. The
spatial distribution of intermediate-state ECs (more located in the
region between tumor and peritumor) were in line with their
intermediate state of functionality. Together, we identified a

population of intermediate-state cells that display an intermediate
state of functionality between LESCs and TAECs, which might
relate to their spatial distribution in J zone.

Discussion
Characterizing stochastic heterogeneity within tumor micro-
environment as a persisting challenge is critical to understanding
how tumors develop and their molecular mechanisms. Given
advances in single-cell technologies, scRNA-seq has provided an
unbiased approach for profiling cell diversity and lineage trajec-
tories in many different tumor types26,48,49. There were certain
previous scRNA-seq attempts to construct single-cell landscapes
of HCC or ICC, in which challenges remained regarding the
extensiveness of PLC investigation6,21–23,25,38. Of this, scRNA-seq
and spatial technologies provided many layers of information to
defining PLC types including CHC. Here, using single-cell tran-
scriptomics, spatial transcriptomics, and bulk multi-omics, we
constructed a comprehensive molecular architecture of PLC,
comprising ICC, HCC and CHC, featuring tumor micro-
environment and spatial heterogeneity. We surveyed ~289,156
cells to conduct a comparative analysis among ICC, HCC and
CHC microenvironment, involving cancer cells, immune cells,
cancer-associated fibroblasts and endothelial cells. We revealed an
intermediate-state endothelial cell subset with distinct phenotype,
and investigated its spatial distribution pattern. These results offer
insights into homogeneous and heterogeneous characteristics of
PLC microenvironment, contributing to broad implications for
drug development and pathological investigations.

Malignant cells from all 3 PLC types manifested the highest
level of individual heterogeneity (compared with non-
parenchymal cells). This might explain the limitations of cyto-
toxic drugs that were indiscriminately targeted at cancers50. Using
ST combined with scRNA-seq data, we stereoscopically observed
the phenotype differences between HCC and ICC, with HCC
manifesting abnormal metabolic enrichment in fatty acid meta-
bolism, bile acid biosynthesis, cholesterol homeostasis, and
abnormal metabolism of monocarboxylic acid, and ICC mani-
festing myogenesis and EMT. It suggests explorations into more
precise therapeutical strategies which target metabolic abnorm-
alities at HCC, and EMT at ICC50–52. CHC exhibited internally
discordant phenotypes which combined with characteristics from
HCC and ICC malignant cells, while presenting a specific tran-
scriptional regulation that was different from HCC and ICC. Its
further exploration of therapeutic strategies is more challenging.
The phenotypes of CAFs were consistent with those of their
corresponding PLC types. ICC-derived CAFs exhibited enriched
features of morphogenesis, skeleton development, and response
to growth factor, while HCC-derived CAFs presented enriched

Fig. 5 Identification of intermediate-state endothelial cells. a UMAP distribution of re-clustered endothelial cells. LSECs, liver sinusoidal endothelial cells;
TAECs, tumor-associated endothelial cells; intermediate-state ECs, intermediate-state endothelial cells; inflammatory ECs, inflammatory endothelial cells;
CAFs-like ECs, cancer-associated fibroblasts-like endothelial cells. b Box plots presenting the proportion of endothelial cells in terms of tissues (upper) and
tumor types (lower). Two-sided t-test: ns, no significant; *, p < 0.05. c Bar plots of endothelial cell sub-clusters based on tissue, patient and tumor type.
d GSVA of endothelial cell sub-clusters (upper) and SCENIC analysis of endothelial cell sub-clusters (lower). Light gray indicates lower enrichment and red
indicates higher enrichment. e Expression heatmap of selected genes in endothelial cell sub-clusters. Blue indicates lower expression and yellow indicates
higher expression. f Pseudotime trajectory of LSECs, TAECs and intermediate-state ECs. g RNA velocity showing dynamic flows among endothelial cells.
Arrows show the directions. h Spatial distribution prediction of intermediate-state sub-clsuters C5 and C8 in P129 ST slices using MIA and MNN algorithm.
Red color shows higher possibility of cells located in clusters of ST spots. i RNAscope ISH stained with marker genes of intermediate-state sub-cluster C5.
Staining shows expression of C5 marker gene CPE, 2 common colocalization marker genes VWF and STAB2. All nuclei were DAPI-stained. T, tumor zone; P,
peritumor zone; J, tumor-peritumor junctional zone. Scale bars, 2000μm (left), 50μm (right three). j Box plots presenting expression of CPE+C5
intermediate-state ECs based on different zones of slices over CHC (upper), HCC (middle) and ICC (lower). Two-sided t-test: ns, no significant; *, p < 0.05;
**, p < 0.01; ***, p < 0.001; ****, p < 0.0001. Lower, inside and upper horizontal line of the box plot indicate first quartile, median, and third quartile,
separately.
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features of myeloid leukocyte activation and metabolic process,
and CHC-derived CAFs harbored both features mentioned above.
This suggests CAFs play a crucial role in constructing PLC
phenotypes. Additionally, based on scRNA-seq, CAFs were also
found more abundant in ICC than in HCC and CHC from a
single-cell perspective. Among these, CAFs derived from ICC
were categorized into three distinct sub-clusters based on their
fibroblast-restricted markers. Notably, MYH11+CAFs were found
to be more prevalent in ICC tumor tissues compared to HCC
tumor tissues. Targeting strategies aimed specifically at these sub-
clusters could potentially impact the EMT process, thereby
facilitating the accomplishment of precise anti-ICC therapeutic
objectives21,44. However, the precise functional roles of ICC-
derived CAFs remain largely unknown and require future
investigations53,54. Difference in phenotypes has also been vali-
dated with bulk multi-omics. Metabolic process of mono-
carboxylic acid was discovered in bulk HCC samples with ATAC-
seq, mRNA-seq, lncRNA-seq and proteomics. Extracellular
structure organization was found a significant enrichment in ICC
and CHC bulk tissues, and miRNA appeared to be a critical
regulator of the process55,56. By in-depth exploration of miRNA
that plays an important role in EMT regulation, it provides a
feasible path to precise ICC therapeutical strategies through tar-
geted regulation of the process of EMT.

Tumor-peritumor junctional zone is rarely elaborated with
high-throughput technology. In this study, J zone exhibited a
much more complex gene expression pattern compared with T or
P zone which displayed a relatively consistent phenotype
respectively. The function of cells near J zone were affected by
tumor microenvironment, such as the intermediate-state cells.
We found and verified the existence of subcluster of intermediate-
state ECs (C5 marked with CPE) residing in J zone, which
involves the potential of functionality from LESCs and TAECs.
The sub-cluster was functionally similar to the recently reported
fetal-like endothelial cells in HCC25. We also found diverse
intermediate-state CD8+ T cells pervading in PLCs, functionally
consistent with previously described GZMK+ CD8+ T cells in
HCC22. These cells were more likely to be located in J and S
zones, suggesting their intermediate-state function might link to
their spatial distribution. These intermediate-state cells might
play an essential role in cell transition from naïve to effector to
exhausted T cells, serving as a target or predictive marker for
immunotherapy and more. In practice, we observed increased
effector and decreased naïve immune cells after tumor burden
removal with curative hepatectomy (Supplementary Note 1.
Supplementary Figs. 6 and 7). Overall, the analysis revealed a
diverse population of cells residing in the J zone, suggesting that
this zone could potentially serve as a targeted region for precise
therapeutic strategies. By modulating the functionality and
abundance of intermediate-state cell subsets within the J zone, it
may be possible to develop targeted interventions. We look for-
ward to further investigations focused specifically on the J zone to
gain a deeper understanding of its potential in therapeutic
applications.

Due to unsupervised cell collection strategy, we noticed
immune cells did not display statistical difference in cell com-
position among different PLCs, which validates the efficacy of
immunotherapy for a wide range of malignant tumors, such as
melanoma, non-small cell lung carcinomas (NSCLC) and color-
ectal cancer (CRC) et al. 50–52,57–59. We observed that HCC gain
much more patient-specific heterogenous T cell clusters, that ICC
acquired relatively abundant clonal diversity of TCRs repertoire,
and that CHC appeared to be of a moderate performance. These
results, in part, could offer a clue about personalized immu-
notherapy for different tumor types. Besides, we observed two

clusters of highly proliferative cells, TXNDC5+ B cells and
TYMS+ myeloid cells. These cells might play a critical role in
tumor invasion and metastasis, which is worth further
investigation.

In terms of the cell dissociation process of tissues for scRNA-
seq, certain minor cell types might have faced the risk of being
lost. Unsupervised cell collection and a series of deconvoluting
algorithm including MNN, MIA and RCTD has been employed
to minimize the risk, and to better connect modalities between SC
and ST. The inevitable tumor heterogeneity might affect the
results and generate possible batch effects. In practice, we col-
lected matched peritumor tissues for reference control and did
not observe batch effects in the results. The limited number of
samples analyzed in our study is a potential limitation that could
affect the generalizability of our findings. Although we analyzed
multiple modalities, including bulk RNA sequencing, single-cell
RNA sequencing, and spatial transcriptomics, we only analyzed a
small number of samples, particularly for the spatial analysis. As a
result, it is difficult to account for inter-patient variability, such as
variations in age, gender, cancer stage, and treatment history,
which could affect the observed molecular phenotypes.

Despite this limitation, our study provides a comprehensive
landscape of PLC featuring 3 main tumor types with multi-
dimensional high-throughput approaches. Our findings highlight
the heterogeneity of these cancers and the importance of con-
sidering spatial context and microenvironment in understanding
tumor biology. We hope that our study will inspire further
research in this field, and contribute to the development of
diagnostic and therapeutic strategies for these deadly cancers.

Methods
Ethical statement, human tissue collection, dissociation and
preparation of single-cell suspensions. The research was
approved by Ethics Committee of Zhongshan Hospital, Fudan
University (approval number B2019-216R). Informed consent
was obtained from each patient for the collection and research of
surgically removed liver and peripheral blood samples. All
employed protocols in this study abided by the ‘Regulations on
the Management of Human Genetic Resources’ administered by
The Ministry of Science and Technology (approval number
2021BAT0574, 2022BAT1853). Details on donor information are
provided in Supplementary Table 1. All included patients did not
receive any pre-operative adjuvant therapy, and their diagnoses
were pathologically confirmed by at least two pathologists. The
paired fresh solid tissues were obtained immediately after resec-
tion with tissue storage solution (miltenyi biotec, 130-100-008),
minced on ice to smaller pieces less than 2-4 mm3, transferred
into 10 ml 1 mg/ml dulbecco’s modified eagle medium (DMEM,
GIBCO) containing 1x collagenase type I (GIBCO, 17100-017)
and type IV (GIBCO, 17104-019), and incubated at 220 rpm 37°C
oscillator for 10-25 min depending on tissue hardenability (details
provided in Table S1). Samples were then vortexed for 1 min
using the gentleMACS™ dissociator at spleen IV mode and filtered
using 40-μm nylon mesh (FALCON ThermoFisher). Following
centrifugation at 200 g at 4°C for 5 min, the supernatant was
discarded, and the cell pellet was resuspended in 2 ml 1x red
blood cell lysis buffer (BD Biosciences, 00-4333-57), transferred
to a new 5ml centrifuge tube following incubation on the ice for
15 min and centrifuged (200 g, 4°C, 5 min). Samples were next
resuspended in 1 ml stain buffer (BD Biosciences, 554656) and
washed (200 g, 4°C, 5 min) twice. To prepare for blood samples,
400 μl blood was mixed with 2 ml red blood cell lysis buffer,
incubated on ice for 15 min, and centrifuged at 200 g at 4°C for
5 min. The supernatant was discarded, and the process was
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repeated once. Single-cell suspension was finally resuspended in
1 ml stain buffer and washed (200 g, 4°C, 5 min) twice. Suspen-
sions were tested and stained with 4% trypan blue (1 suspension:
9 trypan blue), and cell viability was calculated under microscope
with cell counting plate. Cells with viability >80% were enrolled
for further processing. Dead Cell Removal Kit (MACS, 130-090-
101) were employed in cells with unsatisfactory viability (Sup-
plementary Data 1b). Tissues and cells were maintained on ice
whenever possible. In this study, we define the area 1 cm inside
and outside the edge of tumor as the junctional zone; the area
outside the edge of tumor as the peritumor zone; the area inside
the edge of tumor as the tumor zone. It is noted that the junc-
tional zone overlaps the other two zones, and tissues of peritumor
zone was obtained from the area that is more than 1 cm away
from the edge of tumor.

Single-cell library preparation. 10X Chromium 5’ gene expres-
sion single-cell reagent v1.0 kit (10X Genomics) was used for
single-cell and V(D)J library preparation immediately after the
samples satisfied the manufacturer’s protocol. Agilent 2100
bioanalyzer with high sensitivity DNA chip (Agilent Technolo-
gies) was employed for quality control of cDNA and final
libraries. Sequencing was performed on a Nova-seq 6000 (Illu-
mina) at a median depth of 61,589 reads/cell (Supplementary
Data 1a).

Spatial slide preparation, permeabilization optimization,
imaging and spatial gene expression library construction. PLC
tissue (1–2 cm3) was gently washed with cold PBS and frozen in
OCT-filled mold. RNA quality was examined by Agilent 2100
bioanalyzer and satisfied with RNA Integrity Number (RIN) ≥ 7.
The frozen tissue was trimmed into 6.5 mm3 pieces, and the
cryosections (10 µm thickness, 7 of the 8 Capture Areas, 1 empty
for positive RNA control) were mounted onto the Visium Spatial
Tissue Optimization Slide (10x Genomics). The slide was incu-
bated at 37°C for 1 min and immersed in the pre-chilled
methanol at -20°C for 30 min. Next, 500 μl isopropanol uni-
formly covered the tissue sections to dehydrate at room tem-
perature for 1 min, and the sections were stained with H&E.
Slides were mounted in 80% glycerol and bright-field images were
taken (Leica SCN400 F whole-slide scanner, 40× resolution).
Tissue optimization slide was incubated with permeabilization
enzyme for different time settings, fluorescent cDNA synthesis
was performed at 53 °C for 45 min, and the tissue was removed
following manufacturer’s instructions. Fluorescent images were
taken, and optimum permeabilization time was identified with
maximum fluorescence signal for spatial gene expression. The
cryosection was remounted to The Visium Spatial Gene Expres-
sion Slide (10x Genomics), which included 4 capture areas with
5000 gene expression spots in each area [primer, including Illu-
mina TruSeq Read 1, 16 nt Spatial Barcode, 12 nt unique mole-
cular identifier, 30 nt poly(dT) sequence]. Tissue fixation, H&E
staining, bright-field imaging, permeabilization and reverse
transcription were performed as previously described and fol-
lowing manufacturer’s instructions. Second strand mix was added
to the tissue section for second strand synthesis (65 °C for
15 min), followed by denaturation and transfer of cDNA from
capture area to a corresponding tube for amplification and library
construction (98 °C for 3 min, followed by 15-16 cycles at 98 °C
for 15 s and at 63 °C for 20 s). Sample quality control and
quantification were assessed by Agilent 2100 bioanalyzer and
Agilent 2100 Expert Software. Purification of cDNA sample
(10 µl), paired-end, and dual indexed sequencing were performed
on Nova-seq 6000 with 150 cycles for read 1, 10 cycles for i7
index, 10 cycles for i5 index and 150 cycles for read 2.

Spatial validation using multiplex fluorescent in-situ RNA
hybridization (RNAscope ISH) and fluorescent multiplex
immunohistochemistry (mIHC). Formalin-fixed paraffin-
embedded (FFPE) fresh tissue blocks were trimmed and cut into
5+ /-1 µm sections using a microtome. Slides were stained using
the RNAscope Multiplex Fluorescent Reagent Kit v2 Assay and
RNAscope 4-plex Ancillary Kit (ACDBio) manually according to
the manufacturer’s protocol. RNAscope target probes were run
with parallel of multiplex positive and negative controls (cat#.
321831, 321801). All nuclei were DAPI-stained. All images were
scanned with Pannoramic MIDI (3D HISTECH) and FV3000
(OLYMPUS). Opal fluorophore working solution and channels
were Opal 520 (1:750, Excitation 488 nm, Emission 500-540 nm,
FITC), Opal 570 (1:750, Excitation 561 nm, Emission 570-
620 nm, Cy3), Opal 690 (1:750, Excitation 640 nm, Emission 650-
750 nm, Cy5), and DAPI (Excitation 405 nm, Emission 430-
470 nm). Images were viewed and processed with Caseviewer
(version: C.V 2.3). All antibodies used for mIHC are commer-
cially available and their manufacturers provided their validation
documents: SMA (1:200), Cat# BM0002, boster; Vimen-
tin(1:1000), Cat# 10366-1-AP, PTG; Fibronectin(1:500), Cat#
66042-1-Ig, PTG.

Single-cell RNA-Seq and ST data processing. Analysis pipelines
(Cellranger 3.0.1) for single-cell RNA-seq and space Ranger
(version 1.0.0) for spatial RNA-seq output were employed to
generate feature-barcode and feature-spot matrices respectively,
which were mapped to the hg38 reference genome. Seurat R
package (version 3.2.0) was then employed and threshold values
(single cell with ≥ 200 genes was detected, with < 10% red cell
gene mapped reads, and with < 10% mitochondrial gene mapped
reads) were included into downstream analyses. We employed
scrublet to remove doublets, and there is no clear positive cor-
relation between cell capture and doublets (Supplementary
Data 1b). All filtered cells were integrated, corrected for batch
effect with SeuratV3, and normalized to total cellular read count.
Highly variably expressed genes were selected with FindVaria-
bleFeatures function and summarized by principle component
analysis (proportion of mitochondrial read count as a variable for
regression). For dimensionality reduction, RunUMAP Seurat
function (Seurat version 3.2.0) and Louvain algorithm were per-
formed using the robust settings (informative principle compo-
nents=50, k-means =30, Resolution=0.6), and the results of
running with varying parameter settings were evaluated with
normalized mutual information (NMI). To assess the effects of
cell proliferation, cell cycle regression was employed to compute
cell cycle phase of each cell based on canonical markers, and they
were regressed out using ScaleData function. Clustering was re-
executed and compared with pre-regression clusters using NMI.
Spatial spots were processed like single-cell barcode (informative
principle components=50, k-means =30, Resolution=0.9).

Cell type annotation. To determine cell types, we filtered dif-
ferentially expressed genes between target cluster and other cells
using FindAllMarkers function in Seurat (P value ≤ 0.05,
log2FC ≥ 0.585). The cells were annotated with cell-type-specific
expression known in the literature. Moreover, SingleR and
SCINA, two built-in reference annotation methods, were
employed to verify the cell-type assignment. The broadly defined
categories (supra clusters) were further assembled on the basis of
same biological cell types such as myeloid, endothelial, etc.
Repeating dimensionality reduction and unsupervised clustering
were performed with those cell types, and they were re-clustered
into more specific cell subsets with similar modules. When
defining a cluster specified by a marker gene, the average
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expression <1 in other subclusters was required and the marker
gene was selected in consideration of its biology function. Mixed
cell sub-cluster (or supra-cluster) was defined as a cluster that
includes two or more canonical marker genes of different cell
types in the differentially expressed gene list, and presents an
undistinguished characteristic. Reference of the Human Primary
Cell Atlas (Mabbott et al. 2013) and Blueprint (Martens and
Stunnenberg 2013) and Encode (The ENCODE Project Con-
sortium 2012) were employed.

Gene set variation analysis (GSVA), Metascape, SCENIC and
velocity analysis. Pathways were enriched on the hallmark and
metabolic gene sets reported previously, and GSVA package
(version 1.36.2) were used with standard vignette. For enrichment
analysis of significant genes in each cluster or group, we
employed Metascape, an automatical gene enrichment visualiza-
tion tool, to assign the biological function of the clusters. To
expand the interaction between transcription factors (TFs) and
target genes using scRNA-seq data, we utilized single-cell reg-
ulatory network inference and clustering (SCENIC) to score the
activity of each regulon in each cell (pyscenic, version: 0.10.3,
https://github.com/aertslab/pySCENIC). Velocyto was employed
to produce loom for RNA velocity of single-cell RNA-seq data
(velocyto: 0.17.17, https://github.com/velocyto-team/velocyto.py)
and scvelo for pseudotime (scvelo: 0.2.2, https://github.com/
theislab/scvelo).

Trajectory analysis and diffusion component analysis. Monocle
(version 2) algorithm was employed to calculate the potential
lineage differentiation of cell groups. For computational effi-
ciency, the samples were downsized to 2000 for those groups over
10000 cells. CellDataSet object was created with the parameter
“expressionFamily = negbinomial.size” and positioned along the
trajectory based on the differentially expressed genes in clusters.
After dimension reduction and cell ordering with the default
parameters, the cell was visualized and inferred with tissue, tumor
type, state, pseudotime, etc. Density diffusion Map (Version:
3.2.0) was applied in this study60.

CNV analysis of SC data. To establish CNV profiles, we first
annotated scRNA-seq genes of their chromosomal location using
AnnoProbe R package. For computational efficiency, the samples
were down-sized to 5000 cells for those groups over 10000. We
then used CreateInfercnvObject function in infercnv R package to
run the standard vignette. The cutoff 0.1 was set as recom-
mended. For negative control, we sampled endothelial cells from
peritumor tissues as the reference.

T-cell receptor (TCR) and B-cell receptor (BCR) repertoires
analysis. Clonotype was defined as a group of T/B cell clones with
equal amino acid CDR3 sequence and V gene combined alpha
and beta chains for TCR (heavy and light chains for immu-
noglobulin). R package61 tcR was used for repertoire statistic,
quantification assessment and diversity evaluation including
inverse Simpson and ecological diversity index. Epitope was
annotated with VDJ database (https://vdjdb.cdr3.net/).

Cell interaction analysis. To profile and visualize intercellular
communication between clusters, ligand-receptor database Cell-
PhoneDB (https://www.cellphonedb.org/downloads; http://
fantom.gsc.riken.jp/5/suppl/Ramilowski_et_al_2015/data/
PairsLigRec.txt) were applied. The preliminary characterization
was performed for the eight supra clusters, which was filtered
with more than 20 paired ligand-receptors and further processed
in the identified sub-clusters.

Integration SC and ST data. MIA was employed to calculate the
overlap between single-cell cluster and ST cluster based on
marker genes using the hypergeometric cumulative distribution.
We employed an ‘anchor’-based integration (Seurat v3) to predict
each ST spots’ probabilistic classification derived from scRNA-seq
labeled clusters (MNN). Robust cell type decomposition (RCTD)
was employed to decompose cell types of ST spots learned from
SC data.

Combination analysis of bulk RNA-seq and scRNA-seq.
CibersortX (https://cibersortx.stanford.edu/) were used to esti-
mate and predict gene expression profiles to the abundances of
member cell types. Of note, 2000 random single-cell profiles from
eight supra clusters were imputed to CibersortX as a reference
signature.

Bulk sample extraction, QC, library preparation, sequencing or
LC-MS/MS
Nuclei extraction and Tn5 transposome based assay for
transposase-accessible chromatin. Frozen tissue (20 mg) for each
sample was grinded and a total of 50,000 cell nucleis were used
per reaction in the preparation of ATAC. Library construction
was conducted with TruePrep DNA Library Prep Kit V2 (Vazyme
Biotech) for Illumina according to the manufacturer’s protocol.
Genomic DNA was fragmented with a hyperactive Tn5 trans-
posase (Tn5 kit), which fragmentes DNA and appended
sequencing adaptors in a single step. DNA library was purified
using Minelute PCR Purification Kit (Qiagen) and amplified
using TruePrep Index Kit V2 for Illumina (Vazyme Biotech). The
cells were washed with cold PBS once. The supernatant was
removed by 500 g centrifugation at 4°C for 5 min.

Genomic DNA preparation for WES and RRBS. Genomic DNA
was extracted from liver tissues using a genomic DNA extraction
kit (TIANGEN, YDP341-T4A) according to the manufacturer’s
protocol. DNA concentration, DNA degradation and con-
tamination were analyzed by agarose gel electrophoresis. DNA
quantity and purity were assessed using a Nanodrop (OD 260/280
ratio). For RRBS, genomic DNA digested with methylation-
insensitive restriction enzyme (MspI) was size-selected and
spiked-in with 0.5% fully methylated lambda DNA. DNA library
was then prepared with EZ DNA Methylation Gold Kit (Zymo
Research) according to the manufacturer’s protocol. DNA con-
centration and quantification were assessed by qPCR, and the
fragment size was accessed by Agilent 2100 Bioanalyzer. WES
libraries were prepared and captured using Roche NimbleGen
SeqCap EZ Exome V3 and Agilent SureSelect Human All Exon
V6 (Agilent Technologies) following the manufacturer’s
instructions.

Total RNA preparation for whole RNA-seq. Total RNA was
extracted and purified from fresh tissue specimens using TRIzol
(Thermo Fisher) according to the user guideline. Quality
inspection of the extracted RNA samples were conducted by
Agilent 2100 Bioanalyzer (Agilent Technologies). The qualified
samples which had a total amount > 500 ng and RIN > 7 were
included in the following library construction and sequencing
experiment: 1. LncRNA library construction was performed
according to the operation manual provided with KAPA RNA
HyperPrep kit with RiboErase (HMR). 500 ng of total RNA
depleted rRNA and treated with DNase was interrupted at an
average size of 300-400 nt. The first and second cDNA strands
were then biosynthesized from the fragments following the end-
repair, A-base addition and sequencing adaptor ligation. 2. sRNA
library construction was conducted according to the
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manufacturer’s protocol with NEBnext multiplex small RNA
library prep kit (NEB). Qualified samples’ 3′ and 5′ adapters were
ligated followed by reverse transcription reaction and cDNA
synthesis. PCR amplicons were subsequently performed using
PCR amplification primers in the ligation. Following PCR
amplification, the DNA fragments of 140-160 bp were separated
by PAGE. Agilent 2100 Bioanalyzer was used for quality
inspection. The libraries were sequenced on Nova-seq 6000.

TMT-labeled LC-MS/MS for proteomics. Tissue was grinded
into cell powder with liquid nitrogen and then added four
volumes of lysis buffer [8 M urea (sigma), 1% Protease Inhibitor
Cocktail), followed by sonication three times on ice using a high-
intensity ultrasonic processor (Scientz). The supernatant was
collected after centrifugation (12,000 g at 4 °C for 10 min) and
protein concentration detected with BCA kit (Thermo Fisher)
according to the manufacturer’s instructions. The protein solu-
tion was reduced with 5 mM dithiothreitol (30 min at 56 °C),
alkylated with 11 mM iodoacetamide (15 min at room tempera-
ture in darkness), and diluted urea concentration < 2M by adding
100 mM triethyl ammonium bicarbonate (TEAB, sigma). The
first digestion of proteins was added with trypsin at a ratio of 1:50
trypsin-to-protein overnight at 37°C and followed by second 4-h
digestion with trypsin (1:100) at 37°C. Internal reference “MIX”
sample was prepared with mixed samples in remaining channels
and mixed in equal protein amount, which was also processed
and conducted as a sample in TMT-labeling experiment. For each
sample, 400 mg were desalted by Strata X C18 SPE column
(Phenomenex) and vacuum-dried according to the TMT kit
instructions (Thermo Fisher). Each TMT 11-plex reagent set was
distributed ahead. Peptides were separated with a gradient of 8%
to 32% acetonitrile (pH 9.0) over 60 min into 60 fractions by high
pH reverse-phase HPLC (Agilent 300Extend C18 column, 5 μm
particles, 4.6 mm ID, 250 mm length), then combined into 14
fractions, and dried by vacuum centrifugation for nanoscale
liquid chromatography coupled with tandem mass spectrometry
(LC-MS) using a 1290 Infinity series UHPLC System (Agilent
Technologies). The fractionated peptides (1 mg each fraction)
were dissolved in 0.1% formic acid (solvent A) and loaded onto a
home-made reversed-phase analytical column (15-cm length, 75
μm i.d.) at a constant flow rate of 450 nL/min on an EASY-nLC
1200 UPLC system (Thermo Fisher Scientific). The gradient was
set as follows: 9% -30% solvent B (0.1% formic acid in 80%
acetonitrile) in 40 min, 30%-40% in 12 min, 40%-90% in 4 min
and holding at 90% for the last 4 min. The peptides were then
subjected to NSI source and performed tandem mass spectro-
metry (MS/MS) with Orbitrap Fusion Lumos (Thermo Fisher).
The electrospray voltage was set at 2.4 kV and 400 -1500 m/z scan
range for full scan at a resolution of 60,000, and then selected for
MS/MS at 100 m/z scan range (resolution 30,000). Automatic
gain control (AGC) target was set at 5E4, maximum IT at 100 ms,
signal threshold at 10000 ions/s with 30 s dynamic exclusion time
between MS1 and MS2 scan. A data-dependent procedure was
applied, and the normalized collision energy (NCE) was set at
NCE 32%. All MS/MS data were processed using Maxquant
search engine (v.1.5.2.8) against the human Swiss-Prot database
containing 20,380 sequences (downloaded in December, 2017)
concatenated with reverse decoy database. Enzyme specificity was
set as Trypsin/P allowing up to 2 missing cleavages. The mass
tolerance for precursor ions in the first and main search was set as
20 ppm and 5 ppm, respectively, and the mass tolerance for
fragment ions as 0.02 Da. The minimal peptide length was set at 7
and the maximum modifications per peptide at 5. The identified
peptide length distribution most ranged in 7-20 amino acids
which were eligible for quality control. Fixed modification

(carbamidomethyl on Cys) and variable modifications (acetyla-
tion modification and oxidation on Met) were specified with
FDR < 0.01.

Metabolites Extraction. Sample tissues (25 mg) were dissolved
in 500 μL extract solution (acetonitrile: methanol: water = 2: 2:
1) (acetonitrile 75-05-8, Methanol 67-56-1, CNW Technologies)
and vortexed for 30 s, followed by homogenization at 40 Hz
(4 min) and sonication (10 min) in ice-water bath for 3 times.
Then the samples were incubated at -40 °C (1 h) and 450 μL of
supernatant was transferred after centrifugation (12000 rpm,
15 min at 4 °C) and dried in 37 °C vacuum concentrator. The
dried samples were reconstituted in 200 μL of 50% acetonitrile
and sonicated in ice-water bath for 10 min. Supernatant (75 μL)
was collected after centrifugation (13000 rpm, 15 min at 4 °C)
for LC-MS/MS analysis using 1290 Infinity series UHPLC
System (Agilent Technologies) and Triple TOF 6600 (AB Sciex).
Besides, a mixture with above 10 μL supernatant from each
sample were prepared for quality control. Fractionation was
processed with UPLC BEH Amide column (2.1 * 100 mm, 1.7
μm, Waters). Solvent A consisted of 25 mmol/L ammonium
acetate and 25 mmol/L ammonia hydroxide in water (pH =
9.75) and solvent B acetonitrile. The gradient was set as follows:
95% B (0–0.5 min), 95%-65% B (0.5–7.0 min), 65%-40% B
(7.0–8.0 min), 40% B (8.0–9.0 min), 40%-95% B (9.0–9.1 min),
95% B (9.1–12.0 min). The parameters were set as fellows: 25°C
column temperature, 4 °C auto-sampler temperature, 0.5 mL/
min Flow rate of mobile phase and 1 μL injection volume (pos
or neg). MS/MS spectra were acquired on an information-
dependent basis (IDA) and collected with acquisition software
(Analyst TF 1.7, AB Sciex) continuously depending on pre-
selected criteria. The most intensive 12 precursor ions with
intensity > 100 were chosen for MS/MS at 30 eV collision
energy (CE) in each cycle (0.56 s). ESI source conditions were:
60 psi GS1, 30 psi GS2, 35 psi curtain GS, 600 °C source tem-
perature, 60 V declustering potential, 5000 V (Pos)/-4000(Neg)
ion spray voltage floating (ISVF).

Bulk data processing and analysis
ATAC-seq. Cutadapt software were employed to remove adapters
of sequenced reads and filtered short reads (<35 bp) accompanied
with quality control (Reads with N ratio > 10% and bases quality
value Q ≤ 10 occupied > 50% of the entire Read were removed).
High-quality clean reads of each sample were mapped to human
reference genome (ftp://ftp.ensembl.org/pub/release-95/fasta/
homo_sapiens/dna/) using Bowtie2 software. MACS2 v2.2.7.1.
was employed for peak calling and the empirical false detection
rate (FDR) < 0.05 was selected as the identified peak. Genome-
wide peak was analyzed by ChIPseeker package and annotated to
the functional elements of each gene on the genome (TSS, 5
‘UTR, 3’ UTR, Exon, Intronic or Intergenic region). The peak
distribution was presented as heatmaps according to the peak-
elements distance. MEME-ChIP 4.11.2 was employed to identify
and annotate Motif, and Tomtom software to align the detected
Motif sequence with known Motif (JASPAR database, http://
jaspar.genereg.net/), which made it accessible to acquire tran-
scription factor information. For Difference Peak analysis, Diff-
Bind package was used to calculate the affinity score based on the
number of standardized read count, which was then inputted to
screen the differentially accessible region (DAR) using
DESeq2 software (fold change > 1.5, P value < 0.05) giving to
subscribed group. DAR, referred to promoter region <1 kb, was
highlighted in our analysis. Enrichment analysis was performed
with Metascape.
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RRBS. The clean reads from RRBS were mapped to human
reference genome GRCh38 (ftp://ftp.ensembl.org/pub/release-95/
fasta/homo_sapiens/) using bismark software, which also pro-
cessed 5mC detection and annotation (coverage >=4X and
FDR < 0.05). Different methylation region (DMR) was calculated
with MOABS and qualified with coverage >=4X and different
methylation sites >=3 and methylation variation >=0.2 (fisher’s
exact test, p < 0.05).

Whole exome sequencing. Raw data were filtered to clean data as
ATAC-seq described and mapped to the human reference gen-
ome (http://grch37.ensembl.org/Homo_sapiens/Info/Index)
using BWA mem (version 0.7.12). The Picard tool (https://github.
com/broadinstitute/picard) was used for duplication sortation
and marker. Single nucleotide variants (SNVs) and short inser-
tions and deletions (INDELs) were analyzed with mutect2
package. Control-FREEC was employed for somatic CNV and B
Allele Frequency (BAF). Maftools R package was used to analyze
mutational signatures and disassemble into distinct signatures
based on non-negative Matrix Factorization (NMF) algorithm,
which was then mapped to the COSMIC database (http://cancer.
sanger.ac.uk/cosmic/signatures) for mutational signature decod-
ing. Gain-of-function mutation was predicted with Onco-
driveCLUST or screened from the Cancer Gene Census (CGC)
database or published paper. Predisposing gene was inquired
from Germline Mutation (SNV, InDel) using GATK software
(HaplotypeCaller) and searched in CGC database. Driver genes
were filtered with the known driver mutations (http://cancer.
sanger.ac.uk/cancergenome/projects/census/cancer_gene_census.
xls; PMID: 23539594; PMID: 24132290; PMID: 24084849).
Pathway enrichment analysis was conducted by metascape
software.

Whole RNA-seq. Whole RNA-seq analysis included lncRNA,
mRNA, microRNA and circular RNA (cirRNA). HISAT2 was
used to map RNA-seq reads to human reference genome
(GRCh38_release95.Homo_sapiens. GRCh38_release95. geno-
me.fa) and assembled with StringTie. lnc RNA was filtered with
transcript class code (“i”,“x”,“u”,“o”,“e”), length≥200 bp, Exon≥2
and FPKM ≥ 0.1, and extracted no protein-coding potential
intersection from CPC2 (Coding Potential Calculator), CNCI
(Coding-Non-Coding Index), CPAT (Coding Potential Assess-
ment Tool) and Pfam database. Neighboring genes (+/-100kb)
was defined as lncRNA cis-target gene. Gene expression was
transferred to FPKM (fragments per kilobase of transcript per
million fragments mapped). Differential expression analysis was
conducted with DESeq2, edgeR (fold change ≥1.5 and FDR <
0.05). For cirRNA, BWA was used for human reference genome
mapping. CIRI software was used to predict cirRNA and anno-
tated with circBase database, circ2disease and circBank. Specifi-
cally, SRPBM standardized strategy and fold change ≥1.5 was
adopted for cirRNA expression analysis. For small RNA,
sequenced reads (15-35 bp) were included after adapters removal
and further rRNA, tRNA, snRNA, snoRNA and repeated
sequences were filtered based on Silva, GtRNAdb, Rfam, Repbase
database. Unannotated reads were mapped to human reference
genome (Homo_sapiens. GRCh38_release95) using Bowtie.
Mapped reads were identified with miRBase (v22) database for
known miRNA and predicted with miRDeep2 for unannotated
miRNA. Specifically, TPM standardized strategy and fold change
≥1.5 were adopted for miRNA expression analysis. Two-sided t-
test p-value < 0.05.

Proteomic Data Analysis. Raw data files were analyzed with
MaxQuant (v1.5.2.8) for RAW file reading capability. UniProt-

GOA database (http://www.ebi.ac.uk/GOA/) was used for Gene
Ontology (GO) annotation proteome which converted identified
protein ID to UniProt ID and then mapped it to GO IDs. The
InterProScan software was used for proteins not annotated based
on protein sequence alignment, which was also for proteins
domain identification based on InterPro database (http://www.
ebi.ac.uk/interpro/). For differential expression analysis, fold
change >1.5 (up-regulation) or <1/1.5 (down-regulation) and p
value < 0.05 was set. Specifically, coefficient of variation (CV) was
calculated for T124, T125, P124, and P125 and CV-value < 0.1
was set as the threshold. STRING database (v.10.5) was used for
protein-protein interactions analysis accompanied with con-
fidence score >0.7 (high confidence).

Metabolic Data Analysis. Raw data were converted to the
mzXML format by ProteoWizard and processed by R package
XCMS (version 3.2) for peak deconvolution, alignment and
integration (minfrac 0.5 and cut-off 0.3 respectively). Metabolites
identification were conducted with in-house MS2 database. Ropls
R package was employed for calculation of OPLS-DA model.
Differential metabolites were determined as fold change>1, p
value < 0.05 and variable importance in the projection >1.

Statistics and Reproducibility. An independent samples t-test
was conducted to evaluate the significance of observed differences
between two groups. The p-value, typically set at <0.05, was used
to determine the likelihood of the observed differences occurring
by chance alone. To ensure reproducibility, replicates were uti-
lized under the same experimental conditions. In the analysis,
single cells from the same cluster (and/or tumor type) were
generally grouped together for comparison purposes.

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Data availability
The raw sequence data reported in this paper has been deposited in the Genome
Sequence Archive in National Genomics Data Center under the accession number
HRA002304, HRA005348, which is accessible at https://ngdc.cncb.ac.cn/gsa-human/
browse/. The mass spectrometry proteomics data have been deposited to the
ProteomeXchange Consortium via the PRIDE partner repository with the dataset
identifier PXD044778. The raw sequence data are available for non-commercial purposes
under controlled access because of data privacy laws, and access can be obtained by
request to the corresponding authors. Supplementary Data 2 provided the source data for
figures.
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