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Research on a capacitive particle 
analysis smoke detector
Boqiang Wang 1,2*, Xuezeng Zhao 2, Yiyong Zhang 1,2, Zigang Song 2 & Zhuogang Wang 2

Smoke detectors face the challenges of increasing accuracy, sensitivity, and high reliability in complex 
use environments to ensure the timeliness, accuracy, and reliability of very early fire detection. 
The improvement and innovation of the principle and algorithm for smoke particle concentration 
detection provide opportunities for improving the performance of the detector. This study represents 
a new refinement of the smoke concentration detection principle based on capacitive detection of 
cell structures, and detection signals are processed by a multiscale smoke particle concentration 
detection algorithm to calculate smoke concentration. Through experiments, it was found that the 
detector provides effective detection of smoke particle concentrations ranging from 0 to 10% obs/m; 
moreover, when the detection accuracy is greater than a certain number of parts per million (PPM), 
the sensitivity of the detector can reach the PPM level; furthermore, the detector can detect smoke 
particle concentrations higher than the PPM level accuracy even in an environment with a certain 
concentration of petroliferous and dust particles of different sizes.

Keywords  Extreme early fire detection, Smoke concentration detection, Capacitive detection, Multiscale 
signal processing

Very low concentrations of smoke particles can be effectively detected during very early fire detection. This 
approach of capacitive particle detection method can effectively control the further development of fires and 
minimize losses of all kinds of fires. Unfortunately, there are greater than 100,000 cases of no alarm generation 
or alarm failure1, and more than 200,000 false alarms were responded to by fire departments2. These factors are 
expected to result in unnecessary losses, waste of firefighting resources, and declining public confidence. The 
fast and accurate detection of smoke particles from very quick fires is critical for avoiding losses and saving lives. 
It is required that the detector has a sensitivity of PPM level, and a smoke concentration measurement range of 
0–20% obs/m, and power consumption should be kept under 30W.

Smoke concentration detection technology confronts the challenges of responding to the effects of interfering 
particles in complex environments, false alarm resistance, and adaptation. The interfering particles mainly come 
from airborne dust particles, oil and gas particles, and water vapor particles. The concentration of interfering 
particles usually ranges from 0.05 to 5%obs/m. Conventional point smoke detectors are unable to cope with 
harsh and intrusive environments3. Photoelectric smoke detectors are unable to distinguish between particle 
signals of different sizes, but the detector response speed increases when the emitting light source is a green 
LED4. Very low-concentration smoke particles (0.1%obs/m) released from very early fires can be effectively 
recognized by a photoelectric aspirating smoke detector, and this type of detector has achieved successful com-
mercial application5. However, this approach can only partially eliminate the effect of other interfering particles 
through the filter and cannot distinguish the particle type. These factors significantly limit the applicability of 
the detector: the impact of the airflow direction on the mounting angle of the detector needs to be considered 
when designing the layout style of the pipeline6; the air sample pipeline needs to be complexly modeled in 3D 
to verify the reasonableness of the pipeline layout7; and the trajectories of smoke particles need to be identified 
by using computational fluid dynamics8. The false alarm resistance of a detector can be improved by adding a 
combustible gas detection module for alarm calibration9. A capacitive bending smoke sensor can increase its 
sensitivity by increasing the component contract area. However, it is still not able to distinguish between the 
types of particles, and false alarms can still occur10. A capacitive smoke sensor based on MEMS technology can 
detect smoke generated by hydrogen-containing substances during the smoldering stage. But, it is not sensitive 
to smoke particles by combustion of carbon-containing substances11. However, this approach also affects the 
sensitivity of the detector to a certain extent. While very low concentrations of smoke particles generated by very 
early fires are effectively detected, the effective identification of particle types is still a problem. Moreover, the 
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false alarm rate of the detector will increase, and its reliability will be greatly affected in complex environments 
where oil gas particles and dust particles of different sizes are present. The diameter of smoke particles usually 
ranges from 0.1 to 100 μm.

In this study, a structure for analyzing and detecting smoke particles based on capacitive detection element 
cells is designed, and particles of different sizes will form mixed signals with different amplitudes and frequencies 
when they pass through the detection structure. A multiscale algorithm is used to detect smoke particle concen-
trations by sequentially analyzing mixed signals via time–frequency domain analysis, extracting smoke particle 
signals, sensitizing smoke signals, and calculating smoke concentrations. On the one hand, the detector will have 
higher detection accuracy and sensitivity because smoke particles are detected by the newly designed capacitive 
detection cell. On the other hand, the detector can differentiate signal characteristics effectively between differ-
ent particles through the newly designed particle detection structure and algorithm so that the reliability of the 
detector increases in complex environments. The sensitivity, accuracy, and reliability of the proposed method 
were verified through a limit concentration detection experiment, smoke concentration detection experiment, 
and anti-interference ability experiment, respectively.

Capacitive smoke particle detection principle and design
Capacitive particle analyzer detector structure
As shown in Fig. 1, the capacitive particle analysis structure mainly consists of a pair of capacitive particle detec-
tion plates, a gas sample sampling path, a motive air path, and a signal processing circuit. Capacitive particle 
detection plates consist of a fixed capacitive plate and a flexible capacitive plate for detecting the particle type. The 
gas sample sampling path consisted of inlet/outlet fans, an inlet/outlet gas line, and a particle detection chamber 
to sample the air samples. The power gas path consists of filters, a blower, and a variable diameter jet exhaust to 
provide the kinetic energy for the sampled air sample to collide with the flexible capacitive plate.

Particle detection principle
As shown in Fig. 2a, The signal stacker is used to accumulate the signals measured by all capacitance cells. The 
schematic diagram of the interface circuit is shown in Fig. 2b. smoke particles and interference particles are 
simultaneously inhaled into the particle detection chamber by the inlet fan. The air inhaled by the blower will be 
purified into clean power gas after passing through two layers of coarse and fine filters. Inhaled smoke particles 
and interference particles are blown by such gas to the flexible capacitive plate and collide with it. Suppose that 
vertical deformations of �L1 and �L2 are formed by a collision between interference particles and smoke particles 
on the flexible capacitive plate, respectively. Then, the capacitance on the capacitance cell changes as follows:

where C△L1 and C△L2 are the capacitance variations generated on the impinged capacitance cell by interference 
particles and smoke particles, respectively; d is the distance between the fixed capacitive plate and the flexible 

(1)

{

C△L1 = ε·A
d−△L1

C△L2 = ε·A
d−△L2

Figure 1.   Capacitive particle analysis structure schematic.
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capacitive plate before the collision; and ε is the permittivity of the capacitor, A the relative projected area of the 
two capacitive plates.

A fixed DC voltage U  is applied between the fixed capacitive plate and the flexible capacitive plate. A preci-
sion sampling resistor is connected in series between two signal stackers of the fixed capacitive plate and flexible 
capacitive plate, and the signal stacker is used to collect the electrical signal produced by capacitive cells. Induced 
currents flow through the sampling resistor, and a voltage is produced when the change in capacitance is caused 
by particle impacts on the flexible plate.

Figure 2.   Particle detection schematic and signal processing circuit.
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Capacitor detection cell design
The particles will only collide with the flexible plate in the normal direction. Because, the particle is only acted 
upon by the force in the normal direction. The normal force comes from the blower.

The vertical orientation of the capacitive cell is designed based on the dense grid medium, as shown in Fig. 3a. 
It mainly consists of a cell strain detection pole, a cell dielectric layer, and a fixed cell plate, and the cell strain 
detection pole consists of several micro detection units connected by a bus line. Eventually, the electrical signal 
from the microdetection unit is collected and converted by the cell signal conversion circuit. The cell dielectric 
layer is made of a frothy silicon-lipid mixture. The fixed-cell plate design is based on rigid structures that prevent 
cutting orientation movement from affecting cell detection accuracy.

As shown in Fig. 3b, the smoke particles collide with the vertically oriented strain-inducing pole of the capaci-
tive cell under the action of the blower. Under the effect of the collision force Fn , the dense grid medium will be 
compressed, which will change the distance between the fixed plate and the strain-inducing pole, thus changing 
the capacitance value of the capacitor. The detection of smoke particles is achieved by detecting the change in 
electrical signals caused by changes in capacitance.

Assuming that the invariant of the cell micro detection unit is �L after collision by particles, it can be 
expressed as follows:

where ρA is the filling rate of the cell dielectric layer, E is the elastic recovery of the cell dielectric layer, AS is the 
area of the cell dielectric layer.

Fn can be expressed as follows:

where δi is the inertia coefficient of particle type i , Ri is the diameter of particle type i , and Ffan is the driving force 
of the blower to the particles. Furthermore, capacitance variations can be obtained after the cell micro detection 
unit collides with particles, as shown in Eq. (4), and the sensitivity can be expressed as Eq. (5).

(2)△ L =
Fnd

ρAEAS

(3)Fn = δiFfanRi

Figure 3.   Capacitive detection cell.
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where Ai is the sensing electrode area of the micro detection unit and △ Li is the invariant of the cell micro 
detection unit after collision by particles. Because Fn has a much lesser impact than ρAEAs , the impact from Fn 
can be ignored. At this point, the sensitivity can be expressed as

A mixture of flexible body and gas gaps formed between the cell strain detection pole and the fixed cell plate. 
Equation (6) shows that the filling rate of the mixture on the cell dielectric layer should be reduced to improve 
the sensitivity.

Signal output model and algorithm model
Model of the output signal from the particle analysis structure
The capacitance changes when the flexible capacitive plate is collided by particles. Because a fixed DC voltage is 
applied between two plates, an alternating current will produce a change in capacitance, the amplitude of which 
is the superposition of all weak AC signals caused by collisions between particles (including smoke particles and 
interfering particles) and capacitive cells, and the signal will be output by the signal stacker between two plates. 
The mathematical model has been developed by assuming sinusoidal currents.

where Isum is the total alternating current signal synthesized by the signal stacker and, U0 is the constant voltage 
between capacitor’s terminal,Csum is the superposition of changes in the capacitance of the capacitor. The AC 
voltage signal is generated on the precision resistor in series between two signal stacks.

where Rsamp is the electrical resistance of the precision sampling resistor, and it has a resistance value of 10MΩ, 
Usum is the AC voltage applied to the precision sampling resistor. A superposition of sinusoidal voltages with 
different frequencies and amplitudes will be formed after filtering and amplification by the signal processing 
circuit (as shown in Fig. 1).

where Ri is the diameter of different particles, Rs is the diameter of smoke particles to be detected, RN1
 , RN2

 , et al. 
are the diameters of interfe ring particles, ωRi is the frequency of the signal produced by particles with a diameter 
Ri , ARi is the amplitude of the signal produced by particles with a diameter Ri , ϕ is the offset angle of the signal, 
and t  is the time (Fig. 4).

Smoke concentration detection algorithm
Overall design of the multiscale smoke particle concentration detection algorithm
The signal output of the detector is in this form the superposition of signals generated by particles at different 
times. The weak signal needs to be amplified with the signal enhancement technique because the size of the 
smoke particles is tiny. These drawbacks prevent the use of a single method for signal processing from meeting 
the demand for smoke concentration detection. The multiscale smoke concentration detection algorithm is a 
combinatorial algorithm for continuous wavelet transform, smooth wavelet transform, sensitization of smoke 
signals, and single-frequency point concentration calculations. Therefore, the multiscale smoke concentration 
detection algorithm—a combination of multiple signal analysis methods—will be used for this detection, and 
its main steps can be divided as follows:

a.	 First, determine the time position of the smoke particle signal in the detector output signal.
b.	 After that, the smoke particle signal needs to be extracted.
c.	 Subsequently, the signal after extraction is sensitized and amplified.
d.	 Finally, the smoke concentration is calculated via single-frequency analysis.

Time‒frequency analysis of signals
First, a time-spectrum analysis of the detector output signal is performed via a continuous wavelet transform 
along the time axis, and the moment at which the smoke particle signal appears is determined. The continuous 
wavelet transform of the continuous signal f (t) can be expressed as follows:

(4)C△Li =
εAi

d− △ Li
=

εAi

d − δiFfanRid

ρAEAS

(5)
∂C△Li

∂Ri
=

εAiρAEAs

d
(

ρAEAS − δiFfanRid
)2

(6)
∂C△Li

∂Ri
≈

εAi

dρAEAs

(7)Isum = U0 ·
dCsum

dt
= U0 ·

[

d
(

C△L1

)

dt
+

d
(

C△L2

)

dt

]

(8)Usum = Isum ∗ Rsamp

(9)U(t) =
∑

Ri=Rs ,RN1 ,RN2 ···
ARi · sin

[

ωRi · t + ϕ
]
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where a is the scale parameter of the wavelet function, b is the translation parameter of the wavelet function, 
ψa,b(t) is the wavelet basis function for parameters a and b , ψ∗(t) is the conjugate function of the wavelet basis 
function, and f (t) is the source signal function.

The relationship between the wavelet decomposition scale and signal frequency after transformation can be 
expressed as follows:

where fa is the actual signal frequency after decomposition, fc is the center frequency of the wavelet basis func-
tion, and fs is the sampling frequency of the signal. According to the sampling theorem, the value ranges of the 
scale parameter satisfy a ∈

[

2fs ,∞
]

 so that the value ranges of the frequency of the wavelet basis function can 
satisfy fc ∈

[

0, fs/2
]

.

Smoke particle signal separation
In addition, the smoke particle signal is extracted from the detector output signal by a stationary wavelet 
transform.

In the stationary wavelet transform, the scale parameter a needs to be discretized, and the translation param-
eter b remains constant so that the signal after the transform has the same length as the original signal f (t) . The 
stationary wavelet transform can be obtained through discrete sampling to the scale parameter a within the 
binary sequence {2j} (where j ∈ Z).

Equation (12) shows that only the scale parameter a is discretized by the stationary wavelet transform, and 
the translation parameter b remains constant. In this way, the wavelet coefficients are all retained, and the length 
of the wavelet coefficients remains constant after each transform.

There are two ways of upsampling and downsampling at the same time so that the lengths of the signal 
between the original signal and the high- and low-frequency coefficients after the transform remain constant 
when the original signal is disintegrated by the stationary wavelet transform. This sampling mode is achieved 
by interpolating 2j zeros between the two coefficients of the high-pass and low-pass filters; the high-pass and 
low-pass filter coefficients are stripped in this way; and the high-pass and low-pass filters in the transformation 
can be expressed as follows:

(10)WTf (a, b) =
〈

f (t),ψa,b(t)
〉 1
√
a

∫ +∞

−∞
f (t)ψ∗

(

t − b

a

)

dt

(11)fa =
fcfs

a

(12)SWTf

(

j, b
)

=
〈

f (t),ψa,b(t)
〉

=
1

√
2j

∫ +∞

−∞
f (t)ψ∗

(

t − b

2j

)

dt, j ∈ Z
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Figure 4.   The flowchart of the multiscale smoke particle concentration detection algorithm.
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where j, k,m ∈ Z , g(k) and h(k) denote the unit response functions of the high-pass and low-pass filters, 
respectively.

Furthermore, the decomposition based on the Mallat algorithm can be obtained as follows:

where j is the decomposition depth of the Mallat algorithm, J is the number of decompositions of the signal, n is 
the degree of decomposition of the signal, k is the order number of the decomposed sequence, M is the sampling 
point upper limit of the decomposed sequence, and Sj(k) and dj(k) denote the coefficients of the high-pass and 
low-pass filters, respectively, at the jth signal decomposition.

The detector output signal, which includes the smoke particle signal period, is decomposed by the stationary 
wavelet transform based on the Mallat algorithm. Suppose that the eigenfrequency of the awaiting detection 
smoke particle signal is ωRS and that the eigenfrequency of the interfering particle signal is ωRi . The signal that 
contains only smoke particles can be acquired after i the step of stationary wavelet decomposition.

In Fig. 5, 2-s2-step decomposition is shown as an example. First, the original signal f (t) is decomposed by 
high-pass and low-pass filters with coefficients gRN1 and hRN1

 , respectively, and the signal S1 filters the interfer-
ence caused by interference particles of size RN1

 and the interference signal dRN1 generated by particles of this 
size. Subsequently, the signal S1 is decomposed again by another high-pass and low-pass filter with coefficients 
gRs and hRs , respectively, and the signal SRS contains only the signal generated by smoke particles and the signal 
dRN2 generated by interference particles of size RN1

.
The relationship between the coefficients gRN1 and hRN1 of high-pass and low-pass filters in the first decom-

position layer and the eigenfrequency ωRN1
 of the interference signal caused by particles with size RN1

 can be 
expressed as follows:

where g
(

kN1

2
jN1

)

 and h
(

kN1

2
jN1

)

 are the unit response functions of the high-pass and low-pass filter decomposition 
depths, respectively N1 , and βRN1 is the correction coefficient for the eigenfrequency ωRN1

.
Similarly, the relationship between the coefficients gRS and hRS of the high-pass and low-pass filters in the 

second decomposition layer and the eigenfrequency ωRs of the smoke signal caused by particles of size Rs can 
be expressed as follows:

(13)g(k) =

{

g
(

k
2j

)

, k = 2jm

0, others

(14)h(k) =

{

h
(

k
2j

)

, k = 2jm

0, others

(15)















Sj+1(n) =
M
�

k=1

Sj(k)g
∗(k − 2n)

dj+1(n) =
M
�

k=1

dj(k)h
∗(k − 2n)

, j = 0, 1, · · · J

(16)gRN1 = βRN1ωRN1
g

(

kN1

2jN1

)

(17)hRN1 = βRN1ωRN1
h

(

kN1

2jN1

)

(18)gRS = βRSωRS g

(

kNS

2jNS

)

Figure 5.   The signal decomposition diagram of the detector output signal by the stationary wavelet transform.
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where g
(

kNS

2
jNS

)

 and h
(

kNS

2
jNS

)

 are the unit response functions of the high-pass and low-pass filter decomposition 
depths, NS  respectively, and βRS is the correction coefficient for the eigenfrequency ωRs.

Signal sensitization and smoke concentration calculations
A programmable circuit, as shown in Fig. 6, is included in the signal processing circuit in Fig. 1. The circuit 
comprises 2 operational amplifiers (op. amps.) U28A and U29A, and a digital potentiometer U25. The very low-
amplitude raw output at the sensitive element is amplified through a two-stage amplifier circuit consisting of 
U28A and U29A. The gain of the output signal can be adjusted by changing the tap position of the digital poten-
tiometer U25. Finally, the processed analog signal is passed to an analog-to-digital converter (ADC). "ADC5V" 
is the DC 5 V power supply for the analog simulation circuit section. Capacitor C46 is used to filter the signal. 
Diode D3 is used to provide voltage-limited protection for the ADC signal. When the ADC voltage exceeds 12 V, 
diode D3 conducts to limit the ADC signal to 12 V. Electrolytic capacitors C42 and C43 are connected in reverse 
series to form an unpolarized capacitor of halved capacitance. This is to double the voltage rating of the capacitor.

Where S∗RS is the sensitized smoke particle concentration signal and Gain is the signal magnification.
The fast Fourier transform (FFT) algorithm was used to calculate the modulus of a single frequency point after 

separation and sensitization. Near the characteristic frequency ω of the smoke particle signal, the characteristic 
frequency modulus MRS can be obtained.

Finally, the smoke concentration can be calculated by bringing the modulus MRS into the smoke concentra-
tion characterization line as follows:

where ColRS is the calculated smoke concentration, γRS is the slope of the smoke concentration characteristic line, 
and ρRS is the constant of the smoke concentration characteristic line.

Experimental
Introduction of the experimental device
A smoke concentration experimental device was used to test the performance of this detector, as shown in 
Fig. 7a. The experiment box is the chamber that place the detector used to experiment on it. The experimental 
equipment is produced by Beijing Yuanhengliye Corporation, and its model number is SMK-2000. This experi-
mental device is composed of a smoke particle generator, an interference generator, a concentration detection 
device, an experiment box, etc.etc. The smoke particle generator generates simulated smoke particles at different 
concentrations during a fire. An interference generator generates oil gas or dust particles of different sizes and 
concentrations in different environments. The flue mixture of the above particles was generated, and uniform 
particles were mixed into the experimental box when the concentration detected by the concentration detection 
device reached the set conditions. The concentration of various particles produced by the experimental device is 
measured by a sophisticated optical densitometer inside the device. The device regulates the particle concentra-
tion based on the feedback signal. As a result, the concentration accuracy of various particles generated in this 
device is 0.0001 PPM.

Limit concentration detection experiment
The smoke particles were separated at concentrations of 2.0 ppm and 5.0 ppm by this device, after which these 
particles were used to conduct a concentration limit detection experiment on the detector. The time domain 
signal of the smoke particle output from the detector is shown in Fig. 8, and its spectrum is shown in Fig. 9. The 
eigenfrequency ωRs of smoke particles can be determined to be 210 Hz.

(19)hRS = βRSωRSh

(

kNS

2jNS

)

(20)ColRS = γRS ×MRS + ρRS

Figure 6.   AC signal gain amplifier circuit schematic.
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The specific calculations are shown in Table 1, and the deviations are expressed in parts-per-million (PPM) 
scale. The deviation is the difference between the concentration (the value shown on the concentration meter 
on the test set) produced by the device (shown in Fig. 7) and the actual concentration (the concentration is 
calculated by taking the modulus calculated by the detector at the smoke particle characteristic frequency point 
ωRs into Eq. (20)) measured by the detector.

As shown in Table 1, the results are 5.2PPM and 2.3PPM, with a detection deviation of less than 0.5PPM when 
the detector detects smoke particles at concentrations of 2PPM and 5PPM, respectively.

Smoke concentration detection experiment
Smoke particles with concentrations ranging from 0% obs/m to 10% obs/m were separated by this device, and 
these particles were used to conduct a concentration limit detection experiment on the detector. The time domain 
and signal spectrum are shown in Figs. 10 and 11, respectively, and the detection results are shown in Table 2.

Anti‑interference ability experiment
Mixed particles with 6% obs/m oil gas particles, 7% obs/m large dust interference particles, 8% obs/m small dust 
interference particles, and 2% obs/m smoke particles were prepared, and mixed particles were pumped into the 
experimental box of this device for an anti-interference experiment.

The signal output from this detector is shown in Fig. 12. Subsequently, the signal of mixing with various 
particles is transformed by a continuous wavelet transform to obtain the time–frequency distribution, as shown 

Figure 7.   Smoke concentration experimental device structure diagram and detector physical picture.
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Table 1.   Smoke concentration experiment results.

Smoke concentration
(PPM)

Modulus
(dimensionless)

Detection concentration
(PPM)

Deviation
(PPM)

2 0.000150994058 2.3 0.2

5 0.0003774835145 5.2 0.3
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in Fig. 13. From that figure, it can be seen that there are 4 main frequencies, and the signal with a frequency of 
200 Hz is distributed over the whole timeline.

Furthermore, the signals generated by mixed particles are decomposed to obtain the smoke particle signal. 
The time domain diagrams before and after signal decomposition are shown in Fig. 14. Then, a spectral analysis 
of the various particle signals after decomposition was performed, as shown in Fig. 15. It is apparent from this 
figure that there are 4 main frequency points at 20 Hz (oil gas particle signal), 80 Hz (large dust interference 
particle signal), 158 Hz (small dust interference particle signal), and 210 Hz (smoke particle signal).

Finally, the smoke particle concentration was calculated, and the results are shown in Table 3. The detection 
concentration was 2.0000007% obs/m, and the detection accuracy was higher than that of the PPM.

Figure 10.   Time domain signal of 0–10% obs/m smoke particle concentration.

Figure 11.   Spectrum of 0–10% obs/m smoke particle concentration.
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From the experimental results, it can be seen that the detector separates the smoke particle signals. Therefore, 
it can distinguish between smoke particles and other interfering particles. The detector has excellent false alarm 
resistance and reliability.

Comparison with previously reported methods
Compare the performance of the capacitive particle analysis smoke detector with other mainstream detectors in 
the industry, as shown in Table 4. The other three sensors are %obs/m level, which is significantly less accurate 
than the PPM level reached by the capacitive particle analysis smoke detector. The capacitive particle analysis 
smoke detector has a sensitivity level of PPM, which is significantly higher than the other three detectors. Only 
the capacitive particle analysis smoke detector can be able to recognize the different particle types. Therefore, it 
has higher anti-false alarm capability and reliability.

Conclusions

1.	 The limit of the smoke particle concentration measured by the detector reaches the PPM. The designed 
capacitive detection cell effectively improves the sensitivity of the detector and can measure the concentra-
tion of smoke particles effectively at the PPM level.

2.	 The designed detector can effectively detect smoke particles at a concentration of 0–10% obs/m, and the 
detection accuracy can be higher than that of the PPM. The newly designed capacitive particle analysis detec-

Table 2.   Smoke concentration experiment results.

Smoke concentration
(%obs/m)

Modulus
(dimensionless)

Detection concentration
(%obs/m)

Deviation
(PPM)

1 58.2667029 1.0000003 0.3

2 116.5334059 2.0000002 0.2

3 174.8001084 3.0000003 0.3

4 233.0668105 4.0000004 0.4

5 291.3335132 5.0000003 0.3

6 349.6002158 6.0000002 0.2

7 407.8669182 7.0000003 0.3

8 466.1336209 8.0000004 0.4

9 524.4003241 9.0000002 0.2

10 582.6670265 10.0000003 0.2

Figure 12.   Interference experiment detector signal output diagram.
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tor and multiscale smoke particle concentration detection algorithm can perform high-precision detection 
of smoke particles at various concentrations.

3.	 Even when there is interference from oil, gas, or dust particles, the detector can still accurately detect at a 
higher level than the PPM. This paper shows that capacitive particle analysis and detection structures based 
on capacitive detection cells combined with a multiscale smoke particle concentration detection algorithm 
can effectively improve the reliability of detectors to eliminate the influence of other interfering particles on 
detector performance in complex environments.

Figure 13.   Time‒frequency distribution.

Figure 14.   Signal decomposition diagram.
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