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Polyp segmentation based 
on implicit edge‑guided cross‑layer 
fusion networks
Junqing Liu 1,2, Weiwei Zhang 1,2*, Yong Liu 1,2 & Qinghe Zhang 1,2

Polyps are abnormal tissue clumps growing primarily on the inner linings of the gastrointestinal tract. 
While such clumps are generally harmless, they can potentially evolve into pathological tumors, 
and thus require long-term observation and monitoring. Polyp segmentation in gastrointestinal 
endoscopy images is an important stage for polyp monitoring and subsequent treatment. However, 
this segmentation task faces multiple challenges: the low contrast of the polyp boundaries, the varied 
polyp appearance, and the co-occurrence of multiple polyps. So, in this paper, an implicit edge-guided 
cross-layer fusion network (IECFNet) is proposed for polyp segmentation. The codec pair is used to 
generate an initial saliency map, the implicit edge-enhanced context attention module aggregates the 
feature graph output from the encoding and decoding to generate the rough prediction, and the multi-
scale feature reasoning module is used to generate final predictions. Polyp segmentation experiments 
have been conducted on five popular polyp image datasets (Kvasir, CVC-ClinicDB, ETIS, CVC-ColonDB, 
and CVC-300), and the experimental results show that the proposed method significantly outperforms 
a conventional method, especially with an accuracy margin of 7.9% on the ETIS dataset.
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Medical image segmentation is one of the key stages in medical image analysis, where regions of interest (such 
as tumors, organs, blood vessels, and other structures) are identified in medical image data1. Segmentation is 
particularly important in locating polyps, which are abnormal tissue clumps that grow on mucosal surfaces of 
the human body. While polyps are mostly benign, some of them might be cancerous, and so long-term regular 
polyp monitoring is necessary. This monitoring process crucially depends on the accuracy of polyp segmentation 
for early diagnosis of polyp diseases2.

The main components of colon polyps are the intestinal mucosa, submucosa and muscularis propria, which 
are usually bounded by the surrounding normal mucosa. Depending on the tissue structure and morphology, 
colon polyps can be divided into different types, of which the most common is adenomatous polyp. Adenomatous 
polyps are formed by the proliferation of glandular epithelial cells and may sometimes develop into malignant 
lesions, which are one of the main precursor lesions of colorectal cancer. Colonoscopy allows the physician to 
directly visualize mucosa, blood vessels, lesions and foreign bodies in the colon, and to perform biopsies or 
resections to obtain tissue samples for pathology. Accurate polyp segmentation is a challenging task for two 
main reasons: (I) polyps show wide variability in size and color; (II) the boundaries between polyps and their 
surrounding mucosa are quite blurry and of low contrast2.

Most existing attention-based segmentation methods are designed to enhance the model’s attention capabil-
ity and flexibility3. However, the adoption of attention mechanism methods can lead to problems such as high 
computational complexity, poor generalization ability, overfitting risks, and sensitivity to data skewness. Zhou 
et al.4 utilized a context auto-regressive attention mechanism to address these issues. By combining the context 
auto-regression method, the model could better consider previously generated structural information during 
neural architecture search. They integrated full attention and context auto-regression to construct a full attention-
based neural architecture search framework, significantly increasing the computational complexity of the model. 
However, the introduction of full attention mechanism also leads to the problem of the model’s over-reliance on 
local information, thereby increasing the risk of overfitting, which becomes more prominent when training data 
is insufficient or noisy. Tan et al.5 proposed the EfficientDet V2 model, which adopted a self-attention mechanism 
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to enhance the model’s attention capability on input features and reduce redundant computations. EfficientDet 
V2 introduced self-attention mechanism to dynamically adjust the feature correlations between different posi-
tions. The introduction of self-attention modules increases the training difficulty of the model, as additional 
parameter tuning and hyperparameter adjustments are required to ensure model stability and convergence. This 
paper addresses these issues by improving the context attention mechanism through edge guidance, solving the 
problem of the model’s over-reliance on local information. It also utilizes a multi-scale inference module to detect 
fused multi-scale image features, thereby improving the model’s generalization and stability.

In recent years, deep-learning-based methods have led to significant progress in polyp segmentation4. These 
methods use deep neural networks to learn more discriminative feature representations from endoscopic polyp 
images. However, since bounding-box detectors are usually used for polyp detection, polyp boundaries can’t be 
accurately located. To address this issue, Brandao et al.6 used fully convolutional networks (FCN) with pre-trained 
models to identify and segment polyps. Qadir et al.7 proposed a method utilizing Fully Convolutional Neural 
Networks (FCNNs) to predict 2D Gaussian shapes, aiming to achieve faster detection speeds by employing the 
FCNN model for polyp detection. Subsequently, good polyp segmentation performance was achieved by a U-Net8 
architecture, which mainly consisted of a contracting path to capture context and a symmetric expanding path 
for precise localization. However, these methods focus on segmenting the entire polyp regions, but ignore the 
region boundary constraints. So, region and boundary constraints were jointly utilized in Psi-Net9 for polyp 
segmentation, but still the region-boundary relations were not fully exploited. The PolypSegNet10 proposed by 
Mahmud et al. focuses on introducing an improved encoder-decoder architecture for automating the segmenta-
tion of polyps from colonoscopy images. Guo et al.11 proposed a confidence-aware resampling method aimed at 
addressing non-equivalent images and pixels issues in polyp segmentation tasks. Through meta-learning mixup 
techniques, the method aims to enhance the model’s generalization across different samples.In addition, Fan 
et al.2 proposed the parallel reverse attention network (PraNet) model based on the deep salient object detection 
network proposed by Chen et al.12. While the PraNet model has generally demonstrated remarkable segmenta-
tion performance, its effectiveness in solving multi-scale problems is still limited.

To address the limitations of the aforementioned polyp segmentation methods, a new implicit-edge-guided 
cross-layer fusion network is introduced in this paper. This network focuses on uncertain regions of saliency 
that are highly correlated with polyp boundaries, and these saliency regions are used as attention maps in the 
proposed network to extract refined low-level features. Finally, multi-scale feature reasoning is employed to 
detect and fuse different multi-scale image features, and thereby obtain final polyp segmentation outcomes. The 
key contributions of this paper are as follows:

	 i.	 A new deep network model is proposed for polyp segmentation. This model enhances the segmentation 
outcomes by effectively exploiting global contextual information, cross-level feature fusion, low-level 
feature refinement, and multi-scale feature inference.

	 ii.	 In order to expand the spatial receptive field of the backbone network, an attention encoding–decoding 
pair is proposed for the receptive-field coordinates.

	 iii.	 To compensate for the absence of explicit shape boundary information, an implicit-edge-enhanced con-
textual attention module is designed based on multi-headed self-attention and edge information.

	 iv.	 A multi-scale feature reasoning module is proposed to refine the low-level features with the rough predic-
tion maps obtained from the high-level fused features, and thereby obtain final segmentation outcomes.

The remainder of this paper is organized as follows. Firstly, related work on automated polyp segmentation 
methods is briefly reviewed in “Related work” section. Then, the proposed polyp segmentation model and each of 
its modules are explained in detail in “Method” section. Thus, “Experimental setup and results” section highlights 
the experimental setup and the results of the experiments, an ablation study, and comparative analysis. Finally, 
conclusions are made in “Conclusion” section.

Related work
In this section, we briefly review the literature on existing related methods of semantic segmentation, salient 
object detection, and context-aware deep learning.

Semantic segmentation
In a semantic segmentation task, each image pixel should be labelled with the most likely semantic class. With 
the recent emergence of deep learning methods, these methods have gradually become the mainstream ones for 
semantic segmentation. For example, U-Net is a semantic segmentation model based on convolutional neural 
networks. This model essentially employs a symmetric encoder-decoder structure and introduces jump connec-
tions to boost segmentation performance. In addition, a mask R-CNN13,14 jointly detects objects and performs 
semantic segmentation. A dual attention network15 employs a self-attention mechanism and a spatial-channel 
dual-branch network for local and global feature fusion. EfficientNet is an efficient neural network architecture 
that achieves good performance in semantic segmentation by scaling the network width, depth, and resolution, 
even when computational resources are limited. HRNet is a multi-scale, high-resolution neural network struc-
ture. It maintains information flow at various resolutions by parallelly connecting multiple feature maps and 
constructs dense feature representations at each resolution. This design enables HRNet to effectively capture 
semantic information at different scales, leading to significant performance improvements in tasks like image 
segmentation tasks.
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Salient object detection
Instead of locating and classifying entire image regions, salient object detection (SOD)16 focuses on identify-
ing the most important target objects or regions. Unlike semantic segmentation, SOD does not employ simple 
powerful baseline models. Instead, the state-of-the-art SOD approaches use object boundary regions as sup-
plementary information to improve the saliency estimation quality through multi-task learning strategies. One 
of the most prominent SOD approaches employs an edge-guided network (EGNet)17, where a bottom-up edge 
detection branch and a side-out fusion strategy are used towards top-down aggregation of salient object branches. 
Alternatively, a boundary-aware network (BANet)18 performs side-out fusion on boundary branches, while only 
a single stream is used for object branches. However, BANet does not treat edge detection as a separate task, 
but rather combines edge and target detection results for saliency map generation. All these methods led to 
competitive experimental results, and thus demonstrated the usefulness of edge guidance for obtaining reliable 
object representations. However, the complexity of edge detection is generally high, and edge detectors (such 
as the Canny edge detector6) usually produce redundant edges that are unrelated to the object of interest. For 
more accurate segmentation, self-attention12 considers predicted inverse regions and captures saliency details.

The above approaches inspired the following intuitive idea: without explicit edge guidance, edge-related con-
textual information can be alternately obtained from saliency maps. To realize this idea, we create uncertainty 
regions without explicit edge information and design a reverse significance plot with additional implicit edge 
regions. Our approach does not favor neither foreground nor background implicit regions, and thus leads to 
effective acquisition of edge-related contextual information. In the absence of explicit edge information, we thus 
define uncertain regions and design reverse saliency maps with implicit edge regions.

Contextual awareness
Contextual information can lead to significantly enhanced feature representations, and hence this type of infor-
mation can play a crucial role in boosting object segmentation performance. For instance, Zhao et al.19 proposed 
the PSPNet architecture, which establishes a multi-scale representation around each image pixel to get rich 
contextual information. Chen et al.20 constructed ASPP with different dilated convolutions to capture essen-
tial contextual information. In addition, rich contextual information has been obtained through self-attention 
mechanisms, including those used in DANet 15 and CCNet21. The former uses non-local modules to extract con-
textual information22, while the latter uses multiple cascaded cross-attention modules to obtain dense contextual 
information. In addition, contextual information has been also heavily exploited for target segmentation. For 
example, Zhang et al.23used multi-scale context-aware modules to extract rich contextual features. As well, Liu 
et al.24 proposed PoolNet, a deep architecture for salient object detection based on highly relevant contextual 
features extracted using a pyramid structure. Furthermore, Chen et al.25 proposed an enhanced global context-
aware segmentation method in which features containing global semantic information are transformed into 
multi-layer features at different stages.

Method
In this section, the proposed IECFNet framework is holistically introduced, and then the details of its three 
major modules are given.

Overall architecture
As shown in Fig. 1, IECFNet consists of a backbone network as well as upper and lower hierarchical networks. In 
particular, a Res2Net26 backbone network is used to extract multi-scale features fi (i = 1, 2, …, 5) from the input 

Figure 1.   IECFNet Overall Architecture, RFCA-d and RFCA-e are used to reduce the number of channels in 
the input feature map, IECA implements cross-layer fusion and MSFR implements multi-scale feature inference.
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images. The lower cascade network gradually obtains more refined saliency maps (P1 → P2 → P3) from the bottom 
up. The obtained maps are thus used in the upper fusion network to get refined lower-level features. The upper 
fusion network first performs multi-scale feature fusion, and then carries out multi-scale feature inference to 
produce the final segmentation outcomes. Constructing the proposed IECFNet architecture involves the design 
of several modules: the receptive-field coordinate attention encoder (RFCA-e), the receptive-field coordinate 
attention decoder (RFCA-d), the implicit edge-enhanced context attention (IECA) module, and the multi-scale 
feature reasoning (MSFR) module.

As shown in Fig. 1, for the lower cascade network, the feature maps generated by the high-level backbone 
network are introduced into the RFCA-e modules. These modules not only expand the network receptive field, 
but also help reduce the computing cost by reducing the number of feature map channels. Specifically, the feature 
maps of the three RFCA-e modules are connected and fed to the RFCA-d module. From the bottom to the top, 
the RFCA-d module in the first layer of the lower cascade network predicts the initial polyp significance map (P1). 
In the second layer, the output feature maps from the RFCA-e and RFCA-d modules are connected and input 
to IECA, and P1 is used as contextual information to generate the significance map P2, which represents further 
contextual information. The feature map f4 generated by the fourth layer of the backbone network is input to 
the RFCA-e module, whose output is connected with the IECA feature map in the second layer. The convolution 
results are input to the IECA map in the third layer to generate the final coarse segmentation map P3. The result-
ing P1, P2, and P3 are compared with the Ground Truth. Binary Cross Entropy loss and Intersection over Union 
loss are employed, and the three calculated losses are aggregated to obtain the average value. Utilizing the average 
loss enables more accurate model training and accelerates convergence speed through regression calculations.

Furthermore, bilinear up-sampling is performed on P3, and the result (fd) is sent to the upper fusion network 
for low-level feature refinement. Specifically, fd is multiplied with the feature maps f1, f2 and f3 respectively, 
and the results are sent to three receptive field blocks (RFB). Since the size of f3 is half of those of f1 and f2, it is 
necessary to upsample the feature map obtained after passing f3⊗fd through the RFB module. Then, the output 
is connected with the feature map obtained after passing f2⊗fd through the RFB module. Similarly, the result is 
connected with the feature map obtained after passing f1⊗fd through the RFB module. Finally, the result is sent 
to the MSFR module to get the final segmentation map. The details of each of the above modules are described 
separately below.

Receptive‑field coordinate attention encode and decoder pair
In deep learning network models, context modules are beneficial for extracting fine-grained feature maps with 
high-level semantic information and low-level details. In particular, context can be essentially accounted for 
through self-attention mechanisms, but such mechanisms are computationally intensive. However, receptive-
field coordinate attention (RFCA)27 can reduce the computational cost to a certain extent through performing 
and composing non-local operations on coordinate pairs.

Inspired by the coordinate attention mechanism, a new coordinate attention encoder is proposed (as shown 
in Fig. 2) based on the RFB design proposed by Song et al.28.

Previous studies have shown that RFCA can enhance the expressiveness of learned features in mobile net-
works. As shown in Fig. 2, RFCA-e aggregates low-level feature maps for bottom-up streaming, but this will 
inevitably increase the number of model parameters and computational complexity.

To reduce this complexity, the number of channels should be reduced without losing information details. 
Therefore, the RFCA-e module achieves this by employing the RFB module, expanding the receptive field via 
convolutions of different scales, and exploiting feature reuse and parameter sharing.

Figure 3 is referred to as the receptive-field coordinate attention decode network structure, it is labeled as 
RFCA-d.After up-sampling the RFCA-e outputs, these outputs are concatenated along the channel dimension, 
and then features are extracted via convolution. The obtained features are then globally refined and relatively 
enriched in the RFCA module. At this point, four convolutional layers are used to obtain more enhanced features. 
Finally, a saliency map fused with multi-scale features is obtained.

Figure 2.   Receptive-field coordinate attention encode network structure.
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Implicit edge‑enhanced context attention module
The performance of reverse attention12 in salient target detection and polyp segmentation tasks can be improved 
by boundary-guided SOD networks18,29. In such networks, using target boundaries as complementary supervi-
sion information generally improves the polyp detection accuracy. Therefore, reverse attention can be used as 
an effective method for implicit module.

Focusing on saliency and reverse saliency maps through reverse attention, boundaries generally appeared 
in areas with average significance scores in adjacent parts. Specifically, the average scores of boundary areas 
were around 0.5. Based on this observation, the saliency and reverse saliency maps could be assumed to have 
almost the same amount of edge information, and thus a simple subtraction operation can produce the reverse 
saliency map. Based on this idea, the implicit-edge-enhanced context attention (IECAM) module is proposed 
(as shown in Fig. 4) for extracting rich semantic features without additional boundary guidance in combination 
with uncertain regions.

Specifically, denote the previously obtained input saliency map by m. Also, denote the corresponding fore-
ground map, background map, and uncertain boundary region map as mf, mb, and mu, respectively. The rela-
tionships between these maps are expressed in Eqs. (1) and (2) as follows:

In Eqs. (1) and (2), the foreground and background maps are calculated using maximum values, so the cor-
responding regions are not only separated from each other, but also from uncertain regions. However, if Eq. (3) 
is used to find the uncertain boundary region map mu, redundant information can’t be easily obtained, and the 
computed map would be of reduced reliability.

Therefore, each pixel value is multiplied and summed with each corresponding pixel value in the input feature 
map X, and vector representations of the foreground, background, and uncertain region maps are calculated 
as follows,

where i ∈ I denotes the image pixel. As shown in Fig. 4, each vector represents the most typical feature vector 
in the feature space, so that wf and wu can effectively express the foreground and uncertain boundary regions. 
The pairwise inter-pixel similarity scores of the wf, wb and wu vectors (after applying the feature map xi) are 
calculated as follows,

(1)mf = max(m− 0.5,0),

(2)mb = max(0.5−m, 0),

(3)mu = 0.5− abs(m− 0.5).

(4)wf =
∑

i∈I

mfi xi ,

(5)wb =
∑

i∈I

mbi xi ,

(6)wu =
∑

i∈I

mui xi ,

Figure 3.   Receptive-field coordinate attention encode network structure.

Figure 4.   Implicit Edge-enhanced Context Attention.
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The similarity scores sfi , sbi and sui are then used to compute contextual feature maps for wf, wb and wu as 
follows,

where Ψ(·), Φ(·), τ(·) and δ(·) are pointwise convolution functions, and the value of each pixel ti in the contextual 
map is the weighted average of the three vectors wf, wb and wu.

Given an input feature x and a contextual feature map t, the query (Q), the key (K) and the value (V) are first 
computed using three convolutional layers:

where Lq, Lk and Lv are the corresponding convolutional layer weights.
In order to achieve better generalizability, lower computational complexity, and more effective modeling 

of complex spatial relationships, a multi-head self-attention mechanism is used where attention is computed 
based on input features. With this mechanism, the feature space is divided into multiple subspaces, such that the 
proposed model can focus on different information aspects. Attention computation is as follows,

From Eq. (12), 8 heads are used in association with the weights Wi to form the triples Qi, Ki, Vi (i = 1, …, 8). 
Then, the Attention weight matrix is calculated as

Thus, each zi is merged to form Zi, and the outcomes of the 8 headers are subsequently merged as ZC,

Finally, pointwise multiplication is performed via 3 × 3 convolution with x, and the output obtained after a 
series of convolution operations is summed with the corresponding pixel values of the original output X to obtain 
the output features (as shown in Fig. 4).

Multi‑scale feature reasoning
To effectively utilize multi-scale features, the output fd of the IECA module is used for low-level feature refine-
ment as shown in Fig. 1. The RFB module can expand the perceptual field, extract rich features, and reduce the 
computational cost. As shown in Fig. 1, fd is convolved with f1, f2, and f3 to refine the three low-level feature maps, 
respectively. The refined feature maps are independently fed to the RFB module to get features with larger recep-
tive fields: R(f1⊗fd), R(f2⊗fd), and R(f3⊗fd). Then, R(f1⊗fd) and R(f2⊗fd) are cascaded and fed to the convolution 
block, and the block outputs are further cascaded with R(f3⊗fd) and fed to a 16-channel convolution block. 
Finally, a multi-scale feature reasoning module utilizes low-level features and multi-scale strategies to generate 
the final segmentation outcomes.

As shown in Fig. 5, the MSFR module employs four convolution units and two multi-scale residual blocks 
(MRB) for detecting multi-scale features and generating the final segmentation outcomes. Specifically, as shown 
in Fig. 6, a dual-branch network is constructed, where each branch uses a different convolutional kernel. To 
retain the original information of the input X, residual learning is used for obtaining the MRB output by adding 
X and fusing the multi-scale features.

(7)
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(11)Q = Lq · x, K = Lk · t, V = Lv · t,

(12)


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Qi = QW
Q
i ,
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i ,

Vi = VWV
i ,

(13)headi = Attention(Qi ,Ki ,Vi), i = 1, . . . , 8

(14)MultiHead(Q,K ,V) = MH

(15)MH = Concact(head1, . . . , head8)W
O

(16)zi = softmax

(

QiK
T
i√
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(17)ZC = concact(Z1, . . .Z8)
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Experimental setup and results
This section gives details of the experimental environment and conditions, the experimental dataset, comparison 
against other methods, an ablation study, and experimental data analysis.

Experimental environment and condition
The PyTorch framework was used to implement the proposed polyp segmentation model, using Res2Net26 as 
a backbone network. The number of channels in the convolutional layers outside the backbone network was 
uniformly set to 32 for the small model. To facilitate training and testing, each image was uniformly resized to 
352 × 352. Resizing also allows a close approximation to realistic situations of colonoscopy, because the lens may 
rotate and zoom during colonoscopy examinations.

In addition, random expansion and erosion were also applied to the ground-truth labels to enhance generaliz-
ability. Model training was carried out using an initial learning rate of 10–4 and a polynomial learning rate decay26 
with a factor of ( 1− ( iter

itermax
)
0.9 ). Two Tesla T4 16G GPUs were employed for model training.

Datasets
In our experiments, a total of 2248 colonoscopy images were used where the images came from several datasets: 
Kvasir, CVC-ClinicDB, CVC-300, CVC-ColonDB, and ETIS. Moreover, 1450 images were randomly selected 
from the Kvasir and CVC-ClinicDB datasets to form the training dataset. The training data count represented 
about 55% of Kvasir and CVC-ClinicDB and 43% of all five datasets. The test dataset consisted of two parts: the 
non-training images of Kvasir and CVC-ClinicDB (denoted as T1) and all images of the three other datasets 
(CVC-300, CVC-ColonDB, and ETIS). And we will make a detailed comparison with other SOTA models on 
these datasets.

•	 The Kvasir30 dataset consists of 1000 polyp images, with image sizes varying from 332 × 487 to 1920 × 1072. 
The polyps in the images show blurred borders and low contrast with size and shape variations. This dataset 
was split into 900 images for training and 100 images for testing.

•	 The CVC-ClinicDB31 dataset has 612 images of sub-25 colonoscopy videos, from which 29 sequences were 
selected. The size of each image is 384 × 288. Training and testing were performed with 550 and 62 images, 
respectively.

•	 The CVC-300 dataset was selected from the EndoScene test dataset32, which contains 912 images from 44 
colonoscopy sequences. Following Fan et al.2, CVC-300 was used as a test dataset with 60 test samples.

•	 The CVC-ColonDB33 dataset was mainly collected from 15 different colonoscopy sequences, with a total of 
380 samples.

•	 The ETIS34 dataset contains 196 image samples collected from 34 colonoscopy videos. The size of each image 
is 1225 × 966, and this is the largest size among the explored datasets. This dataset is challenging since the 
polyp samples vary in size and shape, and some polyps are small and difficult to find.

Comparative analysis with the state of the art
After the training dataset was completed for IECFNet, it was first evaluated on the T1 test dataset, and Table 1 
shows the evaluation results. The results show that the IECFNet model significantly outperforms the other 
models.

The predictive performance and the generalization ability between IECFNet and mainstream methods are 
compared. These methods are U-Net22, U-Net++21,35, ResUNet++, SFA, PraNet. U-Net and U-Net++ are the 
classical methods. SFA and PraNet are the state-of-the-art methods.

As Table 1 Comparison of experimental results with previous SOTA models on T1 dataset demonstrates, we 
provide a comprehensive comparison of our ensembles with the SOTA results reported in the literature IECFNet 
outperforms other models on CVC-ClinicDB for all metrics. Specifically, the IECFNet model has a mean Dice 

Figure 5.   Multi-scale Feature Reasoning module.

Figure 6.   Multi-scale Residuals Block.
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coefficient exceeding those of U-Net++ and ResUNet++ by 3% and 2.5%, respectively. This performance improve-
ment is because that the proposed RFCE-e and RFCE-d modules can effectively extract rich fine-grained feature 
maps with high-level semantic information and low-level details. Moreover, the IECA module exploits fuzzy.

Moreover, as mentioned earlier, the image sizes for the Kvasir dataset vary from 332 × 487 to 1920 × 1072, and 
these images show wide variations in polyp size and shape (see Fig. 7). The IECFNet model can deal with such 
large variations, and clearly outperforms the PraNet and SFA models on this dataset, thanks to the proposed 
multi-scale feature reasoning module with a two-branch structure for capturing multiscale features.

To evaluate the generalization capabilities of our model, comparative experiments were conducted on three 
datasets: CVC-300, CVC-ColonDB, and ETIS. The results are shown in Table 2. The ETIS dataset turned to be 
the most challenging dataset, and the IECFNet model achieved a mean Dice coefficient of 70.7% on this dataset, 
with a margin of improvement of 7.9% compared to the PraNet model. Figure 7 Comparison of qualitative results 
with the state-of-the-art methods on five different data sets shows sample qualitative results for the proposed 
model and the other state-of-the-art models on the five datasets.

As shown in Table 2, the IECFNet model achieved good performance on all metrics. For example, the mean 
Dice coefficient reaches 91.2% on the CVC-300 dataset, and IECFNet leads PraNet by 7.9% on the ETIS data-
set. In contrast, the SFA model performance decreases sharply. Note that the images in the ETIS dataset have 
dimensions of 1225 × 966, the largest among the five datasets. Thus, one image in this dataset can have multiple 
challenging-to-segment polyps of different shapes and sizes (as shown in Fig. 7). Still, the evaluation results show 
that the IECFNet model has significant comparative advantages in dealing with multiple targets of different scales.

As shown in Fig. 7, the polyps in the third row are small, with blurred borders and low contrast, and thus 
these polyps are difficult to detect even with the naked eye. The IECFNet model still shows good segmentation 
results, while the segmentation results of the other methods are obviously not satisfactory. Also, the segmenta-
tion results of the 2nd, 4th, and 5th rows show that the IECFNet model slightly outperformed other models in 
dealing with some polyps with large differences in shape and appearance. In conclusion, for polyps with different 
shapes and sizes as well as for the multi-polyp cases, our IECFNet model demonstrated remarkably better results.

Table 1.   Comparison of experimental results with previous SOTA models on T1 dataset.

Dataset Model Mean dice Mean IoU MAE

KVASIR

U-Net 0.818 0.746 0.055

U-Net++  0.821 0.743 0.048

ResUNet++ 0.813 0.793 –

SFA 0.723 0.611 0.075

PraNet 0.898 0.840 0.030

Ours 0.907 0.856 0.028

CVC-CLINICDB

U-Net 0.823 0.755 0.019

U-Net++ 0.794 0.729 0.022

ResUNet++ 0.796 0.796 –

SFA 0.700 0.607 0.042

PraNet 0.899 0.849 0.009

Ours 0.924 0.873 0.007

Figure 7.   Comparison of qualitative results with the state-of-the-art methods on five different data sets.
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Ablation experiments
To evaluate the effectiveness of the modules in the IECFNet model, three ablation experiments were conducted. 
The ablation studies were performed on the CVC-ClinicDB and ETIS datasets because CVC-ClinicDB was 
sampled for training purposes, but ETIS was not. The ablation experimental network model is still trained using 
the T1 training set in section IV.B of the chapter.

Ablation experiments on RFCA‑e and RFCA‑d
To verify the effectiveness of the RFCA-e and RFCA-d modules, a baseline IECFNet variant was constructed 
without the RFCA-e and RFCA-d modules (this model variant is denoted by "A").

Segmentation performance was evaluated using three metrics: mean Dice coefficient (mDice), mean inter-
section over union (mIoU), and mean absolute error (MAE). The experimental results are shown in Table 3. 
Moreover, the segmentation results can be qualitatively analyzed and visualized with a heatmap of the predicted 
segmentation probabilities for different image regions. Such a heatmap clearly shows the degree of model atten-
tion and confidence for different regions.

Ablation experiments on IECA
Further ablation experiments were designed to demonstrate the effectiveness of the IECA module. Specifically, 
an IECFNet variant was built where the IECA module was replaced with a contextual attention (CA) module 
(this model variant is denoted by "B"). The output feature maps of the attention module were visualized for both 
settings to qualitatively verify the validity of the uncertainty regions. The segmentation results show that the 
IECFNet network with the IECA module easily identifies the uncertainty region that are closely related to the 
polyp boundaries. The experimental results are shown in Table 4.

Also, the model with the IECA module performed better than the one with the CA module in terms of dealing 
with inaccurate localization and boundary blurring (as shown in the second row of Fig. 8). By comparing the 
heatmaps and feature maps of the segmentation results of the different models, the IECFNet model demonstrated 
better performance on small polyps with blurred boundaries, while the model with the CA module misidentified 
the normal tissues in the neighborhood of small polyps.

Ablation experiments on MSFR
In these experiments, the MSFR module was removed from the proposed IECFNet model, while the other model 
components remained the same (this model variant is denoted by "C"). The experimental results are shown in 

Table 2.   Comparison of experimental results with other SOTA models on ETIS, CVC-ColonDB and CVC-300 
datasets.

Dataset Model Mean dice Mean IoU MAE

ETIS

U-Net 0.398 0.335 0.036

U-Net++ 0.401 0.344 0.034

SFA 0.297 0.217 0.109

PraNet 0.628 0.567 0.031

Ours 0.707 0.632 0.016

CVC-COLONDB

U-Net 0.512 0.444 0.061

U-Net++ 0.483 0.410 0.064

SFA 0.469 0.347 0.094

PraNet 0.709 0.640 0.045

Ours 0.775 0.632 0.019

CVC-300

U-Net 0.710 0.627 0.022

U-Net++ 0.707 0.624 0.018

SFA 0.467 0.329 0.065

PraNet 0.871 0.797 0.010

Ours 0.912 0.850 0.005

Table 3.   Experimental results of RFCA module.

Dataset Model Mean dice Mean IoU MAE

CVC-ClinicDB
A 0.913 0.862 0.009

IECFNet 0.924 0.873 0.007

ETIS
A 0.664 0.585 0.021

IECFNet 0.707 0.632 0.016
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Table 5. The MSFR module actually made good use of the multi-scale information of the low-level features, and 
hence boosted the polyp segmentation performance.

As shown in the fourth row of Fig. 8, the IECFNet model is better than the model without the MSFR mod-
ule in terms of dealing with the polyp size and shape variations and in handling multiple polyps. Actually, the 
IECFNet model effectively segments the small polyps in the upper left corner and improves the segmentation 
performance on polyps of larger sizes. This shows that the MSFR module of the IECFNet model is essential for 
dealing with polyps of different sizes and shapes.

Conclusion
A new polyp segmentation network, called IECFNet, is proposed. This network first enhances regions of uncer-
tainty by targeting saliency maps that are highly correlated with polyp boundaries. Then, the network refines 
low-level features using saliency-based attention maps. Finally, the network detects fused image features of 
different scales and performs multi-scale feature reasoning for accurate polyp detection. In the absence of edge 
labels, we use implicit edge regions for boundary representation. We also propose the receptive-field coordinate 
attention encoder (RFCA-e) module and the receptive-field coordinate attention decoder (RFCA-d) module to 
focus on the spatial features of the perceptual field. As well, a multi-scale feature reasoning (MSFR) module is 
proposed to get enhanced features after cross-layer feature fusion. Through a series of quantitative and qualitative 
experiments, the IECFNet model performs well compared to previous state-of-the-art methods.

Table 4.   Results of ablation experiments of IECA modules.

Dataset Model Mean dice Mean IoU MAE

CVC-ClinicDB
B 0.920 0.871 0.008

IECFNet 0.924 0.873 0.007

ETIS
B 0.714 0.625 0.015

IECFNet 0.707 0.632 0.016

Figure 8.   Ablation experimental model segmentation results. (a) Represents an image, (b) represents the 
ground-truth segmentation, (c) represents the segmentation result of the ablation experiment, (d) represents 
the segmentation heatmap of (c), (e) represents the IECFNet segmentation result, and (f) represents the 
segmentation heatmap of (e).

Table 5.   Results of MSFR module ablation experiments.

Dataset Model Mean dice Mean IoU MAE

CVC-ClinicDB
C 0.902 0.854 0.010

IECFNet 0.924 0.873 0.007

ETIS
C 0.659 0.584 0.025

IECFNet 0.707 0.632 0.016
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Data availability
The dataset used in this study can be found at https://​github.​com/​Zhang​weiwei-​ctgu.
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