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Voronoi cell finite element method 
for heat conduction analysis 
of composite materials
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In this paper, Voronoi cell finite element method (VCFEM) based on assumed flux hybrid formulation 
has been presented for heat conduction problem of particle reinforced composites material. The heat 
fluxes satisfying a priori internal thermal balance are directly approximated independently in the 
matrix and the inclusion respectively. The temperatures on element boundary and matrix-inclusion 
interface are interpolated by nodal temperature. The thermal balance on the interelement boundary 
and matrix-inclusion interface is relaxed and introduced into the functional by taking the temperature 
as Lagrange multiplier. In this way, a functional containing two variables of heat flux and temperature 
is proposed. Full field heat flux and effective thermal conductivity are obtained. Feasibility and 
effectiveness of the proposed approach are verified through several numerical examples.
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Particle reinforced composites are widely used in engineering to improve the performance of the matrix mate-
rial by adding reinforcements to the matrix material. In particle reinforced composites, when a uniform steady 
heat flux is disturbed by the presence of inclusions in the process of heat transfer, there is a local intensification 
of temperature gradients, which will thus cause great thermal stress and other adverse consequences, further 
affecting the reliability of structural  components1,2.

The study of the behavior of the microscopic heat flux distribution is of great practical importance. Also, the 
effective heat conductivity is an important parameter for the macroscopic problem. Numerical methods are usu-
ally adopted to solve the heat conduction problems of heterogeneous materials. Finite element method (FEM) 
is a sophisticated calculation tool and can be applied to heat conduction problems. The calculation accuracy of 
finite element method depends on the size of grids. For complex geometric shapes, a large number of fine meshes 
are required. Therefore, when calculating the performance of heterogeneous materials, it is necessary to divide a 
large number of fine grids at the interface between inclusions and matrix, so that the calculation area is limited 
in a very small area. To overcome these difficulties, Moorthy et al.3 proposed the Voronoi cell finite element 
method (VCFEM) based on the stress hybrid  element4. Voronoi’s grid can reflect the randomness of the size, 
shape and spatial distribution of inclusions and can analyze the model containing a large number of inclusions, 
presenting a wide applicability. This method has less mesh generation and high calculation accuracy. Since this 
method was put forward, various VCFEM have been established according to the different heterogeneities of the 
internal microstructure of composite materials. VCFEM first proposed for heterogeneous composite materials 
is divided into two group, one is transformation strain method and the other is direct implementation of inter-
face constraint. In the transformation strain formulation, strain fields are discontinuous while stress fields are 
continuous. In the latter formulation, both strain fields and stress fields are discontinuous. The latter method has 
proven to be more effective for stress analysis in the  literature3 and has been developed in all subsequent studies 
for stress analysis. Special VCFEM for  voids5,6 ,  inclusions7,8 and  cracks9,10 are established and interior stress field 
are calculated and corresponding post-processing calculations have been carried out. These special VCFEMs are 
based on assumed stress hybrid formulation. Both stress and the displacement are independently assumed in 
the inertia and on the edge of element respectively. The stress field is calculated directly in VCFEM, and it does 
not need to be obtained by displacement derivative as in finite element method. Therefore, the precision of the 
results thus obtained from VCFEM is high.

OPEN

1Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming 650500, 
China. 2Xiluodu Hydropower Plant, China Yangtze Power Co., Ltd., Zhaotong 657000, China. *email: hu_
changhao@ctg.com.cn

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-024-61263-4&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2024) 14:12083  | https://doi.org/10.1038/s41598-024-61263-4

www.nature.com/scientificreports/

VCFEM11 based on hybrid flux model and transformation temperature gradient method for materials imbed-
ded with holes were proposed for steady-state heat conduction problem. The variational theory used in the heat 
conduction process is similar to the transformation strain method in the elastic theory which has proved to be 
less effective compared with direct constraint method. Special Voronoi  elements12 based on fundamental solu-
tions are built for analyzing clustering on thermal effect in fiber reinforced cement composites. Fundamental 
solutions need to be constructed for special example, it does not have universal applicability for arbitrary shapes 
and fibers shape in that paper are all circler.

Considering advantages of VCFEM in calculating particle reinforced composites, a new VCFEM based on 
hybrid flux model and direct constraint method is proposed for heat conduction problem. In this model, the heat 
flux in the domain of each element and the temperature on the element boundary are assumed independently. 
The heat flux in the matrix and the inclusion satisfying thermal balance are assumed independently. Thermal 
balance on interelement boundary and matrix-inclusion interface inside the element are relaxed by temperature 
as Lagrange multiplier introduced into the functional. Thus, the functional containing two variables of heat flux 
and temperature is built (“Functional derivation”). Heat flux approximations satisfying equilibrium relations in 
matrix and inclusion are built up from the heat flux function respectively (“Equilibrated flux fields in VCFEM”). 
Temperatures on element boundary and matrix-inclusion interface are interpolated by nodal temperature. The 
heat flux parameters inside the element can be linked with the displacements of the internal node and the external 
node of the element, and can be condensed together with the displacements of the internal node, thus obtaining 
the same standard solution form as the traditional FEM (“Method of solution”). Numerical examples are shown 
in “Numerical examples” and conclusions are drawn in “Conclusions”.

The Voronoi cell FEM (VCFEM) formulation
Functional derivation
Microstructure containing inclusions is tessellated by Voronoi mesh, with each element containing an inclusion 
as shown in Fig. 1b. The matrix region of each element is Ωm, the inclusion region is Ωc. In the Fig. 1a it is seen 
that the element boundary Γ consists of inter-element boundary Γe, prescribed temperature boundary Γθ and 
prescribed heat flux boundary Γq with outward normal  ne(Γ = Γe ∪ Γθ ∪ Γq). Γc is matrix-inclusion interface with 
an outward normal nc =

{

ncx,n
c
y

}

 . The heat flux vector qm with cartesian component ( qmx ,qmy  ) in the Ωm and the 
heat flux vector qc with cartesian component ( qcx,qcy ) in the Ωc are assumed based on satisfying the self-equili-
brating heat flux as shown in Eq. (1) (excluding external heat transfer). This will be explained and justified in 
“Equilibrated flux fields in VCFEM”.

And Fourier’s law for the constitutive relation of heat flux is:

where  km and  kc are the thermal conductivity matrices of the matrix and inclusion, respectively. θm and θc are 
the corresponding temperatures.

(1)

∂qmx
∂x

+
∂qmy

∂y
= 0 in�m

∂qcx
∂x

+
∂qcy

∂y
= 0 in�c

(2)
qm = −km∇θm in�m

qc = −kc∇θ c in�c

Figure 1.  (a) The typical Voronoi element. (b) Voronoi mesh for materials with various inclusions. (c) The 
schematic diagram of each outer normal of ‘element A’ as the research object.
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with the boundary conditions

where θe, θ  and qn are the displacement of the element boundary in Eq. (9), the prescribed temperature on Γθ 
and the prescribed heat flux on Γq, respectively.

The outward normal heat flux qmn  of the element and the heat flux qcn in the outward normal direction at the 
matrix-inclusion interface can be expressed as

As shown in Fig. 1c, the outer normals ne, nm and nc at the inter-element boundary and matrix-inclusion 
boundary have the following transformation relations:

where the superscripted plus and minus signs are just to visually show the orientation of the normals of neigh-
boring regions on the common boundary.

Further, the following conditions of heat flux continuity are also satisfied on the matrix-inclution boundary 
Γc and the inter-element boundary Γe.

where q+ and q- denote the heat fluxes of neighboring cells on the inter-cell boundary, respectively.
The energy functional �e may be expressed for each element in terms of heat flux and boundary/interface 

temperature fields as

Equation (8) can also be expressed as:

where Γ = Γe ∪ Γθ ∪ Γq, and the element boundary temperature θe is equal to θ  when located at the prescribed 
temperature boundaries Γθ.

The total energy � for the entire domain is obtained by adding each element functional �e as:

Sm and Sc are the inverse of isotropic thermal conductivity matrix that are expressed as:

Compatible temperature fields are continuous on the inter-element boundary and the matrix-inclusion inter-
face. The temperature θe at the element boundary and the temperature θc at the matrix-inclusion interface are 
obtained by interpolating the nodal temperatures of the following form:

where L is the interpolating function, �e and �c are temperature at node of element boundary and matrix-
inclusion boundary respectively.

(3)θ e=θonŴθ
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Equilibrated flux fields in VCFEM
In VCFEM formulation, the equilibrium conditions Eq. (1) in the matrix and inclusion respectively are satisfied 
a priori in a strong sense. In the absence of heat source, heat flux fields satisfying equilibrium relations can be 
built up from the heat flux function � . In the local coordinate system, the resulting heat flux are

where ε and η are localized coordinate as in Fig. 2.
Since bringing Eq. (13) into Eq. (1) yields a constant relationship, we assume that the heat flux field assumed 

in the form of Eq. (13) is presupposed to satisfy the equilibrium conditions.
Different functional forms of the heat flux functions are chosen for the matrix and inclusion phases in VCFEM 

implementation. Independent construction of heat flux functions �m and �c in matrix and inclusion allow for 
flux discontinuities across the matrix-inclusion interface.

The proper selection of heat flux function has a significant influence on the convergence and efficiency of 
VCFEM. The construction of heat flux functions should consider the influence of shape location and distribution 
of inclusion. The influence on the shape of matrix heat flux functions far from the interface should disappear. 
Heat flux function for matrix is constructed of pure polynomial forms �m

poly and reciprocal  functions13 �m
rec , and 

heat flux function for inclusion is constructed of pure polynomial forms �c
poly.The heat flux functions for the 

matrix and inclusion are constructed as:

The local coordinate system takes the center of the inclusion as the origin, and the horizontal and longitudinal 
axes correspond to the long half axis and the short half axis of the inclusion respectively. In the above function, 
the pure polynomial part is constructed from the Pascal triangle in the local coordinates (ε , η) shown in Fig. 2, 
which is given by the following formula:

The term of the reciprocal function is expressed as:

The function f  has the following property when (ε, η) → 0 , 1/f → 0 , and can be used as a mapping function 
to construct a shape-based reciprocal heat flux function. Furthermore, at the matrix-inclusion interface, f = 1, 
and the coefficient �β is equal to the polynomial heat flux coefficient, ensuring that heat flux is continuous at 
the interface. In the region away from the inclusions, the effect of the interaction heat flux function can be over-
looked. Thus, near the matrix-inclusion interface, the heat flux is a combination of polynomial and interaction 
components, and the closer to the interface, the stronger the effect, ensuring that the approach can better compute 
the heat flux concentration at the interface. According to this characteristic, it can be taken as an elliptic function.

The associative Eqs. (13)–(16), the heat flow density can be expressed as:

(13)qx =
∂�

∂η
, qy = −

∂�
∂ε

(14)
�m

= �m
poly +�m

rec

�c
= �c

poly

(15)�m/c
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pn ,qn
∑

p=0,q=0

εpηqβpq

(16)�m
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∑
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Figure 2.  Local coordinate system for Voronoi cells.
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Therefore, each indeterminate field is expressed as product of the function P of localized coordinate alone 
and the heat flux coefficients β alone:

Take Eqs. (12) and (19) into Eq. (9):

where the H-matrix and G-matrix are defined as follows:
.

Where Γ = Γe ∪ Γθ ∪ Γq, and the element boundary temperature θe is equal to θ  on the prescribed temperature 
boundaries Γθ. ‘m’, and ‘c’ are superscripts used to distinguish the matrix and inclusion parts, respectively.

Method of solution
Setting the primary variations of �e in Eq. (20) with respect to the heat flux coefficients βm and βc , respectively, 
to zero:

yields

Heat flux coefficients β from Eq. (23) can be written as

Setting the primary variations of the total energy functional � in Eq. (10) with respect to �e and �c to zero:

gives

Take Eq. (24) into Eq. (26)
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We may divide Eq. (28) into two parts. The first part relates external node temperature of the element with 
those of other elements, satisfying:

The second part relates only within each element, since the internal node temperature of each element is only 
related to the external node temperature of itself. The relationship between them is satisfied as follows:

Substituting Eq. (31) into Eq. (29), the solved relation can be expressed as:

where, Ke=K11 − K12K
−1
22 K12 is the element stiffness matrix.

The computational structure of the program mainly consists of an input module, an initial computation 
module, a solution module and an output module. Its general calculation flow is shown in Fig. 3.

Numerical examples
A convergence study for heat flux
A convergence study of one element
A study is conducted to examine the sensitivity and convergence of the VCFEM. A square plate with side length 
of 100 mm containing an inclusion of radius 15 mm is studied. Equations (15) and (16) with various numbers 
of terms will be utilized for the computation to strike a balance between calculation efficiency and correctness. 
When the number of terms for Eqs. (15) and  (16) is taken as 20 and 14, respectively, it is discovered that the 
VCFEM has greater computing efficiency with guaranteed correctness. Thus, the heat flux field in the inclusion 
is generated with a complete 6th order heat flux function Eq. (15) corresponding to 20 β terms in the flux poly-
nomial. The matrix flux field has an additional 14 reciprocal terms due to the  5threciprocal heat flux function 
in Eq. (16). This result a total of 34 β in matrix. The thermal conductivity  km is 180 W/(mK), and the thermal 
conductivity  kc is 330 W/ (mK). Temperature of 10 K was applied to all nodes on the downside and temperature 
of 0 K was applied to all nodes on the upside.

The results of the VCFEM calculations were compared with those of the finite element software MARC. For 
MARC, two groups of meshes are established, one is a coarse mesh with 3418 triangular elements, the other is 
a fine mesh with 7141 triangular elements. All the boundary conditions are the same of Voronoi mesh. A com-
parison of heat flux in y direction at mid-section) is shown in Fig. 4. It can be seen from the figure that the results 
calculated using a large number of 7141 finite elements are agreed well to those calculated by using VCFEM. 
However, the results calculated using fewer finite element of 3418 elements deviate from the accurate values. 
This proves high computational efficiency and accuracy of the proposed VCFEM.

Furthermore, in order to verify the applicability of VCFEM to generally shaped materials, a non-rectangular 
shaped model was computed with VCFEM (Fig. 5d–f) and the results were compared with those of the finite 
element software MARC(Fig. 5a–c). Where 34β is still used for the matrix and 20 polynomial terms are used 
for inclusions. The cloud diagram of the heat flux is shown in Figs. 5, and 6 illustrates the comparison results 
on the sampling path in Fig. 5b. The results show that the VCFEM calculations are generally satisfactory for 
models with pointed/cornered profiles, but the accuracy at the pointed corners needs to be improved as shown 
at the right end of Fig. 6b.
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Figure 3.  Flowchart of VCFEM calculation.
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Sensitivity to geometric distortion
This section’s primary goal is to examine, using the model with four Voronoi cells in Fig. 7, how sensitive Voronoi 
cells are to geometric distortions. The model’s upper and lower boundaries have temperatures of 0 K and 10 K, 
respectively. The left and right boundaries are adiabatic, and the matrix and inclusions’ thermal conductivities 
are 180 W/mK and 330 W/mK, respectively. 

Figure 7a shows the most ideal case, and the cells of Fig. 7b, c have been partitioned into the grid using linear 
and parabolic forms,  respectively14. In the calculations, it is assumed that the values are positive when the result-
ing rightward and upward δ. The geometric distortion is determined by the parameter 2δ/l, which fluctuates in 
the range −0.3:0.3 to ignore as much as possible the effect due to the close distance between the inclusion and 

Figure 4.  Flux distribution along x/L = 0.5. (a) Comparison of the results of different combinations of Poly and 
Rec terms with MARC calculations; (b) the results of VCFEM and MARC with different number of cells are 
calculated.

Figure 5.  Mesh delineation and computational results for non-rectangular models. (a,d) MARC’s meshing 
scheme with 4754 elements and a VCFEM cell; (b,e) horizontal heat flux  qx calculated by MARC and VCFEM; 
(c,f) vertical heat flux  qy calculated by MARC and VCFEM.
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the cell boundary. Figure 7 shows how the heat flux varies with 2δ/l for the matrix and inclusions at A and B, 
respectively. Calculations in Fig. 8 demonstrate that when the mesh produces geometrical distortions, changes 
on the order of  10–2 are produced in the heat fluxes of the matrix and inclusions. As a result, the Voronoi cell’s 
effect on geometrical distortion when calculating heat flux can be judged to be within an acceptable error range. 
This suggests that the effects of geometric distortion in conventional finite element methods have been somewhat 
mitigated by VCFEM.

A convergence study for RVE containing multiple inclusions
In this example, RVE (2.5 mm × 2.5 mm) containing 16 elliptical inclusions with size and location randomly 
distributed is considered. The volume fraction of inclusions is 5%. Figure 9 shows mesh by MARC and VCFEM 
models. The MARC mesh consists of 14,860 Tri elements while the VCFEM mesh has only 16 elements cor-
responding to the number of inclusions. The thermal conductivity of the matrix is 180W/mK and the thermal 
conductivity of inclusions is 330W/mK. A temperature of 10 K is applied to the bottom edge and a tempera-
ture of 0 K is applied to the top edge of the model. Figure 10 shows the true microscopic heat flux at the mid-
section(y/L = 0.5). Full field heat flux distribution is shown in Fig. 11.

Effect of microstructure on response
In this section the effect of volume fraction, shape, thermal conductivity and number of inclusions, on the mac-
roscopic as well as true microstructural response of RVEs is studied. Representative volume elements (RVE) 
characterize a point by microstructure. The effective heat conductive of RVE correspond to average heat flux 
divided by the temperature gradient. The macroscopic average heat flux corresponds to the volume average of 
the microscopic heat flux. When apply fixed temperature �2 on the upside and �1 on the downside, the vertical 
average heat flux of the RVE is calculated as

Figure 6.  Heat flux on the sampling path in Fig. 5. (a) Horizontal heat flux  qx comparison results, (b) vertical 
heat flux  qy comparison results.

Figure 7.  Meshing scheme for Voronoi elements: (a) normal Voronoi cells, (b) Voronoi cells with small linear 
geometric distortions and (c) Voronoi cells with small parabolic geometric distortions.
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where, L is the side length of a square RVM.
The temperature gradient in the Y direction was calculated from:

The Voronoi cell finite element model uses 34 β parameters in the heat flux interpolation for matrix and 20 
β parameters in the heat flux interpolation for inclusion for all case parameters in the stress interpolation for 
all cases.

Effect of volume fraction of inclusion
In this study, the thermal conductivity  km of matrix is 180 W/mK, and the thermal conductivity  kc of reinforce-
ment is 330 m W/mK. Various volume fractions of circular inclusions are considered. The macroscopic response 
effective thermal conductivity (ke) increases with the increase of inclusion volume fraction, as shown in the 
Fig. 12. This is expected since larger volume of the inclusions will cause the overall response to move in the direc-
tion of its individual response. At the same time, the analytical value calculated by flexible  model12 as Eq. (35) 
is also drawn in the Fig. 12. When the volume fraction of inclusion is 5%, the relative error between the value 
calculated by VCFEM and the analytical value is 0.1%, when the volume fraction of inclusion is 40%, the relative 
error between the value calculated by VCFEM and the analytical value is 1.4%. Figure 13 shows the y-direction 
heat flux cloud map corresponding to the volume fraction of the inclusions mentioned above.

(33)qy =

∫

RME qyd�
∫

RME d�
=

∑
∫∫

qy(x, y)dxdy

L2

(34)εy = (�1 −�2)/L

Figure 8.  (a) Sensitivity of the heat flux density of the matrix at A to geometric distortion. (b) Sensitivity of the 
heat flux density of inclusions at B to geometric distortion.

Figure 9.  (a) Marc mesh and (b) Voronoi mesh with 16 inclusions.



10

Vol:.(1234567890)

Scientific Reports |        (2024) 14:12083  | https://doi.org/10.1038/s41598-024-61263-4

www.nature.com/scientificreports/

where,A =

(

f
2vm − 1

)

km +

(

f
2vc − 1

)

kc , vm and vc are the volume fractions of matrix and inclusions, respec-
tively, and the flexible  factor12 f = 4.5.

Effect of shape, orientation and thermal conductivity of inclusion
In this study, the thermal conductivity  km of matrix is 180 W/(m K), and the thermal conductivity  kc of rein-
forcement varies from 30 to 480 W/(m K) and increases gradually at intervals of 50 W/(mK). The effect of 
shape and orientation together with of thermal conductivity of inclusions on the behavior of microstructure 
and macrostructure is investigated respectively. Sixteen elliptical inclusions of various shapes, orientation and 
thermal conductivity but with a constant volume fraction of inclusion of 5%, are distributed randomly in the 
RVE. Figure 9b shows the VCFEM mesh for the fifth group, and Fig. 15 shows the VCFEM meshes for the other 
four different distributions. They are

(1)  major axis in the horizontal direction
(2)  major axis in the vertical direction
(3)  major axis rotates 45° from the horizontal direction
(4) major axis rotates 145° from the horizontal direction
(5) arbitrary shapes, sizes and orientation.

(35)ke =
1

f − 2

{

A+

√

A2 + 2
(

f − 2
)

kmkc

}

Figure 11.  Contour plots of the flux  qy with (a) MARC and (b) VCFEM.

Figure 10.  Flux distribution along y/L = 0.5.
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The ratio of major to the minor axis, for ellipses in the last four cases is 2.3. For each of the five groups, the 
effective thermal conductivity changing with different thermal conductivity of particles were calculated and 
shown in Fig. 2. It can be seen from the Fig. 2 that when the thermal conductivity of the particles increases from 
30W/mK to 270 W/mK,  ke of the composite material shows an increasing trend. however, the effects of particle 
shape on the effective thermal conductivity are different with different particle thermal conductivity.

(1) When 30W/mK ≤  kc < 130 W/mK, the shape and direction of the particles have great influence on the 
macroscopic  ke as shown in Fig. 14. At this interval, the  km is higher, the  Kc is lower, and the matrix is the 
main carrier for conducting heat. When the orientation of the particles is different and the distance between 
the edges of the particle’s changes, the width and path of the heat conduction channel of the matrix will 
change. When the particles are distributed in the group 1, the distance between the edges of the particles 
is small, thus the width of the heat conduction channel of the matrix becomes narrow, and the matrix is 
hindered more on the heat conduction path. Therefore,  ke of the composite material is reduced, and  ke of 
microstructures of the group 2 is 162.69 W/mK which is the smallest among the five groups, and  ke of the 
group 3 is 170.16 W/mK which is the largest. The difference between the maximum value and the minimum 
value is 7.47W/mK.  ke of other microstructures is between therm. Taking  km = 180 W/mK, kc = 30 W/mK 
for example, Fig. 15 is a contour of microscopic heat flux distribution of composite materials for group 
1 and group 2 simulated by VCFEM. From Fig. 15 we can see that when the heat flux meets the particles 

Figure 12.  ke computed by VCFEM and analytical method.

Figure 13.  Heat flux fields in y direction with volume fracture of inclusion varies from 5 to 40% at 5% intervals.
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Figure 14.  ke varies with different inclusion shape and Kc.

Figure 15.  Heat flux in y direction with  km = 180(W/mK) and  kc = 330(W/mK) for (a) group 1, (b) group 2, (c) 
group 3 and (d) group 4.
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with low thermal conductivity, only a small part of the heat flux enters into the particles, and the heat flux 
density inside the particles is the lowest. Some of the heat flux bypasses the particles, and the heat flux 
density reaches the maximum at the position to the right and left edges of particles. The difference between 
the peak values of group 1 and 2 is 165 W/mK.

(2) When 130 ≤ Kc ≤ 230, that is  kc is similar to  km,  ke of the composite seems not changes with various micro-
structures by changing the inclusion orientation.

(3) When 230W/mK ≤  kc < 480 W/mK, the shape and direction of the particles have great influence on the ke as 
shown in Fig. 14. At this interval,  kc is higher than  km. The matrix and inclusion are both the main carrier 
for conducting heat.  ke of the composite material is increased. Effect of inclusion orientation on  ke is almost 
the same as that of lower  kc.  ke of microstructures of the group 1 is 186.61 W/mK which is the smallest 
among the five groups, and  ke of the group 2 is 189.48 W/mK which is the largest. The difference between 
the maximum value and the minimum value is 2.87 W/mK. Taking  km = 180 W/mK,  kc = 330 W/mK for 
example, Fig. 15a, b is a contour of microscopic heat flux distribution of composite materials for group 1 
and group 2 simulated by VCFEM. From Fig. 15 we can see that when the heat flux meets the particles with 
high thermal conductivity, a great of the heat flux enters into the particles, and the heat flux density inside 
the particles is the highest. Some of the heat flux bypasses the particles, and the heat flux density reaches 
the minimum at the position to the right and left edges of particles.

It can therefore be conducted that microscopic as well as macroscopic response is highly sensitive to the 
distribution of shapes of inclusions when kc is deviated from  km, while those response is insensitive to the dis-
tribution of shapes of inclusions when kc is equivalent with  km.

Effect of inclusion numbers
In this study, the effect of number of inclusions on the behavior of microstructure and macrostructure is inves-
tigated. Inclusions of various shapes, sizes and orientation are distributed randomly in the RVE. Four groups of 
different inclusion numbers with a constant volume fraction of Vc = 5%, are studied. These four groups contain50, 
100, 500 and 16 inclusions respectively. Matrix  km = 180 W/mK and inclusion  kc = 330 W/mK are used for this 
study. Contour plot of microstructures with different number of 50, 100 and 500 inclusions are shown in Fig. 16, 
while 16 inclusions is shown in Fig. 16b. From these figures, it can be seen that the heat flux distribution of micro-
structures containing 16, 50 and 100 inclusions is very similar, the difference between the maximum value is very 

Figure 16.  Heat flux in y direction with  km = 180(W/mK) and  kc = 330(W/mK) for (a) 50 inclusions, (b) 100 
inclusions and (c) 500 inclusions.
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small, and the difference between the minimum values is also very small. There is gap between the minimum 
heat flux for the RVE containing 500 inclusions and others. Macroscopic effective thermal conductivity for those 
four RVEs are listed in Table 1. From these data, it can be seen that  ke is insensitive to the number of inclusions.

Conclusions
This paper develops a VCFEM based on hybrid flux model and direct constraint method for steady-state heat 
conduction problem of composites imbedded with inclusions. The VCFEM is based on a two-field parameter 
function, that makes independent assumptions on the heat flux and boundary temperature fields in each ele-
ment. Heat flux continuous on matrix-inclusion interface and inter-element boundary are relaxed and directly 
introduced in the functional by temperature as Lagrange. The accuracy and efficiency of VCFEM are verified 
by comparison with conventional finite element method inserted in MARC. In addition, the study of cells that 
produce geometric distortions in both linear and parabolic forms exemplifies the fact that geometric distortions 
will have a smaller effect in VCFEM.

Influence of microstructure morphology such as inclusion shape, size, and distribution on heat flux distribu-
tion and effective heat conductivity are studied by VCFEM.

It is observed that the ke of the composite tends to inclusion direction with the increase of volume percent-
age of inclusions. The shape and orientation of inclusions have great influence on the ke of composite materials, 
when the properties of inclusions are different from matrix, which is usually exist in real microstructures. When 
the volume fraction of inclusion is constant, the number of inclusions has little effect on the ke of composite 
materials, however, it has great influence on microstructure. In conclusion, VCFEM is very effective for analyzing 
composite materials with randomly distributed inclusion which often occur in actual material.

Data availability
The data that support the findings of this study are available from the first author and the corresponding author, 
upon reasonable request.
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