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Least squares reverse 
time migration imaging 
with illumination preconditioned 
based on improved PRP conjugate 
gradients
Xiaodan Zhang 1*, Rui Li 1, Lin Cui 1, Dongxiao Liu 1, Guizhong Liu 2 & Zhiyu Zhang 3

Least squares reverse time migration (LSRTM) imaging is the one of the most accurate methods for 
migration imaging at present, and Polak–Ribiere–Polyak conjugate gradient (PRPCG) for LSRTM 
has the good numerical performance but weak convergence, so we construct an optimization factor 
to improve the iteration direction of the gradient, which can automatically generate a sufficient 
descent direction. The improved PRPCG (IPRPCG) can reduce the data residual values and speed up 
the iteration. And the illumination preconditioned (IP) operator is employed to IPRPCG-LSRTM which 
solves the problem of low resolution due to the insufficient iterative gradient information. In this 
paper, the experiments show that the imaging results of the proposed method (IPRPCG-IP-LSRTM) is 
improved greatly in detail characterization and events continuity, the iterative curve converged faster 
significantly, and the normalized data residual was reduced by 6.55% on average, which improved the 
accuracy of migration imaging effectively.

With the development of oil and gas exploration, it poses greater challenges to traditional migration imaging 
methods for underground structure  imaging1,2. In order to improve imaging accuracy and amplitude fidelity, 
researchers proposed least squares reverse time migration (LSRTM)3,4. LSRTM often uses Conjugate Gradient 
(CG) algorithm to find the optimal solution. The classical CG methods include the Fletcher–Reeves (FR) , Polak-
Ribiere-Polyak (PRP) , Hestenes Stiefel (HS), and Conjugate Descent (CD) method. Their different iteration 
directions and step sizes will show different convergence  rates5,6. Therefor, it is an important topic in the applica-
tion research of LSRTM to research the new algorithm of iteration directions to achieve global  convergence7,8. 
For the problem of insufficient illumination in deep subsurface  imaging9–11, which leads to insufficient iterative 
gradient information resulting in low imaging resolution and slow convergence of iterative curves, illumination 
preprocessing has been developed and has attracted extensive research in  academia12–14.

As for the development of conjugate gradient algorithm and illumination preprocessing, Liu et al.15 performed 
time-domain full waveform inversion for eight versions of the CG method, and numerical experiments showed 
that the PRP conjugate gradient (PRPCG) method is more efficient. Kim et al.16 proposed direction-oriented 
wavefield imaging, which compensates for possible illumination effects during acquisition and can produce high-
fidelity depth profiles and correct imaging of complex wavepaths. Yu et al.17 developed a 3D nonlinear conjugate 
gradient traveltime inversion method using the PRP conjugate gradient method for solving constrained damping 
least squares problems, and model tests showed that the method can substantially improve the inversion reso-
lution. Chen et al.18 proposed the use of a wave illumination compensation method for the possible existence 
of offset shadows in seismic wave illumination, which can eliminate the offset imaging shadows and improve 
the computational efficiency. Wu et al.19 introduced the reweighted regularized conjugate gradient method of 
PRP formula to constrain the inversion for the "skin effect" problem in gravity data inversion, which improved 
the computational efficiency and accuracy of the inversion. Sun et al.20 developed a stabilization compensation 
operator that attenuates poor illumination of subsurface structures and does not amplify high frequency noise 
in the data. Hu et al.21 derived the gradient of the target generalized function on the model parameters from the 
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Love wave fluctuation equation combined with the PRP conjugate gradient algorithm, and model tests verified 
that the method can improve the computational efficiency. Du et al.22 used log-absolute error functions for AVO 
inversion and used a new spectral PRP conjugate gradient method in iterations to solve large-scale optimization 
problems, and then they combined a smooth nonconvex regularization method with adaptive individual weight 
gain and used a PRP conjugate gradient method to minimize the objective  function23, recently they used a smooth 
L1 parametrization as the loss function and used a new spectral PRP conjugate gradient algorithm to optimize the 
inversion, and proposed a robust AVO inversion algorithm based on generalized nonconvex dictionary  learning24.

The conventional PRPCG method is considered to have good stability and numerical performance, but it 
may fall into infinite loops near local minima during iteration, making the objective function unable to con-
verge. Therefore, to ensure the inversion stability and improve the inversion results, this paper first proposed 
an improved PRPCG-LSRTM (IPRPCG-LSRTM) imaging method, which constructed an optimization factor 
to improve the iteration direction to make it fall sufficiently and can improve the iteration speed. Subsequently, 
a bidirectional illumination preconditioning (IP) operator was used for IPRPCG-LSRTM, and the IPRPCG-
IP-LSRTM was proposed, which can solve the low-resolution problem caused by insufficient iterative gradient 
information.

Methods
Principles of LSRTM. LSRTM is based on traditional reverse time migration imaging and combines inver-
sion ideas to perform migration imaging on seismic profiles. It is the migration result under the framework of 
least squares inversion, which corrects the migration imaging process and results. The migration principle is 
shown in Fig. 1:

Figure 1 is the migration principle diagram under the constant velocity model. The profile that has not been 
migration is 0C1D1 , and the migration profile is 0CD . On the unmigrated profile 0C1D1 , the reflected wave gen-
erate from point C directly below point E is observed at point A and plotted at point C1 . The true reflection point 
is in the upward tilt direction of its apparent position. After using the IPRPCG-IP-LSRTM method proposed in 
this article, the reflection layer segment 0C1D1 can be regressed to its real position CD.

Born approximation shows that:

where s is the source point, x is the underground reflection point, and r is the detection point, D(r, t|s, 0) is the 
recorded seismic data model, m(x) is the reflectivity model, W(t) is the source, G(r, t|x, 0) is Green function 
from source to underground reflection point, G(r, t|s, 0) is Green function from underground reflection point 
to detection point. The matrix of Born approximation is expressed as:

where L is the Born forward operator, also known as the reverse migration operator.
Since L−1 is difficult to achieve, the conventional reverse time offset is simplified using LT instead of L−1 . The 

expression is as follows:

where LT denotes the adjoint operator, also known as the migration operator.
This substitution simplifies the process of solving the reverse time migration, but it has an impact on the 

resolution and amplitude preservation of the migration imaging. To mitigate the negative effects of this effect, 
the idea of least square inversion is introduced to construct the objective function for fitting and minimizing 
the objective function:

(1)D(r, t|s, 0) =

∫

m(x)W(t) ∗ G(r, t|x, 0) ∗ G(r, t|s, 0)dx

(2)d = Lm

(3)m = LTd
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Figure 1.  Diagram of migration principle.
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where dobs is the observed seismic data.The minimization of Eq. (4) is to minimize the derivative of the objective 
function with respect to the model m:

The equation can be solved as follows:

where LTL is the Hessian matrix, forming the Hessian matrix is challenging, and computing the inverse of this 
matrix is also very difficult, especially for large 3D imaging applications. Therefore, an iterative algorithm is used 
to solve the above objective function.

In this paper, data reconstruction of simulated seismic data can be achieved by these equations as follows:

Equation (7) is the wave field forward modeling, where v0(x) is the background velocity, u0(xs , x, t) is the 
background wave field, δ(x − xs) is the Dirac function of the source. Equation (8) uses the background wave 
field and model parameter m as the secondary source, the disturbed wave field δu(xs , xr , t) is obtained. It can 
be seen that the solution of the disturbance wave field requires two finite difference simulations. The numerical 
simulation process of the Finite difference method is shown in Appendix 1. Equation (9) records the disturbance 
wave field at the detection point xr to obtain simulated data d(xs , xr , t).

Principles of IPRPCG-IP-LSRTM. In solving the objective function Eq. (4), to avoid directly solving the 
inverse of the Hessian matrix, the gradient method is often used for multiple indirect iterations. The conjugate 
gradient method has the characteristics of a small amount of calculation, high accuracy, good stability, and low 
storage requirements. Due to the different conjugate gradient parameters β , it can be divided into FR, PRP, HS, 
CD, etc. Among them, PRPCG is recognized as one of the best numerical performance  methods25. When the 
algorithm generates a small step, the gradient of this objective function is close to the gradient of the previous 
objective function, and the search direction will automatically approach the negative gradient direction, which 
can effectively avoid the generation of successive small steps. Therefore, this article uses the PRPCG to find the 
least squares optimal solution, and the calculation formula for the parameter β is:

where gk = ∇f (xk) represents the gradient operator of the objective function f (x) . However, the convergence 
of the PRPCG is relatively weak, and it may loop infinitely far from the global optimal solution, and produce 
a search direction that makes the objective function rise resulting in diverging scenario and stopping further 
 computations26. Therefore, a parameter β containing an optimization factor σ is constructed in this paper to 
solve this problem. This factor can modify the iteration direction of β to reduce the residual values and improve 
the iteration speed, as shown in Eq. (11):

To decrease the value of the βk , the optimization factor σk must satisfy σk > 1 . so the construction of σk is 
shown as follows:

In Eq. (12), µk is defined as the limiting factor of σk . The limiting factor µk is related to the current gradient 
and the last gradient, and we construct a function µk , which is given as µk = f (gk−1, gk) . According to the theory 
of global convergence and the direction of the fastest descending gradient, the expression of µk is constructed 
as Eq. (13):
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where τ is a constant greater than or equal to one. The limiting factor µk is the fine-tuning quantity of βk , which 
modifies the optimization factor σk through the last gradient value and the current gradient value based on 
ensuring the decline of βk . Then, the optimized conjugate gradient parameter βk is given as follows:

For any k ≥ 1 , due to 1+ τ

∣

∣gTk gk−1

∣

∣

gTk gk
> 1 , the following equation holds:

It can be seen that the optimization factor σk can automatically adjust parameter βk to meet |βk| <
∣

∣βPRP
k

∣

∣ , 
that is, the constructed σk can adjust the descent direction of the gradient to automatically generate a sufficient 
descent direction, search along the feasible descent direction, find the feasible point to lower the objective func-
tion, determine the appropriate moving step and accelerate the convergence speed of the objective function.

In LSRTM, the gradient is the reverse time migration imaging result of the residual between simulated seismic 
data and observed seismic data, which also requires two finite difference calculations to calculate the background 
and residual wave fields:

where q(xs , x, t) is the residual wave field, the background wave field is a forward continuation in the time direc-
tion, and the residual wave field is a backward continuation in the time direction. Therefore, the gradient can be 
obtained using the following formula:

The calculation of gradient is the reverse time migration of data residuals, which can be expressed in the 
following matrix form:

The search direction generated by the IPRPCG satisfies the sufficient descent condition and the global con-
vergence theorem. The convergence analysis of the algorithm is shown in Appendix 2. The specific process of 
using IPRPCG to find the optimal solution for least-squares reverse time migration (IPRPCG-LSRTM) is shown 
in Table 1.

IPRPCG not only retains the excellent performance of traditional PRPCG, but also makes the search direc-
tion satisfy the condition that it is always the descent direction of the objective function, which has full descent, 
good global convergence performance and numerical performance. The accurate descent direction can make 
the data residuals smaller, so it has a great improvement in the computational accuracy and imaging resolution.

As the conventional migration operator is only the transpose of the forward operator, the illumination of some 
underground structures, especially deep and high-speed salt bodies, will be uneven, or even unable to  image27. 
The Hessian operator can characterize the distribution of underground lighting energy, and its Inverse matrix 
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∑
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(19)g = LT (Lm− dobs)

Table 1.  The solution process of IPRPCG-LSRTM.

The input:
m = 0 : Initial value of reflection model
ϕ > 0 : Threshold for iterative data residuals, or kmax : The maximum number of iterations, its initial value k = 0

The output:
m : Image results of LSRTM

Step 1: Obtain the gradient g of the objective function:
gk = LT (Lmk−1 − dobs) (20)
Step 2:Take conjugate gradient optimization parameters β , conjugate gradient d and the iteration step α:

βk =
gTk (gk−gk−1)

σkg
T
k−1

gk−1

(21)

dk = −gk + βkdk−1 (22)

αk =
dTk gk

(Ldk)T (Ldk)
(23)

Step 3: Update the model:
mk = mk−1 + αkdk (24)
Step 4: If gk < ϕ or k = kmax is satisfied, the algorithm is terminated, output imaging results. If no, return to Step 1
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can compensate for the uneven underground lighting phenomenon, helping us to get clear images of deep and 
sub-salt  structures28. However, it is difficult to calculate the inverse of the full Hessian matrix under the current 
computing power. Considering that the Hessian matrix is a matrix with dominant principal diagonal elements, 
its diagonal elements can be used to approximate the Hessian operator, and then its Inverse matrix can be used 
as a precondition operator in the implementation of  LSRTM29, which can also improve the imaging resolution. 
Therefore, this paper introduces the Illumination precondition operator P = H−1 in the optimization parameters 
βk and conjugate gradient dk , whose approximation matrix is :

where H(a) is the approximately linear part of the Hessian operator, Re{} means taking the real part for the com-
plex numbers in parentheses, w is the angular frequency, xs denotes the location of the source point, r denotes 
the location of the detector point, x denotes the location of any point in the subsurface, fs(w) is the frequency 
domain expression of the source , G(xs , x,w) is the Green’s function of the source, and G(x, r,w) is the Green’s 
function of the checkpoint.

Then the optimized parameters εk and conjugate gradient hk with IP are shown follows:

Compared with the CG method, the proposed method IPRPCG-IP only adds a precondition operator and 
some dot product calculation at the beginning of the calculation, which can be ignored compared with LSRTM, 
but it can greatly improve the migration imaging effect. The overall implementation flow chart of IPRPCG-IP-
LSRTM proposed in this paper is shown in Fig. 2.

Experimental results and analysis
Noise resistance test. Sigsbee2B truncation model was used for testing the noise resistance of PRPCG-
LSRTM, IPRPCG-LSRTM, and IPRPCG-IP-LSRTM imaging. The velocity models were shown in Fig. 3. Fig-
ure  3a was the real velocity model, and Fig.  3b was the background velocity model, which was obtained by 
real velocity model smoothing. The real reflection coefficient model was shown in Fig. 3c, and the detailed test 
parameters were shown in Table 2.

PRPCG-LSRTM, IPRPCG-LSRTM and IPRPCG-IP-LSRTM imaging methods were employed on Sigsbee2B 
truncation model, and the three methods had been used for 30 iterations. The imaging results were shown in 
Fig. 4, where Fig. 4a was the PRPCG-LSRTM imaging results, Fig. 4b was the IPRPCG-LSRTM imaging results, 
and Fig. 4c was the IPRPCG-IP-LSRTM imaging results. From the above three migration imaging results, it 
can be seen that the PRPCG-LSRTM imaging energy was unbalanced and more serious low-frequency noise 
still remained. Comparing with PRPCG-LSRTM, IPRPCG-LSRTM method imaging of Fig. 4b, the noise in the 
imaging profile was suppressed, the regional energy was compensated, and the tomographic part was clearer, and 
the effect was better than that of PRPCG-LSRTM, which proved the effectiveness of IPRPCG-LSRTM. IPRPCG-
IP-LSRTM imaging of Fig. 4c compared with IPRPCG-LSRTM of Fig. 4b, the low-frequency noise was further 
suppressed, the profile amplitude was more balanced, the signal-to-noise ratio was higher, the wavefield energy 
was more balanced, and the imaging quality was improved significantly, which can be seen in the red and blue 
circle of Fig. 4a–c.

To evaluate the image quality of the experimental results more rigorously, Table 3 quantitatively compared 
the imaging results of the sigsbee2B truncated model using Peak Signal to Noise Ratio (PSNR) and Structural 
Similarity (SSIM). From the data in the table, it can be seen that the imaging results of IPRPCG-LSRTM itera-
tion 30 times increased PSNR and SSIM values compared to PRPCG-LSRTM iteration 30 times, indicating a 
significant improvement in imaging quality. However, IPRPCG-IP-LSRTM iteration 30 times has the highest 
PSNR and SSIM values, indicating the highest image quality generated.

Figure 5 showed the comparison of convergence curves for 30 iterations of the three methods using PRPCG-
LSRTM, IPRPCG-LSRTM, and IPRPCG-IP-LSRTM.

It can be seen from the Fig. 5 that the three methods were stable from the 15th iterations. IPRPCG-IP-LSRTM 
(red) converged the fastest in the three methods, which improved the computational efficiency. The residual value 
of IPRPCG-IP-LSRTM was the smallest, so the imaging result was the closest to the real structure, the accuracy 
of IPRPCG-IP-LSRTM imaging was the best.

Table 4 showed the comparison of the program running time of PRPCG-LSRTM, IPRPCG-LSRTM, and 
IPRPCG-IP-LSRTM with 30 iterations. It can be seen that the program running time of IPRPCG-LSRTM with 
30 iterations was the shortest, which improved the computational efficiency by about 24.73% compared to 
PRPCG-LSRTM. After adding IP, the program running time of IPRPCG-IP-LSRTM was extended compared 
to IPRPCG-LSRTM due to the addition of a preconditioned operator and some point multiplication calcula-
tions at the beginning of the calculation. However, compared to PRPCG-LSRTM, the program running time of 
IPRPCG-IP-LSRTM with 30 iterations was significantly reduced, and the computational efficiency was improved 
by about 23.59%.

To compare the amplitude fidelity of PRPCG-LSRTM, IPRPCG-LSRTM, and IPRPCG-IP-LSRTM, single-
channel imaging data at a distance of 2400m (indicated by the yellow dashed line) were extracted from the profiles 
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shown in Figs. 3c, and 4a–c. for comparison, as shown in Fig. 6. From the figure, it can be seen that the effect of 
IPRPCG-LSRTM (green) was better than that of PRPCG-LSRTM (blue), but they only had good amplitude fidel-
ity in the shallow layer, and there was a significant difference in the true reflection coefficient (black dashed line) 
in the middle and deep layers. And the amplitude of IPRPCG-IP-LSRTM (red) was closer to the real reflection 
coefficient, especially in the middle and deep layers, indicating that IPRPCG-IP-LSRTM could better compensate 
for the amplitude and illumination of energy attenuation caused by geometric diffusion or absorption attenuation 
in the middle and deep layers, thus it had higher amplitude preservation.

Artificially adding random noise to Sigsbee2B truncation model to form a data volume with low signal-to-
noise ratio, which can be seen in Fig. 7.

Figure 7a was the original shot data and Fig. 7b was the one of the shots with low signal-to-noise data. 
PRPCG-LSRTM and IPRPCG-IP-LSRTM were employed on the low signal-to-noise data.

Figure 8 was the imaging results of the Low signal-to-noise ratio shot data of Sigsbee2B. Figure 8a was 
the imaging results of PRPCG-LSRTM with 30 iterations, and Fig. 8b was the imaging results of IPRPCG-IP-
LSRTM with 30 iterations. We can be seen that both contained migration artifacts caused by the noise, but the 
low-frequency noise was suppressed better by IPRPCG-IP-LSRTM in Fig. 8b, and the imaging energy was more 
balanced, and the imaging resolution was higher.

Accuracy and convergence test. Marmousi model was employed to test the convergence and accuracy of 
RTM, PRPCG-LSRTM, and IPRPCG-IP-LSRTM proposed in this paper, which can be shown in Fig. 9. Figure 9a 
was Marmousi’s real velocity model. The velocity range was shown as the scale. Figure 9b was the background 
velocity model obtained by Marmousi’s real velocity model smoothing. The detailed test parameters were shown 
in Table 5.

The migration imaging results of the above methods were shown in Fig. 10. Figure 10a showed the RTM 
imaging results of Marmousi. It can be seen that there was the serious low-frequency noise in the imaging results, 
the shallow imaging was week and the deep area imaging was not clear. Figure 10b showed the imaging result 

Figure 2.  The flow chart of IPRPCG-IP-LSRTM.
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Figure 3.  Sigsbee2B truncation velocity model.

Table 2.  Test parameters for sigsbee2B truncation model.

Model parameter

Mesh Rectangular grid with a grid size of 600 × 200 and a grid spacing of 7.62 m

Velocity distribution [1700 2200] m/s, Please refer to Fig. 3a for details

Observation system
Position At the surface

Source The Ricker wavelet with a main frequency of 20 Hz excited a total of 60 shots, with the first shot at a position 
of 38.1 m and a shot interval of 76.2 m. Each shot received a total of 600 shots

Seismic forward modeling parameters

Wave field continuation Finite Difference

Propagation time Recorded duration of 2.5s, sampling interval of 1.0ms

Wave equation Acoustic wave Wave equation, assuming the density is constant

Boundary Spongy boundary condition

Inversion parameters
Initial model The smoothed background velocity model was shown in Fig. 3b for details

Objective function solving IPRPCG-IP method
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after Laplacian filtering based on RTM, and it can be seen from the figure that there was the serious noise in 
shallow surface area.

Figure 10c–f showed the migration imaging results of 10, 20, 30 and 40 iterations based on PRPCG-LSRTM. 
It can be seen that with the increase in the number of iterations, the imaging result become better and better, the 
source effect decreased, the energy become more balanced, the imaging on both sides and deep layers become 
clearer, the event energy was restored, the noise was suppressed, and the imaging resolution was higher.
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(a) PRPCG-LSRTM imaging result of 30 iterations 
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Figure 4.  Sigsbee2B truncated model imaging results.

Table 3.  Image quality evaluation of sigsbee2B truncation model imaging results.

Images generated by different methods

Evaluation 
indicators

PSNR/dB SSIM

PRPCG-LSRTM imaging result of 30 iterations 15.0346 0.5225

IPRPCG-LSRTM imaging results of 30 iterations 16.0895 0.6738

IPRPCG-IP-LSRTM imaging results of 30 iterations 17.2597 0.7862
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Figure 10g showed the imaging results of IPRPCG-IP-LSRTM with 30 iterations. Compared with PRPCG-
LSRTM imaging results with 40 iterations of Fig. 10f, the imaging energy is more uniform and the imaging of 
details was clearer. And it can be seen from Fig. 10f, g that the IPRPCG-IP-LSRTM migration imaging result with 
30 iterations was better than PRPCG-LSRTM with 40 iterations, especially the areas in the red boxes.

Figure 10g showed the imaging results of IPRPCG-IP-LSRTM with 30 iterations when the parameter τ = 4 , 
and Fig. 10h showed the imaging results of IPRPCG-IP-LSRTM with 30 iterations when the parameter τ = 2 . 
After experiments with parameter τ in the optimization factor σ , it was found that the best results are obtained 
when parameter τ = 4 of Marmousi model. Comparing Fig. 10g, h, it can be seen that the imaging of depth 
boundary with less data and deeper layers of Fig. 10g was clearer, with more balanced energy and higher 
resolution.

We compared the magnified details in the red box (1) of Fig. 10f, g, they were shown in Fig. 11. Figure 11a 
showed the enlarged detail image of the imaging results in the red box (1) of Figs. 10f, and 11b showed the 
enlarged image of the imaging results in the red box (1) of Fig. 10g. Magnifying the imaging details in the red 
circle, it can be seen that the geological structure (horizon) of PRPCG-LSRTM had a fracture and no imaging, 
while the layer structure (event) was continuous and clear in Fig. 11b. It can be seen that the IPRPCG-IP-LSRTM 
method proposed in this paper can improve the resolution of the migration imaging result effectively.

Table 6 showed the image quality evaluation of the Marmousi model’s imaging results using PSNR and SSIM 
indicators. It can be seen from the table that the image quality of RTM had improved after Laplace filtering, 
and as the number of iterations increases from 10 to 40, the imaging effect of PRPCG-LSRTM also improved. 
The imaging quality of the IPRPCG-IP-LSRTM proposed in this article was already better at 30 iterations than 

5 10 15 20 25 30

No
rm

ali
ze

d 
da

ta
 re

sid
ua

ls

Number of iterations

0.8

0.9

0.7

1

0.6

0.5

0.4

0.3

0.2

0.1

0

PRPCG-LSRTM

IPRPCG-LSRTM

IPRPCG-IP-LSRTM

0

Figure 5.  Comparison of residual convergence curves for 30 iterations of data.

Table 4.  Comparison of program running times of different algorithms.

Algorithm Program running time of 30 iterations/s

PRPCG-LSRTM 153,061.953812

IPRPCG-LSRTM 153,061.953812

IPRPCG-IP-LSRTM 116,954.638908

Real reflection coefficient
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Figure 6.  Comparison of single-channel imaging curves at a distance of 2400 m.
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that of PRPCG-LSRTM at 40 iterations, and the imaging effect of IPRPCG-IP-LSRTM was the best when τ = 4 , 
indicating the effectiveness of the algorithm proposed in this article.

Figure 12 showed a comparison of the convergence curves of normalized data residuals using the Barzilai 
Borwein algorithm for least squares reverse time migration (Barzilai-Borwein-LSRTM) based on the Marmousi 
model, compared to PRPCG-LSRTM and IPRPCG-IP-LSRTM with 40 iterations. From the figure, it can be seen 
that the normalized data residuals of Barzilai-Borwein-LSRTM decreased rapidly during 1–5 iterations, and the 
effect of Barzilai-Borwein-LSRTM was similar to that of PRPCG-LSRTM during 10–25 iterations. At 26 to 40 
iterations, the normalized data residuals of Barzilai-Borwein-LSRTM were smaller than those of PRPCG-LSRTM. 
However, from beginning to end, the normalized data residuals of Barzilai-Borwein-LSRTM and PRPCG-LSRTM 
were not lower than those of IPRPCG-IP-LSRTM. This meant that the convergence accuracy of the IPRPCG-IP-
LSRTM proposed in this paper was the highest, and the imaging data was closer to real data.

Table 7 showed the comparison of the computational efficiency of IPRPCG-IP-LSRTM and PRPCG-LSRTM. 
From the data in the table, it can be seen that the normalized residual values of IPRPCG-IP-LSRTM decreased 
faster than PRPCG-LSRTM, with an average of about 6.55%. Additionally, the program running time of IPRPCG-
IP-LSRTM was shorter than PRPCG-LSRTM, with an average improvement in computational efficiency of 
about 22.45%. This demonstrated the superiority and effectiveness of IPRPCG-IP-LSRTM in terms of imaging 
accuracy and descent speed.

For observing the imaging details, single-trace data of migration imaging was extracted. Figure 13 showed 
the single-channel amplitude comparison between the imaging results of the 30th iteration of PRPCG-LSRTM, 
IPRPCG-IP-LSRTM, and the real reflection coefficient at a distance of 1200 m. From the figure, it can be seen 
that the imaging effect of IPRPCG-IP-LSRTM was better than PRPCG-LSRTM, especially when there was a 
high-speed layer at a depth of 2400–2600 m, the amplitude curve of IPRPCG-IP-LSRTM could better match 
the true reflection coefficient. The amplitude energy of IPRPCG-IP-LSRTM was stronger than that of PRPCG-
LSRTM. At the depth of 2700–3000 m, the amplitude energy of PRPCG-LSRTM was greatly reduced, while the 
amplitude energy of IPRPCG-IP-LSRTM was still very strong, closer to the amplitude energy of the real reflection 
coefficient, as shown in the green dashed circle in Fig. 13.
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Figure 7.  The 30th shot data without and with noise.
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Discussions
PRPCG had not been widely used because of its good numerical performance and relatively weak convergence, 
which may produce a search direction that makes the objective function rise and thus fail to converge. With the 
work done, we proposed a method that improved the PRPCG and incorporated the IP operator for the combi-
nation. Compared with earlier work, Zhao et al.30 used the original PRP conjugate gradient method to solve the 
sparse joint inverse objective generalization, and we solved the problem that the PRP method may not converge 
globally. Regarding the earlier finding of Jin et al.31 that effective tectonic information could not be obtained due 
to uneven illumination when performing offset imaging in complex tectonic zones in the subsurface, we used 
IP operators to compensate for illumination and improve image resolution. In addition, recent work by Rong 
et al.32 showed that it was possible to use deep learning to obtain low-illumination regions of geological models 
and recovered complex geological formations in the region.

Conclusions
The advantages of IPRPCG-IP-LSRTM proposed in this paper were that it can effectively improve the migra-
tion imaging resolution and computational efficiency. The method started from the gradient descent direction, 
constructed the optimization factor, improved the conjugate gradient parameters, added the illumination pre-
conditioning operator, accelerated the convergence speed, reduced the normalized data residual values, and 
effectively improved the computational efficiency and imaging accuracy.

According to the experiments in this paper, the method IPRPCG-IP-LSRTM proposed can reduce the average 
residuals of normalized data by about 6.55%, which verified the effectiveness and feasibility of the algorithm. The 
disadvantage was that due to the huge computational power of LSRTM, a suitable number of iterations should be 
selected when using the IPRPCG-IP-LSRTM method in practical applications. Finally, combining our method 
with deep learning and intelligent optimization was our further research.

Distance/m

D
ep

th
/m

A
m
plitude

(a) PRPCG-LSRTM imaging result with 30 iterations 
Distance/m

D
ep

th
/m

A
m
plitude

(b) IPRPCG-IP-LSRTM imaging result with 30 iterations 

Figure 8.  Low signal-to-noise ratio data imaging results of Sigsbee2B.
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Figure 9.  Marmousi velocity model.

Table 5.  Test parameters for Marmousi model.

Model parameter

Mesh Rectangular grid with a grid size of 767 × 250 and a grid spacing of 12 m

Velocity distribution [2000 5000] m/s, Please refer to Fig. 9a for details

Observation system
Position At the surface

Source The Ricker wavelet with a main frequency of 20 Hz excited a total of 64 shots, with the first shot at a position 
of 60 m and a shot interval of 144 m. Each shot received a total of 767 shots

Seismic forward modeling parameters

Wave field continuation Finite Difference

Propagation time Recorded duration of 4 s, sampling interval of 1.0 ms

Wave equation Acoustic wave Wave equation, assuming the density is constant

Boundary Spongy boundary condition

Inversion parameters
Initial model The smoothed background velocity model was shown in Fig. 9b for details

Objective function solving IPRPCG-IP method
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Figure 10.  Marmousi model migration imaging results of different methods.
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(a) Detail amplification of Figure 10(f) 

(b) Detail amplification of Figure 10(g) 

Figure 11.  Comparison of image details of IPRPCG-LSRTM and PRPCG-LSRTM.

Table 6.  Image quality evaluation of Marmousi model imaging results.

Images generated by different methods

Evaluation 
indicators

PSNR/dB SSIM

RTM 13.7780 0.4187

RTM after Laplace filtering 13.9743 0.4963

PRPCG-LSRTM with 10 iterations 14.4319 0.5218

PRPCG-LSRTM with 20 iterations 14.8507 0.5607

PRPCG-LSRTM with 30 iterations 15.6323 0.6142

PRPCG-LSRTM with 40 iterations 16.4251 0.6733

IPRPCG-IP-LSRTM with 30 iterations ( τ = 2) 17.3265 0.7331

IPRPCG-IP-LSRTM with 30 iterations ( τ = 4) 17.5318 0.7502
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Table 7.  Comparison of computational efficiency.

Item

Iteration number

5 10 20 30 40

Normalized data residual value of PRPCG-LSRTM 0.804052 0.655863 0.570409 0.54737 0.51804

Normalized data residual value of IPRPCG-IP-LSRTM 0.764052 0.627863 0.531409 0.49937 0.47704

Reduced residual value 0.0400 0.0280 0.0389 0.0480 0.0410

Improvement percentage (%) 4.97 4.27 6.82 8.77 7.91

Average improvement percentage (%) 6.55

Program running time of PRPCG-LSRTM/s 34,589.763707 68,221.798763 134,833.735890 310,722.314877 448,659.640109

Program running time of IPRPCG-IP-LSRTM/s 27,529.992934 53,697.377806 102,986.007473 235,900.381454 347,531.757228

Improved computing efficiency (%) 20.41 21.29 23.62 24.38 22.54

Average improvement percentage (%) 22.45
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Figure 13.  Comparison of single-channel imaging curves at a distance of 1200 m.
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Appendix 1: Numerical simulation of finite difference method
The two-dimensional constant density acoustic Wave equation can describe the propagation of acoustic waves 
in Seismic waves in underground media:

where u is the wave field function u(x, z, t) , v is the medium velocity v(x, z) , x and z are the spatial coordinate 
components, x represents the horizontal direction, z represents the vertical direction, and t is the temporal 
coordinate component.

The finite difference method is used to Discretization the numerical solution of Eq. (28). The wave field space 
should first be Discretization. Therefore, the spatial model needs to be meshed, as shown in Fig. 14:

If the grid spacing after Discretization in x and z directions is �x and �z , and �t is the time sampling step, 
x = i�x , z = j�z , t = n�t can be obtained. Where i , j , and n are integers. Assuming uki,j represents the wave 
field value at time k at point (i, j) , expand (x, z) at time k using Taylor’s formula:

Expand uk−1
i,j  at time k at point (i, j) using Taylor’s expansion:

Add Eqs. (29) and (30) above, omit high-order small quantities, and organize the second-order time partial 
differential of point (i, j) and time k as follows:

Similarly, the second-order space partial differential at point (i, j) and time k can be obtained as follows:

The above equation replaces the derivative of the second-order partial differential with the difference of 
the wave field values of discrete grid points. By substituting Eqs. (31), (32), and (33) into Eqs. (28), (34) can be 
obtained:

Similarly, the difference scheme of the second-order Time derivative and the space 2N order acoustic equa-
tion is as follows:

(28)
∂2u

∂x2
+

∂2u

∂z2
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1
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i,j = uki,j +�t
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∂t
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1

2
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Figure 14.  Grid-based spatial model.
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Among them, am is the 2N order accuracy center difference coefficient, determined by Eq. (36):

By solving Eq. (36), it can be concluded that:
When N = 1 , a1 = 1 , a0 = −2;
When N = 2 , a1 = 4

3
,a2 = − 1

12
,a0 = − 5

2
;

When N ≥ 3,al = (−1)

l2
·

N
∏

i=1,i �=l

i2

l−1
∏

i=1

(l2−i2)
N
∏

i=l+1

(i2−l2)

, l = 1, 2, · · · ,N;

When N → ∞ , al = (−1)l+1 · 2

l2
。

Appendix 2: Convergence analysis of IPRPCG
Making the inner product of both ends of Eq. (22) with gk and using Eq. (11) yields:

For any τ ≥ 1 and k ≥ 1 , let θk be the angle between gk and gk−1 . From Eq. (14), we have:

From Eq. (38), we know that 
1−

�gk−1�
�gk�

cos θk

1+τ
�gk−1�
�gk�

|cos θk |

≤ 1 , so we can get:

Also from 
∣

∣gTk dk−1

∣

∣ ≤ −νgTk−1
dk−1 and the inductive hypothesis and combining with Eq. (39) we have:

Combining the Eqs. (40) and (41), it gives − 1−νk

1−ν
≤

gTk dk

�gk�
2 ≤ 1−2ν+νk

1−ν
 , when ν < 1

2
, k ≥ 1

2
 , there exists 

c � 1−2v
1−v > 0 , such that gTk dk ≤ −c

∥

∥gk
∥

∥

2 , then the search direction dk generated by the IPRPCG algorithm satis-
fies the sufficient descent condition.

The iteration step αk is found by Wolfe’s line search criterion, which satisfies:

From gTk dk ≤ −c
∥

∥gk
∥

∥

2 we have:

From Eqs. (42)–(44), we have:
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Assuming that the objective function f (x) is lower bounded on the level set Ŵ =
{

x ∈ Rn
∣

∣f (x) ≤ f (x1)
}

 , it 
is known that the sequence 

{

fk
}

 is monotonically bounded and thus converges by combining with Eq. (45), i.e., 
lim
k→∞

fk+1 is a constant. Assume that f (x) is differentiable in some neighborhood � of Ŵ and that ∇f (x) satisfies 
the Lipschitz condition, i.e., there exists ∀x, y ∈ � and a constant Z > 0 such that: 

∥

∥g(x)− g
(

y
)∥

∥ ≤ Z
∥

∥x − y
∥

∥ . 
Combining Eq. (46) yields:

And thus αk ≥ ν−1
z

gTk dk

�dk�
2 . Combining this with Eq. (45) yields:

For both ends of Eq. (48) k = 1, 2, ...., n are summed to give:

Thus there is Zoutendijk condition 
∞
∑

k=1

(

gTk dk
)2

�dk�
2 <+∞ holds.

Combining Eq. (44) with the Zoutendijk condition yields:

Thus the sequence 
{

gk
}

 generated by the algorithm IPRPCG satisfies lim
k→∞

∥

∥gk
∥

∥ = 0 . Then the algorithm 
converges globally.
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