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Rapid surveillance of New York  
City healthcare center egress  
behaviors during the 2020  
COVID-19 lockdown
Thomas Kirchner   1 ✉, Haoran Jiang2, Hong Gao1, Germaine Kabutaulaka3, Darlene Cheong4, 
Yungi Jiang5, Aseah Khan4, Weiyi Qiu6, Nikki Tai6, Tiffany Truong7, Maimunah Virk7, 
Peter Gmelch8, Chris Carey8 & Debra Laefer8 ✉

This rapid response surveillance project was funded by the National Science Foundation (NSF) to collect 
“perishable” data on egress behaviors and neighborhood conditions surrounding healthcare centers 
(HCCs) in New York City (NYC) during the initial NYC COVID-19 PAUSE ordinance from March 22nd to 
May 19th, 2020. Anonymized data on NYC HCC egress behaviors were collected by observational field 
workers using phone-based mapping applications. Each egress trip record includes the day of week, 
time of day, destination category type, along with an array of behavioral outcome categories, ambient 
weather conditions and socio-economic factors. Egress trajectories with precise estimates of distance 
traveled and the spatial dispersion or “spread” around each HCC were added via post-processing. The 
data collection and cleaning process resulted in 5,030 individual egress records from 18 facilities over a 
9-week period.

Background & Summary
During initial implementation of the COVID-19 PAUSE ordinance in New York City (NYC), enacted between March 22 
– June 13, 2020 (https://www.governor.ny.gov/news/governor-cuomo-signs-new-york-state-pause-executive-order), 
there was a suspension of nonessential businesses. Yet transportation workers, police, and essential healthcare work-
ers remained on the job and the employment scope of many required their presence at a healthcare center (HCC). 
The present project stems from this early phase of the pandemic, when the National Science Foundation funded an 
effort to collect “perishable” data on neighborhood conditions and egress behaviors around eighteen (18) NYC-based 
healthcare centers, broadly defined to include both larger hospital centers (N = 11) and local urgent care clinics 
(N = 7; Fig. 1). The NYC lock-down period afforded a useful opportunity to observe this subtle yet essential aspect of 
HCC utilization, as patients and staff exit and re-connect with the surrounding community.

This project aims to expand what is known about the vector environments surrounding HCCs, which are 
essential service points that remain open during administrative shut-down orders. Vector control strategies in 
public health involve efforts to contain or mitigate the spread of disease by intervening upon the vectors — such 
as modes of transportation — that carry disease agents to susceptible hosts1. When disease transmission accel-
erates into what is commonly called “viral” spread, as with COVID-19, members of the population serve as both 
susceptible hosts and as vectors for transmission of the disease agent to other people2. Governmental efforts to 
implement vector control measures restrict opportunities for people to engage with physical spaces and social 
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environments, including “surface vector” fomites such as door handles, hand rails and clothing so that opportu-
nities for disease spread through the population are minimized3.

Vector control strategies remain central to the mitigation and containment of COVID-19, but focus has 
thus far been limited to the operational status of non-essential retail, recreation and entertainment venues, 
with less attention on the hyper-local conditions surrounding neighborhood healthcare centers. This 9-week 
observational study established a protocol and archival dataset describing the egress behaviors of individuals 
leaving HCCs located in different areas of New York City during the 2020 COVID-19 PAUSE order. This paper 
introduces the dataset and presents a preliminary description of the social and geographic indicators available 
for each healthcare center. The project protocol was reviewed and deemed exempt by New York University’s 
institutional review board (IRB-FY2020-4305) prior to the initiation of field work.

Methods
The data collection protocol was designed to capture anonymized, hyper-local data on HCC egress dynamics 
that would not be possible to ascertain from cellular data records, footfall data, closed-circuit television, or traffic 
cam data. In the most basic sense, egress behaviors were operationalized as the trajectory and total distance of 
the travel path taken by HCC visitors exiting each HCC and walking to their next destination. The a priori intent 
was to have a balanced distribution of observation sites between hospitals (i.e., including and emergency room; 
ER), and urgent care clinics across multiple NYC boroughs. To that end, a team of field observers was contracted 
to conduct 160 hours each of passive behavioral surveillance. However, the local conditions across NYC gener-
ated much higher foot traffic at some facilities than others.

Field collection procedures: anonymized surveillance of healthcare center egress behav-
iors.  Local resident fieldworkers (i.e., New York University students) were recruited to work as observers 
immediately prior to New York’s implementation of the PAUSE order at 8PM on March 22, 2020. The study was 
funded for 9 weeks with student observers collecting data up to. 20 hours per week until May 19, 2020. Ultimately, 
18 facilities across 4 of New York City’s 5 boroughs (Queens, Brooklyn, Manhattan, and the Bronx) were selected 
based on the ability of the observer to reach the selected location by foot so that the observers would not have 
to undergo COVID-19 exposure in public transportation or for hire vehicles. When multiple facilities met this 
criterion, the one closest to a subway station was selected to capture the egress destination behavior with respect 
to public transportation.

Procedurally, field observers positioned themselves across the street from their assigned HCC egress location 
and then traced each subject’s egress route, noting locations of interactions with the built environment or other 
individuals. On Apple iPhones, the data were collected via DrawMaps, while on Android phones the MyMaps 
app was used. The egress route duration and time of day were recorded, as well as locations visited, and if appli-
cable, transportation choices (e.g., bus, subway, Citibike, taxi, Uber, personal vehicle). Observations did not 
include photographs, video, or any interactions with the subjects, nor any other assessments of subjects’ identity 
or infection status, so as to preserve anonymity and minimize disturbances, as well as to protect the observer 
from exposure to COVID-19. As there was no guidance for mask usage at the onset of the study, collection of 

Fig. 1  Healthcare Center (HCC) Types surveyed layered with subway routes.
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personal protective equipment (PPE) usage was not part of the formal data collection protocols, but over 1,800 
of the more than 5,000 records do contain this information.

Final destinations were categorized by location type (e.g., coffee shop, pharmacy, deli, food trucks), including 
whether subjects returned to the medical facility or entering a nearby one (e.g., temporary tent, adjacent clinic 
or campus building). For each HCC, egress recordings extended from the same pre-specified point, until one of 
three outcomes occurred: (1) the subject entered a vehicle, subway station, building or other destination where 
the subject was no longer visible from the street, 2) tracking exceeded 20 minutes (an average observation period 
lasted 5 minutes in duration); or (3) the subject walked more than 1.3 km from the HCC, as a mile is considered 
the upperbound of a walkable distance in many urban planning contexts4,5 and was also an upperbound mobility 
restriction in other communities6,7.

Post-processing of the behavioral dataset also involved extraction and coding of meta-data – notes associ-
ated with each behavioral record and included in the attribute table associated with each shape file. Descriptive 
notes were extracted manually from the KML/KMZ files and entered into a spreadsheet. To introduce quality 
control measures, the notes were scraped by one researcher and checked on an entry-by-entry level by a second 
researcher. A secondary coding was also conducted on some key data fields, standardizing and allowing for a 
more generalized accounting of the data. For example, taxi, Uber, and Lyft were combined in the secondary 
coding as “vehicle for hire”.

Calculation of egress trajectory distances and geographic dispersion around each HCC.  A 
unique aspect of this data set is that it can be used evaluate and compare spatial dispersion around each HCC 
facility over time and between facilities. Spatial dispersion was defined as the spatial magnitude of the geographic 
area encompassing all egress trajectory records from each HCC and was approximated with a minor adaptation 
of the well-established radius of gyration (Rg) statistic8, which is essentially the standard deviation of a set of 
locations around their center of mass, typically reported in meters. To facilitate research on the neighborhood 
areas around each HCC, we calculated a collective radius of egress Re statistic that centers on each HCC exit point 
(rather than the center of mass used to calculate Rg). This Re metric provides a standardized estimate of the spatial 
dispersion associated with the egress records collected from each HCC facility,
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where n is the total number of egress records collected from each HCC, and HCCexit is the location center of 
mass, or the longitude and latitude of each HCC exit point. The great circle distance in meters between the final 

Fig. 2  Number of subjects observed to egress each Healthcare Center.
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destination observed for each egress record and their collective center of mass (dk-HCCexit) was calculated using 
Vincenty’s formulae9.

Neighborhood estimates associated with each HCC.  An array of socio-economic indicator variables 
used by the Center for Disease Control (CDC) to calculate the Social Vulnerability index (SVI) were included in 
the archived dataset, each linked to the geo-rectified location of the HCC entry/exit points used for field observa-
tions. The majority of variables included were taken from the American Community Survey (ACS; 2014–2018) 
with estimates of and margins of error provided in numbers and percentages for the total population, along with 
housing units, and other standard household indicators for the zip-code around each HCC. To enrich and ease 
re-use for future analysis, also included in the archival dataset were metadata and indicators of ambient weather 
conditions (on an hourly basis) outside each HCC on the days that data collection occurred.

Data Records
All available data and the associated codebook are accessible through the NYU Faculty Digital Archive10. 
The codebook explains on a column-by-column basis the variables in the master CSV file, providing the var-
iable format, naming conventions and labels, description, missing value indicators, and data storage type  
(e.g. binary, string, character, numeric). Altogether over 1,500 hours of raw data collected during daylight hours 
between March 22–May 19, 2020. Egress records associated with each HCC facility were merged into a unified 
geo-database. The data collection and cleaning process resulted in 5,030 individual egress records from 18 facil-
ities, 11 of which were hospital centers and 7 that were urgent care centers (Fig. 2). The project produced a mean 
N = 280 egress records per HCC. There were 1,035 subjects observed in the Bronx, 2,210 in Brooklyn, 968 in 
Manhattan, and 822 subjects in Queens. The project’s intent was to collect a balanced data set across facilities 

Bronx Brooklyn Manhattan Queens

Estimated population 1,437,872 2,600,747 1,632,480 2,298,513

Number of egresses observed (%) 1,035 (20.56) 2,210 (43.89) 968 (19.23) 822 (16.33)

Estimated number of minority residents (%) 1,304,150 (90.7) 1,659,277 (63.8) 866,847 (53.1) 1,716,989 (74.7)

Persons below the poverty level (%) 418,421 (29.1) 548,758 (21.1) 270,992 (16.6) 298,807 (13.0)

Estimated rate of unemployment 70,250 91,531 54,298 74,382

Estimated number of persons with no high school diploma (%) 258,956 (18.0) 326,469 (12.55) 162,237 (9.94) 303,881 (13.22)

Estimated number of persons aged 17 and younger 361,080 (25.11) 599,759 (23.06) 235,771 (14.44) 465,458 (20.25)

Estimated number of persons aged 65 and older 174,470 (12.13) 343,548 (13.21) 257,362 (15.77) 340,656 (14.82)

Table 1.  Demographic breakdown of each borough according to the 2014-2018 American Community Survey 
zip-code of facilities. *All persons except white, non-Hispanic from 2014-2018 ACS for zip-code of facility.

Healthcare Centers
No. observed 
egress

Average max distance 
traveled (meters) (SD)

Total spatial 
spread (meters)

Bronx

CityMD Pelham Parkway Urgent Care 443 120.08 (102.48) 158.0

Montefiore- Albert Einstein Medical Campus 346 191.99 (48.40) 143.0

Montefiore Hospital 7 105.35 (29.77) 118.0

Parkchester CityMD Urgent Care 239 137.14 (180.27) 227.0

Brooklyn

Flatbush - CityMD Urgent Care 19 66.24 (62.19) 92.2

ModernMD urgent care-SE Williamsburg 188 74.21 (93.93) 120.0

NYU Langone Hospital Brooklyn 1,214 205.88 (269.05) 339.0

The Brooklyn Hospital Center 158 278.56 (159.67) 332.0

Wyckoff Heights Medical Center 631 186.58 (139.30) 233.0

Manhattan

23rd St CityMD Urgent Care 334 224.08 (160.71) 276.0

CityMD West 42nd Urgent Care/Med-Rite Urgent Care 51 251.21 (428.37) 498.0

Mount Sinai Beth Israel 299 110.38 (124.81) 167.0

Mount Sinai West 45 174.10 (339.96) 383.0

NYC Health + Hospitals/Bellevue 239 209.81 (186.75) 281.0

Queens

CityMD Fresh Meadows Urgent Care 303 69.58 (71.28) 99.7

Elmhurst Hospital Center Emergency Room 89 180.32 (136.46) 227.0

Fair Medical Care 42 202.87 (247.62) 322.0

Flushing Hospital Medical Center 388 89.50 (122.39) 152.0

Table 2.  Characteristics of Healthcare Centers and observed egressing subjects.
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and boroughs. To this end each observer was given the same number of weeks and hours per week. However, 
local infection rates heavily impacted footfall at each location. Furthermore, observer recruitment was oppor-
tunistic based on those who applied. Within that pool, the study tried to include a similar number of facilities 

Fig. 3  Total spatial spread walked (meters) from each HCC.

Fig. 4  Frequency of observed final destinations of subjects exiting by borough across NYC.
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per borough. No Staten Island based applications were received. Table 1 presents demographic statistics for each 
borough in the study, including population, age distribution, and education level.

Table 2 presents descriptive statistics for each HCC in the study including egress trajectory distance (length 
in meters) and overall spatial dispersion (egress trajectory spread) for each HCC. Average egress trajectory 
length (934.56 m; SD = 412.20) was observed to be somewhat shorter when emanating from urgent care clin-
ics (N = 7; M = 851; SD; 139.07) than hospital centers (N = 11; M = 1001.00; SD=421.62), but the average Re 
around each HCC (Re = 230.99 m; SD = 111.72) was similar for both urgent care (Re = 224.11; SD = 139.07) 
and hospital centers (Re = 236.50; SD; 91.96; Fig. 3). The most common final destination for all of the subjects 
was their personal vehicle followed by a medical facility and take-out food location. The top 3 final destinations 
observed were the subjects’ personal vehicles (n = 1,604), medical facilities (n = 807), and take-out food loca-
tions (n = 461), but there was variation between NYC boroughs (Fig. 4).

Fig. 5  Technical Validation Issues.
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Technical Validation
The US Postal Service street address associated with each HCC is linked to an approximate location centroid, 
and thus it was known in advance that the publicly available address for each HCC would not correspond 
with the precise location of each HCC egress point (i.e., the specific door) under observation in the study, 
and thus it would be impossible to calculate accurate egress trajectory distances. To correct for this source 
of spatial imprecision, geographic location coordinates were captured for each HCC exit point via reverse 
geo-coding, utilizing QGIS and street view imagery for ortho-rectification. After joining the egress records into 
a geographically-explicit, relational database, the shared HCC exit-point coordinates served as the HCC origin 
point for calculation of the individual egress trajectory distances and made it possible to calculate the collective 
spatial dispersion of the individual trajectories around each HCC in the study.

Due to the urgent need to quickly dispatch observer into the field for data collectors at the outset of the 
COVID-19 related PAUSE order in New York City, there was insufficient time to develop and validate an inter-
operable data recording tool prior to deployment. As a result, prior to the geo-rectification process that linked 
together the data records with each HCC, some additional data cleaning needed to be performed. The amount 
depended upon the mobile phone OS used by each field observer (Apple versus Android), which dictate whether 
the smartphone records were exported to a Keyhole Markup Language (KML) or Keyhole Markup Language 
Zipped (KMZ) file. A QGIS bash script was used to transform the KML/KMZ files into the shapefile format. 
Critically only one type of spatial “geometry” (point, line, or polygon) is allowed per shapefile. Thus, some addi-
tional data cleaning and normalization was required (Fig. 5). Once normalized, all individual shapefiles were 
then merged into a common geo-database that compiled the egress trajectory data for all N = 18 HCCs and 
enabled spatial analyses.

Usage Notes
Data resource access and usage.  Keeping the original field records produced by the study field observ-
ers is important because these raw records reflect the realities of the natural disaster scenario under which this 
perishable data were collected. These efforts have significant parallels in all post-disaster data collection for 
unprecedented events and should be considered as illustrative of the inherent challenges of doing such work 
and a potential roadmap for future events. The rapid response surveillance data collected as part of this NSF 
Rapid award provided an essential baseline for future attempts to study the way people interact with 3-D vector/
environments during an extraordinary event like the global COVID19 pandemic10,11. By establishing an empir-
ical snapshot of the COVID19-related vector environment surrounding these NYC healthcare facilities, com-
munities will be better positioned to optimize public health surveillance efforts and better understand the full 
range of mechanisms that could be impacting the implementation of municipal ordinances moving forward12–14.  
All related project data are freely available under a CC-BY 4.0 license.

Code availability
No custom code was used nor is required to generate or process the datasets provided. All shape files were 
generated and can be opened with the opensource software QGIS or a similar GIS software platform, such as 
ArcGIS.
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