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The γ/γ′ microstructure in CoNiAlCr-based superalloys using
triple-objective optimization
Pei Liu1,2,3,4, Haiyou Huang 1,2, Cheng Wen5, Turab Lookman 1,6✉ and Yanjing Su 1,2✉

Optimizing several properties simultaneously based on small data-driven machine learning in complex black-box scenarios can
present difficulties and challenges. Here we employ a triple-objective optimization algorithm deduced from probability density
functions of multivariate Gaussian distributions to optimize the γ′ volume fraction, size, and morphology in CoNiAlCr-based
superalloys. The effectiveness of the algorithm is demonstrated by synthesizing alloys with desired γ/γ′ microstructure and
optimizing γ′ microstructural parameters. In addition, the method leads to incorporating refractory elements to improve γ/γ′
microstructure in superalloys. After four iterations of experiments guided by the algorithm, we synthesize sixteen alloys of relatively
high creep strength from ~120,000 candidates of which three possess high γ′ volume fraction (>54%), small γ′ size (<480 nm), and
high cuboidal γ′ fraction (>77%).

npj Computational Materials           (2023) 9:140 ; https://doi.org/10.1038/s41524-023-01090-9

INTRODUCTION
Data-driven machine learning (ML) techniques have been used to
accelerate the discovery of materials in science and engineering
beyond trial and error1–4. Many of these studies have shown how
the search for materials with promising properties can be guided
in a large space of possible candidates5,6. Bayesian optimization
algorithms using Gaussian processes, with and without evolu-
tionary algorithms, have been widely employed to search for
optimal properties. This typically constructs surrogate models
from data with a utility or acquisition function to rank
recommendations for calculation or experiment within an active
learning loop. The acquisition functions are typically based on
predictions of the objectives and their uncertainties, and include
probability of improvement, expected improvement, and con-
fidence interval strategies7. The method has a long history, has
been utilized in industry and in the engineering sciences, and is
well suited for small data sets for which targeted properties are
often found with dramatically low costs. It has been applied to a
range of materials problems, including finding NiTi-based shape
memory alloys with very small thermal hysteresis8, piezoelectrics
with large electrostrains9, high-entropy alloys with high hard-
ness10, and low-density Co-based superalloys with a high γ′ solvus
temperature11. In these cases, compositions with better properties
than available in the training data are found within a few active
learning loops with experiments. As algorithms largely determine
the efficiency of the search, especially in dealing with small
amounts of materials data, progress in advancing algorithmic
development is a key.
For optimizing multiple properties, methods that screen out

compounds outside the regime of interest based on single
objective predictions, probabilistic maximization of target-
fulfillment likelihood as well as multiobjective optimization
methods that successively improve the Pareto front, are typically
used. The screening method is effective only if adequate materials
data exists so that prediction uncertainties can be reduced

substantially and the materials with expected property can be
directly distilled one by one based on predicted values of the
single objective ML models11–13. However, such screening is often
not effective in obtaining the Pareto front when the materials data
is limited7. Probabilistic manner14 and multiobjective optimization
with two or more objectives using acquisition functions such as
expected hypervolume improvement15, Maximin and Centroid
design strategies16 and MOEI17 has been employed for materials
discovery, certainly for two objectives. However, few studies
consider applications with several objectives.
The focus of this work is to optimize three objectives related to

the γ/γ′ microstructure of superalloys18–21. Specific, γ/γ′ micro-
structural characteristics, e.g. high γ′ volume fraction, small γ′ size,
and cuboidal γ′ shape, etc. have been shown to be necessary for
the remarkable mechanical properties in superalloys22–24. These
are preferred in commercial Ni-based single crystal (SX) super-
alloys where for targeted γ/γ′ microstructures are highly
desirable19,25,26. Murakumo et al.22 have reported the relationship
between the γ′ volume fractions and creep behavior in a 3rd Ni-
based SX superalloy TMS-75. Alloys with a high γ′ volume fraction
tend to have longer rupture life times, and the longest rupture life
has been obtained for a γ′ volume fraction of ~60%. Nathal et al.23

explored the creep resistance as a function of initial γ′ size, and
found that alloys with smaller γ′ sizes tend to have longer rupture
lives and lower creep rates. Sluytman et al.24 compared the creep
rupture life of alloys with different γ′ morphologies, and showed
that those with cuboidal γ′ had a longer life. Almost all SX
superalloys in service, including AM1, CMSX-4, and CMSX-1027–30

contain a high γ′ volume fraction, small γ′ size, and cuboidal γ′
shape. Hence, even though the desired γ/γ′ microstructure of
superalloys is well established in industry, the simultaneous
optimization of γ/γ′ microstructure with multiple microstructural
parameters has been an ongoing challenge in the superalloy field
for the last 40 years4,19,31. Changing the composition in favor of
one property typically offsets one or more other properties. What
is required is to simultaneously optimize multiple microstructural
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properties, in particular, three properties in these alloys based on
small amounts of materials data.
In this study, we propose the use of triple-objective optimiza-

tion that includes ML surrogate models developed on small data
sets to simultaneously optimize the γ′ volume fraction, γ′ size, and
γ′ shape in CoNiAlCr-based superalloys. The active learning
workflow for this study is shown in Fig. 1a. To ensure the newly
synthesized alloys have the potential for applications, we applied
screening (sequential filters)11 to remove alloys with undesired
properties (γ′ solvus temperature, processing window, freezing
range, density, detrimental phases, and oxidation resistance) by
constraining the search space and ML predictions. As for the major
microstructural parameters including γ′ volume fraction, γ′ size,
and γ′ morphology, we use a multivariate Gaussian to optimize to
obtain newly synthesized alloys with high γ′ volume fraction, small
γ′ size, and high cuboidal γ′ fraction (the cuboidal γ′ fraction is the
ratio of the cuboidal γ′ area to the total γ′ area21) during aging at
1100 °C (Considering the service temperature requirements of
blades in aero engines and experimental cost about aging time,
the selected heat treatment schedule is 1100 °C for 168 h). After
four iterations with experiments guided by the algorithm, we
synthesized sixteen alloys from ~120,000 potential compositions
of which three possessed high γ′ volume fraction (>54%), small γ′
size (<480 nm) and high cuboidal γ′ fraction (>77%) after aging at
1100 °C for 168 h. Moreover, the alloys also have high γ′ solvus
temperatures (>1190 °C), appropriate processing windows
(>100 °C), and freezing ranges (<60 °C), low densities
(<8.9 g cm−3), desired γ/γ′ stability devoid of detrimental phase
precipitation, and good oxidation resistance at 1100 °C. The
effectiveness of the algorithm is demonstrated by synthesizing
alloys with desired γ/γ′ microstructure and optimizing γ′ micro-
structural parameters. In addition, this leads to higher composi-
tions of refractory elements to improve γ/γ′ microstructure in
synthesized alloys. The synthesized CoNiAlCr-based superalloys
possess multiple desirable material properties for high-
temperature applications. Thus, the method shows promise for
optimizing the properties of other materials.

RESULTS
Iterative workflow
The workflow of the optimization is shown in Fig. 1a. It includes
constraining the search space and screening predictions from
ML models trained on a relatively large data set that includes
properties of interest in industry (γ′ solvus temperature,
processing window, freezing range, density, detrimental
phases, and oxidation resistance). The ML models trained on
small data sets are combined with a triple-objective optimiza-
tion algorithm to recommend materials with desired γ/γ′
microstructure (γ′ volume fraction, γ′ size, and cuboidal γ′
fraction). We synthesized four materials samples in each
iteration and characterized their microstructure. The acquired
experimental data augments the training data in the iterative
workflow until the synthesized γ/γ′ microstructure of the alloys
cannot be further improved.

Materials data, search space, and machine learning models
We apply materials design and γ′ microstructural optimization to
the Co-Ni-Al-Ti-W-Ta-Mo-Nb-Cr-Re alloy system. The data was
assembled from the literature (data sources see Supplementary
information) and includes results of our experiments (these data
are also collected in the materials genome engineering database
https://www.mgedata.cn). We have 258, 185, 145, 171, 31, 31, and
31 experimental data for γ′ solvus temperature (Tγ′-solvus, °C),
solidus temperature (Tsolidus, °C), liquidus temperature (Tliquidus, °C),
density (ρ, g cm−3), γ′ volume fraction (Vγ′, %), γ′ size (rγ′, nm) and
cuboidal γ′ fraction (Cγ′, %), respectively, and 1400 thermodynamic

computational data are produced from Pandat software for the
detrimental precipitate formation during aging at 1100 °C (pre-
cipitate classification, PC). The labels “0” and “1” denote absence
or presence of detrimental precipitates during aging. As for γ′ size,
the optimization direction tends to minimize it, in contrast to the
maximization of the other two objectives (Vγ′ and Cγ′). For
convenience, we transform the actual target γ′ size to Rγ′= (1500-
rγ′)/15 (unit, %), so that Vγ′, Rγ′ and Cγ′ values are expected to be
higher. For the multi-component Co-based superalloys with γ′
solvus temperature <1100 °C, γ′ precipitates cannot exist during
aging at 1100 °C. We uniformly process these “failed” data to
reduce unnecessary iterative searches. We stipulate that for Co-
based alloys with γ′ solvus temperature lower than 1100 °C, Vγ′, Rγ′,
and Cγ′ are 0. For the alloy with network-like γ′ precipitates, both
Rγ′ and Cγ′ are defined as 0. The potential compositional space of
undiscovered aCo-bNi-cAl-dTi-eW-fTa-gMo-hNb-iCr-jRe superal-
loys is given by 40 ≤ a ≤ 60, b= 30, 10.5 ≤ c ≤ 12.5, 0 ≤ d ≤ 3,
0 ≤ e ≤ 3, 2 ≤ f ≤ 4, 0 ≤ g ≤ 3.5, 0 ≤ h ≤ 1, i= 5, 0 ≤ j ≤ 1.5 at.%, and
with a step size of 0.5 at.%, there are 122,406 possible candidate
alloys. A higher composition of Al and Cr is necessary to form a
continuous alumina layer32,33, and a large amount of Ni is
beneficial to expand the γ/γ′ two-phase region, thus providing
phase stability without the precipitation of detrimental phases34.
The ML surrogate models used to establish the relation-

ship7,35,36 between alloy composition and property are shown in
Fig. 1b. The input to the ML surrogate models is the alloy
composition (Co, Ni, Al, Ti, W, Ta, Mo, Nb, Cr and Re in at.%), and
the output includes the material properties (for detailed training
processes see “Methods” section, and specific evaluation metrics
are collected in Supplementary information). The ML model with
the least mean squared error is employed as the surrogate model.
The selected regressors for Tγ′-solvus, Tsolidus, Tliquidus, ρ, Vγ′, Rγ′, and
Cγ′ were found to be the support vector regressor, gradient
boosting tree, random forest, linear, Adaboost, gradient boosting
tree and random forest, respectively. The best classifier for
precipitate classification is the support vector classifier. We
used sequential filters to constrain the other properties
(Tγ′-solvus ≥ 1200 °C, processing window = Tsolidus−Tγ′-solvus ≥ 70 °C,
freezing range= Tliquidus−Tsolidus ≤ 60 °C, ρ ≤ 8.85 g cm-3, the alloy
can form continuous alumina on the surface and precipitate no
detrimental phases during aging at 1100 °C) based on ML
predictions and defined search space.

Design of triple-objective optimization
In this section, we introduce the algorithm design, iterative
efficiency testing, and practical application of the method in
optimizing superalloys microstructure in sequence. We use
bootstrap sampling to obtain training data sets to build
1000 ML surrogate models to predict alloys with Vγ′, Rγ′, and
Cγ′. We assume the distribution of Vγ′, Rγ′, and Cγ′ for each alloy
obeys a three-variable Gaussian distribution with covariance
zero. ML predictions of the three properties for each alloy are
made in this high-dimensional geometric space. The prob-
ability density function of the three-variable Gaussian distribu-
tion is

Nðyju; σÞ ¼ 1

2π
3
2σ1σ2σ3

exp � 1
2

ðy1 � u1Þ
σ21

2

þ ðy2 � u2Þ2
σ22

þ ðy3 � u3Þ2
σ23

 ! !

(1)

where y1; y2 and y3 are the possible Vγ′, Rγ′ and Cγ′ of the
corresponding alloy in the search space, u1; u2 and u3 are the
mean values of 1000 predicted Vγ′, Rγ′ and Cγ′ of the correspond-
ing alloy, σ1; σ2 and σ3 are the standard deviations of the 1000
predicted Vγ′, Rγ′ and Cγ′. The equiprobability distribution with the
maximum confidence interval (95%) of a three-variable Gaussian
probability density function is an ellipsoid surface. The target
values y1; y2 and y3 need to be determined based on the ellipsoid
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Fig. 1 The active learning workflow for optimizing the γ′ volume fraction, γ′ size, and γ′ morphology in CoNiAlCr-based superalloys
based on triple-objective optimization. a The iterative workflow includes multi-property screening, triple-objective optimization, and
experimental feedback (this image does not contain any third party material). b The performance of the ML regressor (γ′ solvus temperature,
solidus, liquidus, density, γ′ volume fraction, γ′ size, and cuboidal γ′ fraction) and classifier (precipitate of detrimental phases) used for
predicting corresponding property in testing data. c Illustration of triple-objective optimization algorithm. The equiprobability distribution
with the maximum confidence interval (95%) of a three-dimensional Gaussian probability density function. The 1/8 ellipsoid surface is
discretized (yellow points). The weight function varies with the three target values (y1, y2, and y3) in the range (0, 100). The right mapping axis
is the weight function value of the corresponding target values.
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surface

y1 � u1ð Þ2
ð1:96 � σ1Þ2

þ y2 � u2ð Þ2
ð1:96 � σ2Þ2

þ y3 � u3ð Þ2
ð1:96 � σ3Þ2

¼ 1 (2)

subject to y1; y2; y3 2 u1; u1 þ 1:96σ1½ �; u2; u2 þ 1:96σ2½ �; u3; u3 þ 1:96σ3½ �
(3)

The optimization direction of the three objectives with higher
values occupies 1/8 of the ellipsoid surface (Fig. 1c), and these
points can be obtained by discretizing the ellipsoid surface. In
order to make the value of the three targeted properties all high
along a desired specific optimization direction, it is necessary to
adopt the weight function to recommend the desired candidates
(especially candidates with high target values along the diagonal
direction in Fig. 1c will be recommended for validation). The
employed weight function (the form of the weight function is not
unique, depending on the user’s optimization needs) is

w y1; y2; y3ð Þ ¼ k1y1 � k2y2 � k3y3
k1y1�k2y2 þ k2y2 � k3y3 þ k1y1 � k3y3

(4)

where k1; k2 and k3 are the weight coefficients, which are used to
adjust the specific optimization direction with the desired
demands. The k1; k2 and k3 are all set to 1 in this study (Fig. 1c).
We calculate the weight function value of each point on the
ellipsoid surface one by one, and take the largest to represent
the solution for the corresponding alloy. The candidate alloy with
the highest weight function value is recommended for synthesis
and characterization. Equations 2–4 provide the acquisition
function combination using the mean and uncertainty on the
Gaussian ellipsoid to give the three objectives for each alloy. The
weight function is responsible for controlling the specific
optimization direction in recommending the best candidate. This
algorithm is derived from the equiprobability distribution with
maximum confidence interval (ED-MCI) in the multivariate
Gaussian probability density function.
To verify the high efficiency of the ED-MCI in multiobjective

optimization problems, we performed two computational tests.
The common test functions in optimization problems are used to
generate data, and a small amount of data is taken as training

data. The new data points are fed back through the recommenda-
tion of acquisition functions until the optimum with multiple high-
targeted values is found (the optimum is defined according to the
weight function). In the two multiobjective optimization tests, ED-
MCI has the highest iteration efficiency, and only a few unlabeled
sample points are needed to find the global optimum. It is more
efficient than acquisition functions such as maximum predicted
values37 and MOPA38 (details of these computational tests are
provided in Supplementary information). Therefore, the effective
ED-MCI is used to optimize several γ′ microstructural parameters
in CoNiAlCr-based superalloys.
Based on bootstrap sampling, ML predictions, and algorithm

recommendations, four alloys with the highest weight function
values are recommended in each iteration for synthesis, and the
experimental characterization gives the γ′ microstructural para-
meters. If the alloys with experimental γ′ microstructural
parameters do not meet the desired properties (after aging at
1100 °C for 168 h, the desired γ′ microstructural parameters are
Vγ′ ≥ 55%, Rγ′ ≥ 55% (namely rγ′ ≤ 675 nm), and Cγ′ ≥ 55%), the
synthesized alloy data augment the training data and the next
iteration is executed until the γ/γ′ microstructure of the alloys
does not significantly change.

Synthesized alloys with multiple desired properties
We perform the iterative workflow four times, and the synthesized
alloys have been collected in Table 1. In this ten-element alloy
system, we consider nine materials properties, three of which
involve the optimized γ/γ′ microstructural parameters (Vγ′, Rγ′ and
Cγ′). The other six properties (Tγ′-solvus, processing window, freezing
range, ρ, PC, and oxidation resistance) are screened by constrain-
ing the search space and ML predictions. The γ/γ′ microstructure
images of these alloys are shown in Fig. 2a. Alloys MGE 1-1, MGE 1-
2, and MGE 4-4 have higher Vγ′, Rγ′ and Cγ′ simultaneously during
aging at 1100 °C for 168 h, and are also superior to the reported
Co-based superalloys in the training set and high-generation Ni-
based SX superalloys39,40. Other alloys such as MGE 2-1 and MGE
3-4, etc are close to MGE 1-2, and they possess relatively inferior
γ/γ′ microstructures. In addition, certain alloys such as MGE 1-3,
MGE 2-3, MGE 3-2, and MGE 4-1 belong to other regions of

Table 1. The nominal composition and experimental results for synthesized alloys.

Alloy Co Ni Al Ti W Ta Mo Nb Cr Re PC Tγ′-solvus Tsolidus Tliquidus PW FR ρ Vγ′ Rγ′ Cγ′

MGE 1-1 Bal 30 11 2 1.5 3.5 0 0 5 1 0 1194.7 1318.1 1370.1 123.4 52.0 8.84 54.4 70.2 80.7

MGE 1-2 Bal 30 10.5 2.5 2 3.5 0 0 5 0 0 1207.6 1308.7 1364.0 101.1 55.3 8.79 60.6 68.2 77.5

MGE 1-3 Bal 30 11 2.5 1 3.5 2 0.5 5 1 – – 1273.5 1342.0 – 68.5 8.80 – – –

MGE 1-4 Bal 30 10.5 1.5 1.5 4 1 0 5 0 0 1197.8 1312.3 1363.0 114.5 50.7 8.85 53.7 67.5 80.5

MGE 2-1 Bal 30 10.5 2.5 2 3.5 0 0 5 0.5 0 1206.0 1302.9 1354.8 96.9 51.9 8.84 51.7 67.1 60.9

MGE 2-2 Bal 30 10.5 2 1.5 4 0.5 0 5 0 0 1203.9 1302.6 1354.8 98.7 52.2 8.85 48.6 39.4 37.6

MGE 2-3 Bal 30 10.5 3 2 3.5 2 0 5 0 – – 1272.3 1333.1 – 60.8 8.80 – – –

MGE 2-4 Bal 30 11 3 1 3.5 0 0 5 1 – – 1283.9 1349.9 – 66.0 8.73 – – –

MGE 3-1 Bal 30 11 1.5 1.5 3.5 0 1 5 1 0 1203.3 1288.2 1351.4 84.9 63.2 8.85 49.7 56.1 48.1

MGE 3-2 Bal 30 11 2.5 2 3.5 2 0 5 0 – – 1279.4 1337.7 – 58.3 8.78 – – –

MGE 3-3 Bal 30 12 1.5 1.5 3.5 0 0 5 0 – – 1309.0 1360.3 – 51.3 8.62 – – –

MGE 3-4 Bal 30 11 2.5 1 3.5 0 0 5 1 0 1192.9 1308.1 1364.9 115.2 56.8 8.84 40.6 55.9 56.3

MGE 4-1 Bal 30 12 1.5 2 3.5 2 1 5 0 – – 1264.1 1330.1 – 66.0 8.77 – – –

MGE 4-2 Bal 30 11 2 2 3.5 0 0 5 0 0 1205.5 1312.3 1365.3 106.8 53.0 8.86 53.9 69.5 72.9

MGE 4-3 Bal 30 12.5 1 1.5 3.5 0 0 5 0 – – 1316.7 1366.0 – 49.3 8.65 – – –

MGE 4-4 Bal 30 11 1.5 1.5 4 1 0 5 0 0 1203.3 1305.9 1359.2 102.6 53.3 8.87 54.8 68.9 89.2

These alloys are developed by the center for Materials Genome Engineering (MGE) and are named MGE-X, where X represents the synthesized order. The unit
of PC, Tγ′-solvus, Tsolidus, Tliquidus, PW (processing window), FR (freezing range), ρ, Vγ′, Rγ′ and Cγ′ see the above text. As for alloys cannot be completely
homogenized, the PC, Tγ′-solvus, PW, Vγ′, Rγ′ and Cγ′ are not further analyzed.
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° ° °

Fig. 2 Microstructure and properties for the synthesized alloys. a γ/γ′ microstructure during aging at 1100 °C for 168 h. b Typical DSC
curves of alloys MGE 1-2, MGE 2-1, and MGE 3-1 for determining the γ′ solvus, solidus, and liquidus temperatures. c Typical oxidation
microstructure and elemental distribution (O and Al) of synthesized alloy MGE 1-1 after isothermal oxidation at 1100 °C for 100 h. Scale bars:
5 μm (a), 10 μm (c).
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composition space with higher Mo and Nb content. These alloys
have higher alloying content and lower solidus temperatures,
which yield larger freezing ranges and narrower processing
windows. A high fraction of secondary phases formed after solid
solution treatment cannot be completely removed, suggesting
their stability extends to the solidus temperature, and the
distribution of the alloying elements in the alloy is not uniform.
Therefore, we do not collect further statistics of γ/γ′ microstruc-
tures (the SEM and EDS images of microstructure after solution
treatment are collected in Supplementary Fig. 7).
As for the other six properties (Tγ′-solvus, processing window,

freezing range, ρ, PC, and oxidation resistance), alloys MGE 1-1,
MGE 1-2, and MGE 4-4 essentially meet the expected require-
ments. They all have high γ′ solvus temperatures (Fig. 2b) without
precipitating detrimental phases, low density, great oxidation
resistance, and a proper processing window and freezing range. In
particular, their oxidation layers are thinner than advanced
3rd–5th Ni-based SX superalloys TMS-75, TMS-138A, and TMS-
173, and comparable to the 6th superalloy TMS-23825,41. As shown
in Fig. 2c, a continuous and dense alumina layer forms at 1100 °C,
indicating great oxidation resistance.

DISCUSSION
We consider four aspects: (1) The synthesized alloys have desired
γ/γ′ microstructure, (2) γ′ microstructural parameters, (3) degree of
optimization, and (4) the degree to which higher compositions of
refractory elements are involved. We address each of these in turn.

(1) Of the nine synthesized alloys after complete homogeniza-
tion, five alloys have γ/γ′microstructural parameters that are
not dominated by Pareto front points in the training data
(Fig. 3a), and the three γ/γ′ microstructural parameters yield

desired results along the expected optimization direction.
Based on the γ/γ′ microstructural parameters of the
synthesized alloys, MGE 1-1, MGE 1-2, and MGE 4-4 show
superior properties to previously reported alloys (Fig. 3b).
Based on the observed trend of alloying elements in
subsequent iterations (Fig. 3c), the compositions of certain
elements (e.g. Ta, W, Nb, Re, and Al) do not change
significantly. The compositions of other elements (Mo and
Ti) fluctuate slightly. This suggests that alloy compositions
do not change significantly in later iterations. In addition,
some alloys with inferior γ/γ′ microstructural parameters are
also recommended, and they are located in the proximity of
alloys MGE 1-1 and MGE 1-2. This means the candidates that
remained in the current search space have a low potential to
obtain desired γ/γ′ microstructure. However, this does not
mean that CoNiAlCr-based superalloys have insufficient
potential to possess desired γ/γ′ microstructures at 1100 °C.
If we change the composition step interval from 0.5 at.% to
0.2 at.%, there are over 23 million candidates, which is about
190 times greater than the current space (122,406). A larger
search space can potentially lead to higher-performance
candidates, however precise control of alloy composition is
challenging during melting, especially in the presence of
volatile elements such as Al. In Fig. 3d, we calculate the
configurational entropy of these alloys using the nominal
composition, ΔS ¼ �R

Pn
i¼1ci lnci, where R is the universal

gas constant, ci is the composition of each element i. Most
synthesized alloys fall into the medium-entropy range. Only
two alloys are in the high-entropy region. However, these
high-entropy alloys are not desired as they contain more
alloying elements resulting in secondary phases that are
difficult to homogenize completely (Supplementary Fig. 7).
Most of the medium-entropy alloys such as alloys MGE 1-1,

Fig. 3 Evaluation of the synthesized alloys. a The γ/γ′ microstructural parameters (Vγ′, Rγ′ and Cγ′) of the newly synthesized 5 alloys are not
dominated by the Pareto front consisting of training data. b w(Vγ′, Rγ′, Cγ′) is calculated based on the experimental γ/γ′ microstructural
parameters of each alloy using weight function, and the training data is at iteration 0. c Variation of nominal composition of alloying elements
in the synthesized alloys. The left ordinate axis represents the composition of element Al, and the right ordinate axis shows the composition
of elements Ti, W, Ta, Mo, Nb, and Re. d Configurational entropy for the synthesized alloys.
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MGE 1-2, and MGE 4-4, etc. have less alloying elements as
they can be then completely dissolved. Therefore, our
algorithm has the ability to recommend advanced materials
with multiple balanced properties.

(2) One of the challenges in developing reliable multiobjective
optimization is to simultaneously improve multiple proper-
ties. Here we compare the predicted properties before and
after experimental feedback for certain alloys located near
the Co-30Ni-5Cr-3.5Ta-0Nb-(10.5-11)Al-(0-3)Ti-(0-2)W-(0-2)
Mo-(0-1)Re region in composition. As shown in Fig. 4a, the
three targeted properties (Vγ′, Rγ′, and Cγ′) predicted by the
ML models are generally low, and the deviation (uncer-
tainty) of each property is large without experimental
feedback. After the first iteration (Fig. 4b), the three
properties predicted by the models improve to varying
degrees, with the deviation of each property also reduced.
After two iterations (Fig. 4c), the model predictions no
longer change significantly. After four iterations, the MSE for
Vγ′, Rγ′, and Cγ′ on the testing data decreased by 17.2%, 8.3%,
and 16.6% compared to the ML models without any
feedback, respectively. This indicates that multiple γ′

microstructural parameters have been optimized simulta-
neously to different degrees.

(3) We compare the maxima distribution of weight function
(w*, calculated based on ML predictions) before and after
experimental feedback for certain alloys located around the
(Mo+Nb)-rich and (Mo+Nb)-poor regions. As shown in
Fig. 5a, b, the preferred candidates (MGE 1-1 and MGE 2-1)
do not contain Mo or Nb elements without experimental
feedback. After two iterations, the recommended alloys
(such as MGE 3-1) begin to move toward another region
containing higher Nb element (Fig. 5c), which suggests that
the algorithm gradually tries to find other local optimal
regions that might have superior targeted properties. This
trend becomes more pronounced after three iterations
(Fig. 5d). Finally, the recommended candidate contains
higher Mo and Nb compositions (MGE 4-1) compared to
other synthesized alloys (MGE 4-2 and MGE 4-3). One of the
reasons that the algorithm often recommends alloys with
high Mo and Nb content is that the uncertainties in
predictions for the alloys in this local region are very high
(see Supplementary information for the predictions of

Fig. 4 Simultaneous optimization for three targeted properties based on experimental feedback and ML predictions. The 35 candidate
alloys are located in the Co-30Ni-5Cr-3.5Ta-0Nb-(10.5-11)Al-(0-3)Ti-(0-2)W-(0-2)Mo-(0-1)Re region. The pink shadows represent the
corresponding standard deviation. a The ML model predictions of targeted properties (Vγ′, Rγ′, and Cγ′) of 35 candidates without
experimental feedback. b ML predictions after one iteration with experimental feedback. c ML predictions after two iterations.
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synthesized alloys’ targeted properties). In addition, in terms
of the effect of alloying elements on the γ/γ′ microstructure,
Mo can substitute for W and Re to maintain a small γ′ size,
and Nb can replace Ti to maintain a high γ′ volume
fraction21. In four iterations of experiments, the secondary
phases of alloys such as MGE 1-3, MGE 2-3, MGE 3-2, and
MGE 4-1 cannot be completely removed during homo-
genization heat treatment. Elevated levels of elements such
as Al, Ti, Ta, W, and Mo, etc in these secondary phases lead
to large consumption of alloying elements in the formation
of the γ/γ′ phases (Supplementary Fig. 7), which often yields
inferior microstructure.

(4) The synthesized alloys exhibit desired γ/γ′ microstructures,
which are often attributed to intrinsic strengthening
mechanisms among elements. The alloys show strengthen-
ing from the high content of refractory elements (alloying
elements with melting points higher than 2000 °C, including
W, Re, Ta, Mo, Nb, and Ru, etc) on the γ/γ′ microstructures.
As shown in Fig. 6a, the compositions of refractory elements
in the Ni-based SX superalloys show an upward trend with
temperature capability. In this strengthening, refractory
elements simultaneously adjust the γ′ volume fraction, γ′
size, and γ′ morphology to indirectly improve the mechan-
ical properties. This cannot be achieved just by combina-
tions of other elements (e.g. Al, Ti, Cr, and Ni, etc). In Fig. 6b,
the synthesized alloys also have a higher content of
refractory elements than previously reported multi-
component Co-based superalloys, which suggests that
mechanical properties, such as creep resistance, may be
higher. All the other synthesized alloys with lower composi-
tions of refractory elements yield inferior γ/γ′microstructure,
which does not help with mechanical properties.

To evaluate the creep resistance, we calculate the creep merit
index of multi-component superalloys using the Arrhenius
equation and the Reed et al. model42,

Deff ;m ¼ Deff ;m
0 exp �Qeff ;m

RT

� �
(5)

Deff ¼ 1P
m xm=Deff ;m

(6)

Mcreep ¼ 1=Deff (7)

where Deff ;m, D
eff ;m
0 , Qeff ;m and xm are the diffusion coefficient,

pre-exponential coefficient, activation energy, and atomic
fraction of the element m, respectively. Deff and Mcreep are
effective diffusion coefficient and creep merit index. According
to the Arrhenius equation, we use the pre-exponential
coefficients and activation energies of elements listed in
Supplementary Table 7 to calculate the diffusion coefficient
of each element. Then, we derive the effective diffusion
coefficients and creep merit indexes of these alloys based on
composition-weighted elements’ diffusion coefficient and
Reed’s model. Figure 7a shows Deff and Mcreep for a number
of Ni-based SX superalloys43,44 and CoNiAlCr-based superalloys
at 1100 °C. The creep resistance is improved with decreasing
Deff, and high-generation Ni-based SX superalloys have higher
Mcreep. The lower the effective diffusion coefficients, the better
the creep resistance. The Mcreep of alloys MGE 1-1 and MGE 4-4
is also higher than the 4th Ni-based SX superalloys, which
suggests the creep resistance may be higher. As shown in
Fig. 7b, c, stable γ/γ′ microstructure appears in alloys MGE 1-1
and MGE 4-4 without γ′ rafting after aging at 1100 °C for 500 h,
which is a sign of good creep resistance.

Fig. 5 The behavior of three targeted properties based on experimental feedback. The value of the weight function w*(Vγ′, Rγ′, Cγ′) is
calculated based on ML predictions, and the top 40 alloys with high w* in each iteration’s initial predictions are used for comparison. The
orange diamond points represent the preferred candidates. a Recommendation of candidate alloys with high w* without experimental
feedback. b Recommendation of candidate alloys after one iteration. c Recommendation after two iterations. d Recommendation after three
iterations.
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In summary, we have proposed a triple-objective optimization
algorithm that has been applied to the optimization of γ/γ′
microstructure in CoNiAlCr-based superalloys based on a relatively
small amount of materials data. Utilizing this algorithm, we have
synthesized compositions with multiple desired properties, i.e.
alloys MGE 1-1, MGE 1-2, and MGE 4-4, which simultaneously
possess high γ′ volume fraction (>54%), small γ′ size (<480 nm)
and high cuboidal γ′ fraction (>77%) after aging at 1100 °C for
168 h. They also exhibit a high γ′ solvus temperature (>1190 °C),
proper processing window (>100 °C) and freezing range (<60 °C),
low density (<8.9 g cm−3), desired γ/γ′ stability without precipitat-
ing detrimental phases and good oxidation resistance at 1100 °C.
The CoNiAlCr-based superalloys with targeted multiple properties
are desired for high-temperature materials of the future. The
algorithm is effective in finding alloys with superior γ/γ′
microstructure and γ′ microstructural parameters. It also leads to
intrinsic strengthening due to the higher compositions of
refractory elements that improve γ/γ′ microstructure towards
higher γ′ volume fraction, small γ′ size, and cuboidal γ′. It also
indirectly improves the creep resistance.

METHODS
Synthesis and characterization
We utilized pure metals (>99.95%) to synthesize these candidate
alloys. They were melted eight times using vacuum arc melting to
yield a 40 g ingot. To ensure the homogeneity of the composition
of the alloys, the ingots were sealed in a quartz tube filled with

argon, and solution heat treated at 1225 °C for 24 h followed by air
cooling (standard solid solution). The γ′ solvus, solidus and
liquidus were detected by DTA (NETZSCH STA 449F3), and the
samples (aged at 1050 °C for 24 h) with a size of φ3mm× 1mm
were tested at a heating rate of 10 °Cmin−1. The density of each
alloy was measured five times by Archimedes displacement
principle and the average value was taken.
To validate the γ/γ′microstructure of the alloys, long-term aging

was monitored at 1100 °C for 168 h and 500 h. All metallographic
samples were etched for a few seconds using a solution of HNO3 :
HCl : H2O= 1 : 1 : 1. The γ/γ′ microstructures were observed using
a Zeiss GeminiSEM 300 field-emission scanning electron micro-
scope (SEM) in backscattered electron imaging mode, and alloy
composition was measured with an equipped energy-dispersive
X-ray spectroscopy detector (EDS). Five images of different regions
in each sample were used to represent its microstructure under
the corresponding aging conditions. The value of γ′ volume
fraction, γ′ size and cuboidal γ′ fraction were quantified by the
computer vision framework proposed in our previous work21 (For
alloys that cannot be fully homogenized after standard solid
solution, the γ/γ′ microstructural parameters were not be used for
analysis).
Isothermal oxidation experiments were carried out at 1100 °C

for 100 h. The weight of the sample and crucible was measured by
an electronic balance with sensitivity down to 10−5 g. The crucible
was pre-fired at 1150 °C until the weight change was <2 × 10−4 g,
and then considered to be constant weight. The oxidized samples
were Ni-plated to preserve oxidation layers. The oxide

°

Fig. 6 The intrinsic strengthening with the higher composition of refractory elements. a Relationship between temperature capability and
composition of refractory elements in the 1st to 6th Ni-based SX superalloys19,25,45. b Variation of refractory element compositions in
synthesized alloys.

Fig. 7 Creep resistance for Ni-based SX superalloys and CoNiAlCr-based superalloys. a Creep merit index of 1st to 4th Ni-based SX
superalloys, MGE 1-1 and MGE 4-4 alloys. b, c Stable γ/γ′ microstructure of alloys MGE 1-1 and MGE 4-4 without obvious rafting after aging at
1100 °C for 500 h. Scale bars: 3 μm (b, c).
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microstructure was characterized with the SEM in backscattered
electron imaging mode, and EDS was used to detect the
elemental distribution to the oxides.

Machine learning models
The experimental data of Tγ′-solvus, Tsolidus, Tliquidus, ρ, Vγ′, Rγ′, and Cγ′
are utilized for ML regression models, and computational data are
used for ML classification models. The linear regression (LR),
decision tree regression (DTR), k-nearest neighbors regression
(KNR), support vector regression with a kernel of radial basis
function (SVR), Adaboost regression (ABR), random forests
regression (RFR), and gradient boosting tree regression (GBTR)
are used and compared to select an optimal regressor for each
material property. The logistic regression classification (LC),
decision tree classification (DTC), k-nearest neighbors classification
(KNC), support vector classification with a kernel of radial basis
function (SVC), Adaboost classification (ABC), random forests
classification (RFC), and gradient boosting tree classification
(GBTC) are used and compared to select an optimal classifier for
predicting the precipitate of detrimental phases. The data was
split into a training set (80%) and testing set (20%) randomly. Each
model was trained 1000 times by ten-fold cross-validation with
the data chosen randomly, and the mean value of the mean
square error on the testing set - MSE ¼ 1

n

Pn
i¼1ðyi � ŷiÞ2, where yi

is the experimental value and ŷi is the predicted value - is
evaluated as a measure of the regression fitting. The smaller the
MSE of the regressor on the testing set, the better the regression
prediction. The best regressor for Tγ′-solvus, Tsolidus, Tliquidus, ρ, Vγ′,
Rγ′, and Cγ′ is SVR, GBTR, RFR, LR, ABR, GBTR, and RFR, respectively.
The mean value of the accuracy on the testing set is used as a
measure of the classification fitting and also monitored by AUC11.
The larger the accuracy/AUC of the classifier on the testing set, the
better the classification prediction. The best classifier for
precipitate classification is SVC (The evaluation metrics of these
ML models see Supplementary information).
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