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Artificial intelligence enables precision
diagnosis of cervical cytology grades and
cervical cancer

Jue Wang1,2,12, Yunfang Yu 1,3,4,5,12, Yujie Tan1,3,4,12, Huan Wan1,2,12,
Nafen Zheng1,2,12, Zifan He1,3,4, Luhui Mao1,3,4, Wei Ren 1,3,4, Kai Chen1,3,4,
Zhen Lin 6, Gui He1,2, Yongjian Chen7, Ruichao Chen8, Hui Xu9, Kai Liu6,
Qinyue Yao6, Sha Fu1,2, Yang Song1,2, Qingyu Chen10, Lina Zuo10, Liya Wei10,
Jin Wang 6 , Nengtai Ouyang1,2 & Herui Yao 1,3,4,11

Cervical cancer is a significant global health issue, its prevalence andprognosis
highlighting the importance of early screening for effective prevention. This
research aimed to create and validate an artificial intelligence cervical cancer
screening (AICCS) system for grading cervical cytology. The AICCS systemwas
trained and validated using various datasets, including retrospective, pro-
spective, and randomized observational trial data, involving a total of 16,056
participants. It utilized two artificial intelligence (AI) models: one for detecting
cells at the patch-level and another for classifying whole-slide image (WSIs).
The AICCS consistently showed high accuracy in predicting cytology grades
across different datasets. In the prospective assessment, it achieved an area
under curve (AUC)of 0.947, a sensitivity of 0.946, a specificity of 0.890, and an
accuracy of 0.892. Remarkably, the randomized observational trial revealed
that the AICCS-assisted cytopathologists had a significantly higher AUC, spe-
cificity, and accuracy than cytopathologists alone, with a notable 13.3%
enhancement in sensitivity. Thus, AICCS holds promise as an additional tool
for accurate and efficient cervical cancer screening.

Cervical cancer ranks fourth globally among the most common can-
cers and the fourth leading cause of cancer-related deaths1–3. Early
screening plays a vital role in its effective prevention. Timely detection
and intervention to halt the progression of precancerous cervical
lesions are essential. However, there’s a pressing need for accurate

screening platforms for early cervical cancer detection. Presently,
screening methods primarly include cervical cytology, HPV testing,
and DNA ploidy testing4. Cervical cytology screening known for its
simplicity and cost-effectiveness, is recommended for population-
based screening5. Nevertheless, there is a significant shortage of
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cytopathologists worldwide has led to over a 10% false negative rate in
routine diagnosis6. In China the overall cervical cancer screening rate
remains low compared with developed countries, largely due to its
shortage of pathologists. As of 2022, China had only 20,400 registered
pathologists, while the actual demand for them was nearly 100,0007.

Hence, there’s an urgent need to develop auxiliary tools for cervical
cancer screening.

Artificial intelligence (AI) has swiftly advanced and reshaped var-
ious aspects of daily life. Innovations in methods like deep learning,
encompassing convolutional neural networks, object detection mod-
els, ensemble learning approaches, and generative adversarial net-
works, have fueled the expansion of AI-driven applications and
research in health-care. These breakthroughs hold promise for cost
reduction and enhanced diagnoses8–11. Computer vision has found
extensive use in disease detection. For example, in 2016, Google
developed a model capable of detecting diabetic retinopathy with
accuracy comparable to trained medical professionals12. Moreover, in
2019, they devised a model that surpassed doctors in identifying lung
cancer13. Encouraging outcomes have also emerged in breast cancer
detection, with numerous studies employing deep learning techniques
for mammography and digital breast tomosynthesis classification14–17.
These techniques have achieved excellent performancewhen assessed
on extensive datasets.

The emergence of an AI-powered cervical cancer screening sys-
tem holds promise for transforming cervical cancer diagnosis. Tradi-
tional grading methods in cervical cytology grading hinge on manual
assessment by pathologists, which is time-consuming, subjective, and
susceptible to inter-observer differences. While cervical cytology
remains widely used, it heavily relies on the expertise and experience
of cytopathologists. Microscope readings, for instance, suffer from
poor reproducibility and susceptibility to various interfering factors. In
contrast, AI screening offers potential advantages such as enhancing
the consistency of cytopathological results, improving alignment with
biopsy outcomes, boosting sensitivity, and reducing the risk of
misdiagnosis18,19. In a prior study, researchers developed a compre-
hensive cervical liquid-based cytology smear AI-assistive TBS (AIATBS)
diagnostic system20. This system utilized YOLOv3 for target detection,
Xception, and patch-based models for target classification, and U-net
for nucleus segmentation. The AI systemwas trained to accommodate
24 different classifications. However, its features presented challenges
for applying it broadly in practice, as it actually increases the com-
plexity of screening tasks. Rahaman et al. employed a deep learning-
based hybrid deep feature fusion (HDFF) technique for the classifica-
tion of cervical cytology21, but it focused solely on the classification of
squamous epithelial cells.

The objective of this study was to create an artificial intelligence
cervical cancer screening (AICCS) system to aid in diagnosing cervical
cytology grades and cervical cancer by analyzing whole-slide images
(WSIs) of cervical cytology. The system underwent validation using
multicenter, retrospective, and prospective population-based data-
sets, along with a randomized observational trial.

Results
Proposed an AICCS Model
In response to the growing need for precisionmedicine, deep learning
has emerged as the preferred approach for automated intelligent
medical diagnosis. To advance early cervical cancer screening, parti-
cularly in detecting abnormal or malignant cells in a cervical thin
liquid-based test, we developed an Artificial Intelligence Cervical
Cancer Screening (AICCS) system. In the conventional diagnostic
process, after collecting and preparing smear samples onto a liquid-
based slide, cytopathologists manually inspect them under a micro-
scope to identify potential abnormal and malignant cells, which is
time-consuming, draining for cytopathologists, and increasing the risk
of misdiagnosis. Leveraging the latest Artificial Intelligence (AI) tech-
nology and the expertise of experienced cytopathologists, the AICCS
was crafted with a deep-learning neural network and trained it with
well-annotated WSIs. Figure 1 shows the workflow of cervical cancer
diagnosis, which consists of three major stages: cell annotation
(Fig. 1A), detection at the patch-level (Fig. 1B), and classification at the

Fig. 1 | The AICCS workflow. The acquisition and preprocessing of WSIs involve
first digitalizing cervical liquid-based preparation samples collected and main-
tained by the sedimentation liquid-based preparation method (A). WSIs passing
quality control undergo patch-level detection which involves dividing a WSI into
smaller patches using a sliding window approach and annotating annotate abnor-
mal cells based on the criteria defined by TBS 2014 (B). The output of the cell
detection model serves as input for the WSI-level classification model. The WSI-
level classification model utilizes the results from the patch-level cell detection
model to generate possible cytology grades according to TBS 2014: ASC-US, LSIL,
ASC-H, HSIL, SCC, and AGC (C). The content of microscope reading in Section C
classification at WSI level are origin from BioRender. The’Confirmation of Pub-
lication and Licensing Rights’ is provided.
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WSI-level (Fig. 1C). Annotation occurs solely during the training phase
of the AICCS. During the operating process with the trained model,
only digitization needs to be performed to obtain the whole-slide
images (WSIs). Figure 1B shows a detection process that attempts to
simulate the process of manual identification using a deep-learning
object detection neural network to go through every small sliding
window, or through patches of the WSIs. The third stage (Fig. 1C)
involves aggregating all detections in stage two and performing clas-
sification at the WSI-level to provide a suggestion to cytopathologists.
The last step is reviewing the AI’s suggestion and verifying it with aWSI
browser or the direct use of a microscope.

The AICCS, it is a combination of a deep-learning neural network
and classical machine-learning algorithms. The AICCS algorithm
comprises two major functional models: a patch-level cell detection
model (Fig. 2A) and a WSI-level classification model (Fig. 2B). For
model selection at the patch-level, the Retina and Faster-R-CNN algo-
rithms exhibited similar performances (Supplementary Table 1). The
AICCS’s full computational model was further optimized and gener-
ated by comparing four algorithm combinations, namely, two patch-
level detection models (Retina and Faster-R-CNN) with two WSI level
classification models (random forest and DNN). Among them, the
Retina-Resnet18-random forest algorithm was selected for its high
performance in diagnosing cervical cytology grades. It achieved an
AUC of 0.922 (95% CI 0.904–0.940) and a sensitivity of 0.906 (95% CI
0.875–0.932) (Supplementary Table 2). Thus, RetinaNet was selected
as the abnormal cell detectionmodel at the patch-level. Abbreviations
are defined in Supplementary Table 3.

Dataset characteristics for AICCS system development
To develop the AICCS system, we recruited a total of 16,056 eligible
participants were recruited from three institutions serving as the
training, validation, prospective, and randomized observational trial
datasets (Supplementary Fig. 1). Among them, 11,468 participants from

Sun Yat-sen University Sun Yat-sen Memorial Hospital (SYSMH) met
our inclusion criteria for the model development, of these, 9316 were
utilized for training the model, and 2152 were allocated for internal
validation. Two external validation datasets were obtained from the
Guangzhou Women and Children Medical Center (GWCMC) and the
Third Affiliated Hospital of GuangzhouMedical University (TAHGMU),
each comprising 600 participants. Additionally, the SYSMH pro-
spective dataset comprising 2780 eligible participants. Lastly, 608
eligible participants from SYSMH were enrolled in the randomized
observational trial (Supplementary Fig. 2).

To enhance model training, we increased the number of
intraepithelial lesions cases in the training, internal validation, and
external validation dataset, resulting in a higher proportion of posi-
tive cases compared to the epidemiological ratio. In the SYSMH
training dataset and internal validation dataset, intraepithelial
lesions accounted for 27.6% and 20.3%, respectively (Fig. 3A, B). In
the external validation datasets from GWCMC and TAHGMU, the
proportions of intraepithelial lesions were 44.7% and 32.7%, respec-
tively (Fig. 3C, D) (Supplementary Table 4). Although the AICCS
system was trained on a retrospective dataset, to verify the effec-
tiveness in a realistic setting, prospective validation dataset and
randomized observational trial datasets were constructed. In these
datasets, the proportions of intraepithelial lesions were 4% and 7.7%,
respectively, aligning with clinical practice where the positive rate
range from 3 to 8% (Fig. 3E–H). The classification and proportion of
cervical cytology for each dataset group are detailed in Supple-
mentary Tables S4 and S5.

Performance evaluation of the AICCS system on the validation
datasets
Supplementary Table 6 presents the experimental results of AICCS
across all cytological grades andother subgroups. It demonstrates that
the AICCS system achieved high performance in identifying abnormal

⊕ ⊕

Fig. 2 | The AICCS system algorithm. We adopted RetinaNet, a one-stage object
detection approach, as our anomaly cell detection model at the patch-level, and
designed it to distinguish between six classes of abnormal cells: ASC-US, LSIL,
ASC-H, HSIL, SCC, and AGC (A). The development of a WSI classification model

involves generating features that encapsulate the statistical data derived from the
patch-level detection model, which are then utilized to train the WSI classification
model via the implementation of a random forest algorithm (B).
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cell grades in both internal and two external validation datasets. Spe-
cifically, the AICCS systemmaintained sensitivity, accuracy, specificity,
and AUC values above 0.800 in all internal and external validation
datasets.

In conventional medical practice, subsequent management pro-
tocols vary based on the classification of cervical cytology grades. For
cases classified as negative for intraepithelial lesion or malignancy
(NILM), no additional investigative procedures are warranted. How-
ever, for cytological results categorized as low-grade squamous
intraepithelial lesion (LSIL) or higher, colposcopy is recommended. In
instances where atypical squamous cells of undetermined significance
(ASC-US) are detected, humanpapillomavirus (HPV) testing is advised.

A negative HPV test suggests a follow-up cervical cytology screening
after one year. while a positive result necessitates colposcopy. Based
on these stratified protocols, subgroup analyses were conducted to
assess the efficacy and outcomes of the AICCS system.

For subgroup analysis, the ASC-US+ category included ASC-US,
LSIL, atypical squamous cells - cannot exclude HSIL (ASC-H), high-
grade squamous intraepithelial lesions (HSIL), and squamous cell
carcinoma (SCC). LSIL+ encompassed LSIL, ASC-H, HSIL, and SCC,
while HSIL+ included ASC-H, HSIL, and SCC. As shown in Fig. 4, all
subgroups of ASC-US+, LSIL+, and HSIL+ exhibited high AUC values.
Furthermore, the AICCS system achieved higher AUC values with
worsening cytological grades. When comparing LSIL+ and ASC-US+,
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Fig. 3 | Distribution of the cervical cytology grade in the training, validation,
and randomized observational trial datasets. A illustrates that the training
dataset comprised 730 (7.8%) casesof ASC-US, 995 (10.7%) cases of LSIL, 279 (3.0%)
cases of ASC-H, 401 (4.3%) cases of HSIL, 35 (0.4%) cases of SCC, and 131 (1.4%)
cases of AGC. B–D depict that 20.3%, 44.7%, and 32.7% of cases had intraepithelial
lesions in the internal validation dataset, GWCMC external validation dataset, and

TAHGMU dataset, respectively. E shows that 4% of participants had intraepithelial
lesions in the SYSMH prospective validation dataset. Detailed proportions of
intraepithelial lesions in AICCS alone, cytopathologists, and AICCS-assisted cyto-
pathologists in the randomized observational trial are shown in (F–H). Source data
are provided as a Source Data file.
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LSIL+ maintained an advantage of 1.8% to 5.5% in both internal and
external validation datasets. Additionally, comparing

HSIL+ (AUC: 0.960, 95%CI 0.938–0.982) to ASC-US+ (AUC: 0.923,
95% CI 0.905–0.941) in the internal validation dataset, we observed an
advantage of up to 4%.

We also evaluated the performance of sensitivity, specificity, and
accuracy in all subgroups (Fig. 5). In terms of sensitivity, HSIL+
exhibited advantages over other subgroups across all datasets. Addi-
tionally, the AICCS system showed comparable performance in spe-
cificity and accuracy among ASC-US+, LSIL+, and HSIL+, maintaining
values above 0.810 for accuracy, and specificity across all internal and
external validation datasets, regardless of different cytology grades.
Furthermore, the AICCS system exhibited high negative predictive
values (NPV) for the validation datasets, being 0.973 on the SYSMH
internal validation dataset, 0.913 on the GWCMC external validation
dataset, and 0.958 on the TAHGMU external validation dataset (Sup-
plementary Table 7).

Impact of diagnostic performance in cytopathologists with the
assistance of AICCS in prospective validation dataset
To assess the effectiveness of AICCS as a tool aiding cytopathologists
in daily clinical practice, we evaluated the diagnostic performance
using various approaches, including AICCS alone, cytopathologists,
and AICCS-assisted cytopathologists, based on the prospective
validation dataset from SYSMH. Table 1 demonstrates the high per-
formance of sensitivity, specificity, accuracy, and AUC values in the
AICCS alone, cytopathologists, and AICCS-assisted cytopathologists
groups.

Compared to cytopathologists working without assistance, those
aided by AICCS showed significant improvements in AUC (from 0.948
to 0.993; P =0.0006), sensitivity (from 0.909 to 0.991; P =0.024),
specificity (from 0.987 to 0.996; P =0.002), and accuracy (from 0.984
to 0.995; P < 0.001). Moreover, when compared to AICCS alone,
AICCS-assisted cytopathologists exhibited significantly a higher AUC,
specificity, and accuracy than the AICCS alone (all at P <0.001) and
maintained a comparable sensitivity (P = 0.091) across all cervical
cytology grades.

Subgroup analyses, compared to AICCS alone (with AUC values
of 0.947, 95% CI 0.936–0.958 for ASC-US+, 0.968, 95% CI
0.956–0.981 for LSIL+, and 0.965, 95% CI 0.949–0.982 for HSIL+),
and cytopathologists with AUC values of 0.946, 95% CI(0.918–0.974
for ASC-US+, 0.975, 95% CI 0.949–1.000 for LSIL+, and 0.994, 95% CI
0.992–0.996 for HSIL+), AICCS-assisted cytopathologists (with AUC
values of 0.993, 95% CI 0.984–1.000 for ASC-US+, 0.998, 95% CI
0.996–0.999 for LSIL+, and 0.998, 95% CI 0.996–0.999 for HSIL+)
demonstrated significant improvements in AUC values, as indicated
in Table 1 and Fig. 6. Additionally, AICCS-assisted cytopathologists
demonstrated superiority in terms of specificity and accuracy (all
P < 0.05) among patients with ASC-US+, LSIL+, or HSIL+. Moreover,
the NPV was 0.997, 0.996, and 1.000 for AICCS alone, cytopatholo-
gists, and AICCS-assisted cytopathologists, respectively, as displayed
in Supplementary Table 8.

To further evaluate the reliability of the AICCS, the performance
comparison betweenAICCS alone and a group of cytopathologists was
conducted using histopathological diagnosis as the gold standard. No
significant difference was observed between AICCS alone and cyto-
pathologists in detecting abnormal cytology grades. In subgroup
analyses, both AICCS alone and cytopathologists showedhigh levels of
sensitivity, particularly in the HSIL+ subgroup, where the sensitivity
reached up to 1.000. This suggests that the AICCS system possesses
robust capability in accurately identifying patients with epithelial
lesion cells (LSIL, ASC-H, HSIL, SCC, and AGC), as presented in Sup-
plementary Table 9.
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SYSMH internal validation dataset
AUC  0.923 (95% CI 0.905-0.941)

TAHGMU external validation dataset
AUC  0.879 (95% CI 0.844-0.913)
GWCMC external validation dataset
AUC  0.929 (95% CI 0.905-0.953)

SYSMH internal validation dataset
AUC  0.950 (95% CI 0.933-0.967)

TAHGMU external validation dataset
AUC  0.927 (95% CI 0.896-0.959)
GWCMC external validation dataset
AUC  0.946 (95% CI 0.924-0.968)

SYSMH internal validation dataset
AUC  0.960 (95% CI 0.938-0.982)

TAHGMU external validation dataset
AUC  0.896 (95% CI 0.816-0.975)
GWCMC external validation dataset
AUC  0.930 (95% CI 0.899-0.962)

A.   AICCS to diagnose cytology grade in ASC-US+

B.   AICCS to diagnose cytology grade in LSIL+

C.   AICCS to diagnose cytology grade in HSIL+

Fig. 4 | ROC curves ofAICCS systemaccording to risk stratificationobtainedon
different validation datasets. ROC curves obtained by the AICCS system for
participants with (A) ASC-US+, (B) LSIL+, and (C) HSIL+. The evaluation metric is
ROC curves, with 95% confidence intervals in brackets. Source data are provided
as a Source Data file.
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Comparing the performance of different diagnosticmeasures in
the randomized observational trial
Despite the AICCS system being developed based on a retrospective
dataset, it showed high efficacy in identifying cervical cytology grades.
To provide a more realistic assessment of its effectiveness, we con-
ducted a randomized observational trial at SYSMH to compare the
efficacy of AICCS alone, cytopathologists, and AICCS-assisted cyto-
pathologists. All three groups exhibited high AUC values, consistent
with findings from prospective validation. For participants with ASC-
US+, the AUC values were 0.944, 0.959, and 0.995, respectively
(Fig. 7A). Furthermore, for participants with LSIL+ and HSIL+, AUCs
exceeding 0.980 were achieved (Fig. 7B, C). In comparison to the
AICCS alone, AICCS-assisted cytopathologists showed superiority in
terms of specificity and accuracy among patients with ASC-US+, LSIL+,
or HSIL+ (all P < 0.001), while maintaining comparable sensitivity for
abnormal cytology grades (P > 0.05) (Table 2, Supplementary Fig. 3).
The NPV was 0.994, 0.989, and 1.000 for AICCS alone, cytopatholo-
gists, and AICCS-assisted cytopathologists, respectively (Supplemen-
tary Table 8).

Clinical application of the AICCS system
In addition to enhancing overall diagnostic performance, the AICCS
system also accelerates the diagnostic process. The time required for
AICCS analysis of one WSI was under 120 s, whereas manual reading
took approximately 180 s.

To facilitate AICCS-assisted diagnosis and consultations
for complex cases in clinical settings, a cloud-based,multi-institutional
AI platformwasdeveloped. Clinicians can access this platform through
a publicly accessible website (https://ai-eng.cellsvision.com:3443/),
enabling them to upload cervical cytology smears for analysis

(Supplementary Fig. 4). Experimental implementation is currently
underway at multiple institutions. We are confident that the AICCS
system holds the potential to enhance medical services and advance
clinical deployment (Supplementary Fig. 5).

Discussion
This study aimed to develop and validate an AICCS system for diag-
nosing cervical cytology classifications by analyzing cervical cell WSIs.
The AICCS system underwent training and testing on diverse datasets
made up of 16,056 participants. It employed two AI models: one for cell
detection and another for WSI classification. The research utilized mul-
ticenter, retrospective, and prospective population datasets, along with
a randomized observational trial for system validation. The validation
across these datasets revealed the AICCS system’s outstanding perfor-
mance in cervical cytology screening and differential classifications.

In our prospective evaluation, the proposed system achieved an
AUCof 0.947, sensitivity of 0.946, specificity of 0.890, and accuracy of
0.892. Particularly noteworthy, in the randomized observational trial,
theAICCS-assisted cytopathologists surpassed cytopathologists alone,
exhibiting significantly higher AUC, specificity, and accuracy, along
with a notable 13.3% improvement in sensitivity. The AICCS system
showed exhibited promise as an adjunct tool for precise and efficient
cervical cancer screening. Furthermore, promising outcomes were
observed for the AICCS system in accurately identifying cervical
cytology grading. The system demonstrated high sensitivity and spe-
cificity, indicating its capability to detect abnormal cells and effectively
differentiate them from normal cells. Therefore, this system can
potentially lead to earlier detection and intervention for cervical can-
cer, thereby enhancingpatient outcomes and alleviating theburdenon
health-care systems.
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Fig. 5 | Overall performance on retrospective validation datasets. Overall per-
formance of the AICCS system on all cytology grades among different validation
datasets (A). Overall performance of the AICCS system on ASC-US+ among differ-
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Fig. 6 | Comparisons of diagnostic performance of the AICCS alone, cyto-
pathologists, and AICCS-assisted cytopathologists on the prospective valida-
tion dataset. Participants with (A) ASC-US+, (B) LSIL+, and (C) HSIL+. The
evaluation metric is ROC curves, with 95% confidence intervals in brackets. Source
data are provided as a Source Data file.
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data are provided as a Source Data file.
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In general, the clinical applications of AI are limited owing to a
lack of validation in prospective datasets22. However, this study stands
out as the AICCS system was trained using over 10,000 smears and
validated using two independent external hospital datasets, in addi-
tion to a prospective validation dataset. Furthermore, a randomized
observational trial was conducted to demonstrate the high sensitivity
and accuracy of both the AICCS alone and the AICCS-assisted
cytopathologists.

Despite the approval of a few Class-II and Class-III Cervical AI-
assisted analysis software by the National Medical Products Adminis-
tration (NMPA) of China in 2023, China currently still lacks an effective
cervical cancer screening system. Therefore, it is crucial to establish an
AI cervical cancer screening system tailored to the country’s specific
conditions. In China, publicmedical services are typically organized at
the provincial, municipal, and county levels. However, many samples
collected from rural areas or lower-tier cities in developing regions are
processed at county hospitals, where skilled cytopathologists are
scarce. The system developed in this study presents a potentially
affordable solution. Additionally, there are multiple options available
for providing AI-assisted diagnostic services, such as on-premises,
software-as-a-service (SaaS), and pay-per-slide models. The combina-
tion of 5G networks and intelligent medicine can help address the
resource imbalance in health-care and enhance the quality of medical
services23–26.

However, several limitations need to be considered. Firstly, owing
to limited operator experience, not every sample may accurately
represent the true state of cervical lesions, potentially leading to false-
negative events. Secondly, variations in skill levels among liquid-based
cytology preparers across medical centers could result in inconsistent
quality in the prepared smears, thereby affecting the accuracy of the
diagnostic results. Thirdly, although SCC hold significant diagnostic
value, they are not explicitly delineated as a separate WSI category,
owing to the limited number of samples. Additionally, ethical con-
siderations must be addressed when implementing an AI-based
screening system. The potential impact on patient privacy, data
security, and the role of health-care professionals in decision-making
processes should be carefully evaluated and monitored.

In conclusion, our study highlights showcase the potential of AI-
assisted cervical cytology screening, with our proposed AICCS system
demonstrating remarkable diagnostic accuracy and the capability to
assist health-care professionals. This technology holds the potential to
significantly enhance cervical cancer detection and clinical practice,
thereby paving the way for improved health-care services and
deployment in medical institutions.

Methods
Study design and participants
Between January 2016 and December 2020, a total of 16,056 eligible
participants were enrolled in this multicenter study. Distinct datasets
were created, including retrospective and prospective population-
based datasets, aswell as a randomized observational trial, to train and
validate the AICCS system for the auxiliary diagnosis of cervical
cytology grade and cervical cancer. The AICCS system consists of two
main functional AI models: a patch-level cell detection model and a
WSI-level classificationmodel. Our study adhered to the reporting and
analysis guidelines of STARD, CONSORT-AI Extension, and the MI-
CLAIM checklist27–29. This study obtained approval from the institu-
tional review boards of each participating hospital and adhered to the
principles outlined in the Declaration of Helsinki.

The AICCS system underwent training and validation for cervical
cancer screening in three phases. In the proof-of-concept (POC) phase,
the training phase involved the retrospective acquisition of WSIs. In
the validation phase, the AICCS underwent internal and external vali-
dation using multicenter, retrospective, and prospective population-
based datasets. The third phase involved further validation through a

randomized observational trial. Supplementary Figs. 1 and 2 present
the design flowchart of the study.

WSI acquisition and preprocessing
For the acquisition and preprocessing of WSIs, cervical liquid-based
preparation samples collected and maintained using the sedimenta-
tion liquid-based preparation method were initially digitalized. WSIs
were generated using two prominent digital pathology scanners
manufactured in China. One scanner was the PRECICE 600 (UNIC
TECHNOLOGIES, INC.), equipped with a 40× objective lens, providing
a specimen-level pixel size of 0.2529μm×0.2529μm. The second
scanner was the KF-PRO-400-HI (Ningbo Jiangfeng Bio-Information
TechnologyCo., Ltd.), also featuring a 40×objective lens andoffering a
specimen-level pixel size of 0.2484μm×0.2484μm.Depending on the
size of the smear sample, each WSI (scanned at 40× objective power)
contained billions of pixels and had a data size ranging from several
hundred megabytes to a few gigabytes. All WSIs were saved in a pro-
prietary confidential format.

Six cytopathologists from the Cellular and Molecular Diagnostics
Center, SYSMH, each with over 5 years of experience, participated in
cell annotation and WSI classification according to The Bethesda Sys-
tem (TBS) 2014 guidelines. Negative smears did not require annotation
or labeling. As per TBS 2014 criteria, satisfactory samples were defined
as those containing a minimum of 5000 visible and uncovered squa-
mous epithelial cells with the presence of abnormal cells (atypical
squamous cells or atypical glandular cells and above). Samples with
fewer than 5000 visible cells, uncovered squamous epithelial cells, or
those affectedbyblood, inflammatory cells, epithelial cell overlapping,
poor fixation, excessive drying, or unknown component contamina-
tion affecting over 75% of squamous epithelial cells were excluded.

Quality control was ensured through participant eligibility
assessment and adherence to strict specimen criteria. Participant
inclusion criteria comprised being 18 years or older, not pregnant, and
free from mental illness or cognitive impairment. All participants
provided consent for cervical liquid-based cytology for definitive
diagnosis. In addition to manual quality control measures, we imple-
mented an AI-assisted approach to identify and address potential
scanning quality issues during the digitization process. For this pur-
pose, we developed an image classification model utilizing thumbnail
images ofWSIs to detect instances of scanning quality hindrances such
as blurriness or incomplete scanning areas (Fig. S6). The thumbnails’
short edges were standardized to 1000 pixels, to represent scaled-
down versions of the original WSIs. Images flagged by this model as
potentially problematic underwentmanual review. Upon confirmation
of scanning quality issues, they were then excluded from our dataset.

A quality assessment model was constructed with three main
components: an EfficientNet backbone, a quality summarybranch, and
a quality detail branch. The EfficientNet backbone was employed for
feature extraction. The quality summary branch provided an overall
assessment of slide quality, performing binary classification to cate-
gorize slides as either acceptable or problematic. In contrast, the
quality detail branch offered amore nuanced evaluation by estimating
the severity of specific quality issues. It employed a multi-label classi-
fication technique to identify and categorize different types of quality
problems within the slides.

ROI annotation and WSI labeling
All cervical liquid-based preparation samples underwent review by
cytopathologists from the Cellular and Molecular Diagnostics Center,
SYSMH. with unsatisfactory samples being excluded. Following digi-
tization, each WSI was randomly assigned to two of the six cyto-
pathologists for independent annotation and labeling. In cases where
consensus was not reached, an expert cytopathologist conducted
further review. During the patch-level annotation phase, 2848 WSIs
served as training data for the patch-level deep neural network
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detection model. Each pathologist was randomly allocated 950 WSIs
and tasked with marking and labeling positive cells within each WSI’s
bounding box, while adhering to TBS 2014. For the WSI-based classi-
fication model construction phase, 9,316 WSIs from the SYSMH
training dataset were diagnosed and labeled by the cytopathologists
(Supplementary Fig. 1). Approximately 3106 WSIs were equally ran-
domized to each cytopathologist for labeling.

Based on the TBS 2014 guidelines, classification included both
NILM and epithelial lesions. Epithelial lesions included squamous epi-
thelial lesions and glandular epithelial lesions. Moreover, squamous
epithelial lesions were further categorized into ASC-US, LSIL, ASC-H,
HSIL, and SCC. Glandular epithelial lesions included atypical glandular
cells, not otherwise specified (AGC-NOS), atypical glandular cells, favor
neoplastic (AGC-FN), endocervical adenocarcinoma in situ (AIS), and
adenocarcinoma (ADC). A list of all abbreviations and classifications
are provided in Supplementary Table 10.

Patch-level annotation of WSIs encompassed comprised two dis-
tinct phases: an initial manual annotation phase and an AI-suggested
annotation phase. In the initial manual annotation phase, cytopathol-
ogists participated in labeling a subset of patches, wherein all gland-
ular epithelial lesions were grouped into the category of atypical
glandular cells (AGC). This categorizationwasdue to the lowdetection
rate, limited specimenquantities, overlappingmorphological features,
and similar clinical management approaches associated with AGC.
Thus, cytopathologists annotated six categories of positive cells con-
sidered highly representative or typical: ASC-US, LSIL, ASC-H, HSIL,
SCC, and AGC. It is important to note that negative smears did not
require annotation. Subsequent to the initial phase of manual anno-
tation, a detection model was trained and deployed to perform a
sliding-window inference on WSIs, thereby generating AI-suggested
regions of interest (ROIs), encompassing cells identified as intrae-
pithelial lesions (Supplementary Fig. 7). These AI-suggested ROIs
underwent review and annotation by cytopathologists before inte-
gration into our patch-level training dataset. This iterative process,
involving the confirmation and potential adjustment of AI-
recommended ROIs by cytopathologists, ensured a progressive
refinement of AI performance based on expert cytopathological input.
Ultimately, this procedure methodology educated the model to dis-
cern abnormal cells within WSIs, each potentially containing tens of
thousands of cells. The output generated by the cell detection model
served as input for the WSI-level classification models, highlightng its
crucial role in the overarching analytical framework. This approach
facilitated the construction of our training dataset with high-quality
annotations while expediting the annotation process.

For WSI-level classification, patches annotated as ASC-H, HSIL,
and SCC were grouped into the WSI-level category of HSIL+ owing to
their morphological similarities and similar clinical management.
Consequently, WSI-level classifications comprised five categories:
NILM, ASC-US, LSIL, HSIL+, and AGC. The detailed procedures for
classification at both the patch-level and WSI-level are presented in
Supplementary Fig. 8.

Data augmentation, particularly color augmentation, was sys-
tematically applied rather than randomly or blindly in order to play a
crucial role in improving the accuracy of deep learning object detec-
tion frameworks and addressing overfitting concerns. Augmentation
strategies included various techniques such as random patch cuts
around annotated cells with different overlapping ratios, random
rotations, and alterations in staining colors. The specific steps
encompassed within this augmentation procedure were as follows:
Before training, the distribution of the H and E components for all
images in the training set was quantified, and their mean values (μ),
standard deviations (σ), as well as upper and lower bounds were fitted.
During training, the H and E components of the current image were
first obtained. Then, either the H component, the E component, both,
or neither were randomly selected, and random sampled within the

range of [−2σ, 2σ] for the corresponding component were uniformly
sampled. Thesenumberswere added to theoriginal components of the
image, ensuring that the values would remain within the specified
upper and lower limits after the operation. In summary, each RGB
image was transformed into the stain density absorbance (SDA) space.
Subsequently, the Macenko method was utilized for perform color
deconvolution, resulting in a 3 × 3 stain component matrix. Finally, the
perturbed stain component matrix was employed to reconstruct the
SDA image back into the RGB space. This approach ensured that the
color augmentation process was both controlled and consistent with
common practices in pathological image processing, thereby mitigat-
ing potential performance variations arising from staining differences.

Development and architecture of the AICCS system for cervical
cytology diagnosis
The development and architecture of the AICCS system involved
training and validating the system using retrospectively obtained
images from 11,468 eligible individuals at SYSMH. These images were
randomly divided into a training cohort (n = 9316) and an internal
validation cohort (n = 2152) at a 4:1 ratio. The AICCS system consisted
of twomajor functional models: a patch-level cell detectionmodel and
a WSI-level classification model.

During the operational mode, the trained cell detection model
processed a WSI by dividing it into smaller patches using a sliding
window approach. Subsequently, the model annotated abnormal cells
based on the criteria defined by TBS 2014. The output of the cell
detection model serves as input for the WSI-level classification model.

The WSI-level classification model utilizes the results from the
patch-level cell detection model and employed a set of well-designed
features. These features were then fed into the trained WSI-level clas-
sification model, which assigns one of five possible cytology grades
according to TBS 2014: NILM, ASC-US, LSIL, HSIL+, and AGC. The
workflow chart of the AICCS is depicted in Fig. 1.

Validation and comparative analysis of the AICCS system: ret-
rospective and prospective evaluation
The performance of the AICCS system in predicting cervical cytology
images was initially retrospectively validated on the SYSMH internal
validation dataset (n = 2152). Subsequently, external validation was
conducted using the GWCMC dataset (n = 600) and TAHGMU data-
set (n = 600).

To further evaluate the generalizability and robustness of the
AICCS system in clinical practice, cervical cytology images from 2780
eligible participants were prospectively collected at SYSMH. The same
cervical cytology images were individually reviewed by cytopatholo-
gists, comparing their results with those obtained solely from the
AICCS system and those obtained by cytopathologists assisted by the
AICCS system.

In the cytopathologist group, digital cervical images were indivi-
dually screened by cytopathologists, and the TBS class for each image
was determinedwithout any additional assistance. In the AICCS group,
screening results were automatically generated by the AICCS alone. In
the AICCS-assisted cytopathologists group, the AICCS was first
employed to screen the WSI and generate potential abnormal cell
boxes. Then, a second screening was conducted by a cytopathologist
before the final decision was made.

Evaluation and randomized observational trial design
To compare the performance of cytopathologists, the AICCS alone,
and AICCS-assisted cytopathologists, a randomized observational trial
was conducted atSYSMH fromAugust 13, 2020, toDecember 14, 2020.
A total of 608 participants who met our inclusion criteria were ran-
domly assigned in a 1:1:1 ratio to receive a diagnosis from cytopathol-
ogists, the AICCS alone, or AICCS-assisted cytopathologists. There
were no withdrawals from the study after randomization. To prevent

Article https://doi.org/10.1038/s41467-024-48705-3

Nature Communications |         (2024) 15:4369 11



selection bias, randomization was performed using a random number
generator without any stratification factors. After receiving an initial
diagnosis, all participants, identified only by a masked identification
number, received a gold-standard diagnosis from an expert
cytopathologist.

AICCS algorithms
Deep learning-based object detection models fall into two primary
categories: two-stage detectors and one-stage detectors. The two-
stage object detection approach involves generating region proposals,
followed by classifying and refining these proposals. The R-CNN family
of object detectors, including R-CNN, Fast-R-CNN, and Faster-R-CNN30,
gained significant popularity andwere state-of-the-art objectdetection
models for an extended period. In contrast, the one-stage object
detection approach can directly predict objects without the inter-
mediary step of region proposal generation. One-stage object detec-
tion methods aim to streamline the object detection pipeline by
predicting object class labels and bounding box coordinates in a single
pass. Thisoften results in faster processing speeds comparedwith two-
stage methods. Owing to their efficiency, they have become favored
options for real-time object detection. Prominent examples of one-
stage object detection models include YOLO, SSD, and RetinaNet31.

In the proposed AICCS system, based on our selection studies for
the two major detection approaches (Supplementary Tables 1, 2), we
adopted RetinaNet, a one-stage object detection approach, as our
anomaly cell detection model at the patch-level. RetinaNet leverages
convolutional neural networks (CNNs) and employs ResNet+FPN
(ResNet plus a feature pyramid network) as its backbone for feature
extraction. Additionally, it incorporates two task-specific subnetworks
for classification and bounding box regression. Notably, RetinaNet
introduces a focal loss function to address the class imbalance between
the foreground and background, which is a common issue in medical
data. It thus achieves good performance. ResNet, with its identity
shortcut connection that bypasses one or more layers, mitigates the
vanishing gradient problem in deep neural networks. Furthermore, the
FPNenhances a standard convolutional networkby incorporating a top-
down pathway and lateral connections, thereby efficiently constructing
a multi-scale feature pyramid from a single-resolution input image.

Considering the TBS 2014 guidelines and real-world data dis-
tribution, we designed our patch-level detector to distinguish between
six classes of abnormal cells: ASC-US, LSIL, ASC-H, HSIL, SCC, andAGC.
Owing to the distinctmorphological patterns between squamous cells
and glandular cells, our patch-level detector integrates an additional
binary classifier subnetwork to distinguish between squamous epi-
thelial cells and glandular cells. This subnetwork complements the
conventional subnetworks responsible for multiclass recognition and
position localization, thereby allowing for the incorporation of loss
from all subnetworks during the training process.

The output of the detection model served two main purposes as
follows: (1) The top 20 detections of each class were displayed in the
graphic user interface of the AICCS system, enabling cytopathologists
to review and select them as evidence when issuing a final report. (2)
All detections are aggregated at the WSI level and utilized as input for
the WSI-level classifier.

Furthermore, in the WSI process, the foundational step in devel-
oping a WSI classification model is to generate features based on sta-
tistical data from the WSI detection results. Initially, the development
of a WSI classification model begins with generating of features that
encapsulate the statistical data derived from the WSI detection out-
comes. Specifically, these statistical metrics encompass the distribu-
tion of confidence levels for each classified object, encompassing the
maximum, mean, and standard deviation of the confidence scores for
objects within each category, as well as the proportion of each con-
fidence interval pertaining to a given class. Subsequently, these sta-
tistical metrics are subsequently converted into features, which are

then utilized to train the WSI classification model via the imple-
mentation of a random forest algorithm. The top 20 features selected
in the random forest model areillustrated in Supplementary Fig. 9.

Statistical analysis
The performance of cytopathologists, the AICCS alone, and AICCS-
assisted cytopathologists in identifying cervical cytology grades was
evaluatedbydetermining the sensitivity, specificity, accuracy, and area
under the curve (AUC) for each group. Receiver operating character-
istic (ROC) curves were then plotted to visually demonstrate the
diagnostic ability of cytopathologists, the AICCS alone, and AICCS-
assisted cytopathologists in classifying cervical cytology grades.

To compare continuous variables, an independent t test was con-
ducted, and a χ2 test was employed for two-group categorical variables.
The P value and 95% confidence interval (CI) were utilized to compare
the performance of cytopathologists, the AICCS alone, and AICCS-
assisted cytopathologists in determining cervical cytology grades.

Statistical significancewas consideredwhen the two-tailed P value
was less than 0.05 for all statistical tests. Model training and validation
were conducted using Python (version 3.6.8). Statistical analyses were
performed using Python (version 3.6.8) and Medcala (version 15).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The datasets are governed by data usage policies specified by the data
controller (Sun Yat-sen Memorial Hospital, Sun Yat-sen University).
The WSIs, codes and expected output involved in the main text are
securelymaintained by the Ethics Committee of Sun Yat-senMemorial
Hospital. Source data are provided with this paper. This minimum
dataset and source data file, have been upload to zenodo, the DOI is
https://doi.org/10.5281/zenodo.10828395.

Code availability
In this study, the digital scanner (PRECICE 600 (UNIC TECHNOLOGIES,
INC.), KF-PRO-400-HI (Ningbo Jiangfeng Bio-Information Technology
Co., Ltd.)) specific data reading SDK packages under commercial
license were used for WSI importing. The networks used in our AICCS
system were developed in Python (version 3.6). Our patch level
abnormal cell detection was based on RetinaNet (https://github.com/
jkznst/RetinaNet-mxnet, an unofficial implementation of ICCV 2017
RetinaNet (Focal Loss)). The WSI level classification algorithm was
based on Random Forest (scikit-learn 0.23.2). The related codes are
stored in https://github.com/cellsvision/AICCS, and now is linked to
zenodo https://doi.org/10.5281/zenodo.10847469.
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