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Asymmetric C–H Dehydrogenative
Alkenylation via a Photo-induced Chiral
α‑Imino Radical Intermediate

Zongbin Jia1, Liang Cheng1, Long Zhang1 & Sanzhong Luo 1

The direct alkenylation with simple alkenes stands out as the most ideal yet
challenging strategy for obtaining high-valued desaturated alkanes. Here we
present a direct asymmetric dehydrogenative α-C(sp3)-H alkenylation of car-
bonyls based on synergistic photoredox-cobalt-chiral primary amine catalysis
under visible light. The ternary catalytic system enables the direct coupling
of β-keto-carbonyls and alkenes through a cooperative radical addition-
dehydrogenation process involving a chiral α-imino radical and Co(II)-metal-
loradical intermediate. A catalytic H-transfer process involving nitrobenzene is
engaged to quench in situ generated cobalt hydride species, ensuring a che-
moselective alkenylation in good yields and high enantioselectivities.

The catalytic asymmetric α-alkenylation of carbonyls is a strategic C-C
bond-forming transformation that grants access to chiral α-vinyl car-
bonyls as versatile frameworks and synthons1,2. There have beenmajor
advances along this line to enable stereoselective α-alkenylation via
enolate or enamine intermediates by means of transition metal or
organic catalysis3–13. However, most of these processes necessitate the
use of pre-functionalized vinyl precursors, which require activating
functional groups such as halides3–7, hypervalent iodinium8,9 or
borate10–13 (Fig. 1, I). Simple alkenes represent the most ideal alkeny-
lation reagents as additional activation groups can be entirely avoided
and the resulting alkenylation becomes highly atom-economic and
hence synthetically appealing, however, such a process remains largely
unexplored14,15. In a few isolated cases, the reactions were limited to
special alkenes16. To the best of our knowledge, there are few general
methods to asymmetric alkenylation with alkenes, particularly in the
construction of all-carbon quaternary center17,18.

Based on the continuous exploration on oxidative enamine cata-
lysis with chiral primary amine, we reported that the corresponding
secondary enamine would undergo a facile loss of proton upon single-
electron oxidation to α-imino radical intermediate as a result of the
enhanced N-H acidity at its radical cationic status19–22. The chiral
α-imino radical catalysis have been applied to decarboxylative
alknylation23 and dehydrogenative allylic alkylation reaction24. On
these basis, we explored the potential of this catalysis in achieving
direct asymmetric C–H alkenylation with non-functionalized
alkenes25,26. In this article, we report a hydrogen-transfer strategy

through α-imino radical for direct alkenylation with simple alkenes
by the ternary photoredox-cobalt-chiral primary amine catalysis
(Fig. 1, II). Detailedmechanistic studies have been conducted to unveil
the intricate stereoscopic control mode and electron-proton-shuttle
process that is indispensable in this transformation.

Results
Optimization for dehydrogenative alkenylation
We started with a model alkenylation reaction between ketoester 1a
and styrene 2a. A preliminary attempt by the combination of chiral
primary amine 4a (20mol%), Co(dmgH2)2DMAPCl 5a (8mol%) and
[Ir(ppy)2dtbbpy]PF6 ([Ir], 2mol%) gave the desired product 3a with
only 20% yield, 80% ee and 10:1 E/Z (Condition A, Table 1, entry 1).
Further optimization with the initial catalytic system didn’t lead to
much improvement on reactivity and enantioselectivity (Table 1,
entries 2–4). Interestingly, a slightly improved enantioselectivity was
observed with the combination of 4,4-dimethylaminopyridine (DMAP)
and a difluoroborane (BF2)- Co(II)-catalyst 5b (Table 1, entry 5, 20%
yield and 86% ee). Further investigation showed that the introduction
of 2-nitrotoluene (25mol%) as H-acceptor and decreasing the reaction
temperature to −10 °C were particularly effective to facilitate the
alkenylation pathway. In this process, 2-nitrotoluene was fully reduced
to its aniline derivative with 56% yield (in terms of 2-nitrotoluene,
supplementary Fig. 1). It was found a larger ratio of 2a/1a led to higher
yield of the product 3a, while slightly reduced results for both yield
and stereoselectivity were observed when excess amount of 1a was
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engaged (Table 1, entries 7–8). The screening of amino-catalysts
revealed that the morpholine-substituted 4awas the optimal one, and
switching to piperidine 4b and diethylamino- 4c led to a diminishing
yield and enantioselectivity (Table 1, entries 9 and 10). The use of other
nitro-arenes showed comparable results (Table 1, entries 11 and 12).
Under optimized conditions B, the desired alkenylation product 3a
was obtained in 71% isolated yield, 93% ee, and 18:1 E/Z ratio (Table 1,
entry 6, Condition B). Finally, control experiments revealed that any of
the catalytic systemwas essential in the reaction, and no reaction were
observed in their absence (Table 1, entry 13). The reaction also did not
proceed in the dark without light irradiation (Table 1, entry 14), ver-
ifying its photochemical nature.

Substrate Scope
As shown in Fig. 2, styrenes bearing various para-substituents on the
aryl ring such as alkyl (3c), phenyl (3d), alkoxyl (3e), phenoxyl (3f) and
halogen (3h‒3j) were well tolerated in the reactions to afford the
E-selective alkenylation products with yields ranging from 30% to 74%
and high levels of enantioselectivities (Fig. 2, entries 2‒11). Interest-
ingly, the configuration of alkenes wasmostly of Z-formwhen a fluoro-
substituted photoredox catalyst [Ir]-dF was used, and similar results
were also observed for other substrates (Fig. 2, entries 1‒4). The sub-
strate with long linear alkoxyl group also worked well, providing the
corresponding product 3k with 42% yield, 90% ee, and 3:1 E/Z ratio.
Moreover, meta-, ortho- as well as multi-substituted styrenes reacted
smoothly with satisfying results (Fig. 2, entries 13‒22). Generally, the
reaction favors electron-donating styrenes (3e‒3g, 3q, 3r, and 3w) and
slightly decreased yields were observed for styrenes bearing electron-
withdrawing group (3i, 3j, and 3n).

It should be noted that ortho- group has little effect on reactivity as
2,4,6-trimethylstyrene gave the corresponding product 3v with 40%
yield, 86% ee, and 6:1 E/Z ratio (Fig. 2, entry 23). Thiophene-substituted
alkenesworkedwell in the reactionwith singleE-alkene stereoisomer3w
(Fig. 2, entry 24). Unfortunately, internal β-methyl styrene, cyclohexane,
and terminal substrates such as allylbenzene and 1,1-diphenyl ethylene
did not work under the present conditions (Fig. 2, entries 41‒44).

The applicability of the β-ketocarbonyls was next investigated.
Different esters could be incorporated to furnish the corresponding
alkenylation products with good yields and enantioselectivities (Fig. 2,
entries 25 and 26). Dihydrofuranone, cyclohexanone or acyclic
ketoesters could also be applied, showing unfortunately low reactivity
(Fig. 2, entries 27‒29). The reactions worked well with β-ketoamides to

give the corresponding single E-alkenylation products 3ac‒3af and the
five-membered cyclopentanones showed higher activity and stereo-
selectivity than their six-membered counterparts (Fig. 2, entries 30‒
33), likely due to the more propensity of five-membered rings to form
exocyclic double bond, a preferred geometry for the key radical
intermediate (Fig. 1).

The current catalytic protocol could be extended to late-
stage functionalization of structurally complex substrates bearing
natural products and pharmaceuticals. Firstly, celestolide 3ag and
tonalid 3ah derived alkenes showed excellent enantioselectivities
and E/Z ratio (Fig. 2, entries 34 and 36). Furthermore, similar
results were also observed for substrates bearing pharmaceuti-
cally active ibuprofen 3aj and camphanic acid group 3aj (Fig. 2,
entries 36 and 37). Of further significance is the observation that
the protocol enables late-stage functionalization of L-tyrosine and
L-phenylalanine derivatives (3ak, 3al) in good yields and high
levels of stereoselectivity (Fig. 2, entries 38 and 39). In addition,
diacetone-fructose derived β-ketoester also worked smoothly to
furnish the corresponding product 3am albeit with relatively low
activity (Fig. 2, entry 40). Finally, a gram-scale reaction (10mmol)
of β-ketoester 1a and styrene was performed to probe the prac-
ticability, and comparable results were obtained in the presence
of a reduced catalyst loading (Fig. 2, entry 2).

Interestingly, 1,1 di-substituent alkenes could be also applied to
this asymmetric dehydrogenative transformation. Unexpectedly,
thermodynamically-stable allyl alkylation product 3an was obtained
with satisfactory result from 1-methylene-dihydroindene 2an, an inac-
tive substrate by our previous strategy (Fig. 3, 3an)11,24. When there is no
2-nitrotoluene, only the isomerization product 2an’ is obtained with a
yield of 95%, and no desired allylic adduct was isolated. Similar allylic
alkylation were also obtained with five, six, and seven-membered cyclic
methylenes with liner and cyclic β-ketoester (Fig. 3, 3ao‒3as).

Mechanistic studies
Acid-base effect on the catalytic system. In asymmetric dehy-
drogenative allylic alkylation reaction, we noticed that balancing
basicity between tertiary amino moiety of aminocatalyst and axial
ligand of cobaloxime was critical for the transformation24. In the cur-
rent reaction system with BF2-Co(II) 5b, the catalytic amount of base
additive was also found to be critical for both reactivity and stereo-
selectivity, and there was virtually no reactivity in its absence. A survey
of different organic base revealed a clear trendbetweenbasicity (pKaH)
and catalytic performance (Fig. 4, III). DMAP with a pKaH = 7.9 gave the
best results in terms of both yield and enantioselectivity. Strong basic
amines such as DABCO (pKaH 9.1), guanidine (pKaH 13.2), DBU (pKaH

13.9), and DBN (pKaH 15.3) demonstrated poor activity but maintaining
selectivity. Similar behaviorswere also observedwith less basic amines
suchasN-methyl imidazole (pKaH 6.4) andpyridine (pKaH 3.4)27,28. From
Fig. 4, it is also clear that basicity seems only affect activity but not the
stereoselectivity, suggesting the base-mediated proton shuttle may
facilitate the conversion, but do not directly participate in the ste-
reodetermining step. In this regard, the loading of DMAP also has a
dramatic effect on the catalysis, both decreasing and increasing the
loading led to a reduction of activity (Fig. 4, I). Furthermore, the
basicity of tertiary amine moiety also significantly influences this
reaction. Piperidine and diethylamine, with stronger basicity than
morpholine, markedly diminish both reactivity and enantioselectivity,
highlighting a delicate acid-base balance in the reaction (Fig. 4, II,
and III).

A proton-shuttle network involving the key intermediate (e.g. 6a-
I) and external bases can be invoked to account for the observed acid-
base effect (Fig. 4, IV). DMAP (pKaH = 7.9) with moderate basicity
would facilitate the photo-induced electron transfer by proton
abstraction to form the most active radical intermediate 6a-I as a
mono-protonated species (pKa = 9.9). A stronger base may further

CoII

N

CO2Et

CoII

N

CO2Et

Fig. 1 | Strategies for asymmetric α-alkenylation of carbonyls. I Traditional
alkenylation strategy with activated precursors. II Synergistic photoredox-cobalt-
chiral primary amine catalysis for direct alkenylation in this work.
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deprotonate to form neutral radical species 6a-III, which is less reac-
tive in radical addition. The reactivity bias toward electron-rich styrene
is in line with this scenario. In addition, the morpholine (pKaH = 9.2)
side chain as in 4a also favors an internal proton shift toward 6a-I

(pKa = 9.9) over 6a-II. On the other hand, piperidine (pKaH = 10.5) and
diethylamine (pKaH = 10.9) side chains (as in 4b and 4c, respectively)
would favor the equilibration to 6a-II, explaining the observed poor
activity of these two catalysts.
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Hydrogen transfer with cobalt. [CoIII]-H species are known to
undergo reversible addition-elimination with alkenes24,29. Under
hydrogen-evolving conditions in the absence of H-acceptor, the
reaction afforded mainly alkene-dimerization byproduct b1 (42%
yield) (Fig. 5, I), derived from [CoIII]-H mediated radical process.
The desired alkenylation adduct 3a was isolated in a minor 20%
yield and 80% ee. During further optimization, the use of BF2 Co(II)-
catalyst 5b in the presence of nitrotoluene was identified to
effectively suppress the hydroalkylation by-pathway, leading
exclusively to the desired alkenylation reaction (Supplementary
Fig. 1 vs Fig. 2). Previously, we found oxime-Co(III) catalyst 5a was
able to promote the deuteration of styrene through [CoIII]-H
mediated hydroalkylation-dehydrogenation process29. In contrast,
5b showed virtually no activity in the H/D exchange reaction (Fig. 5,
II). On the other hand, both 5a and 5b showed comparable activity
in the photo-reduction of 2-nitrotoluene30–32. These observations
suggest that [CoIII]-H derived from 5b can preferentially react with
polar nitro- moiety instead of alkene, explaining the observed
chemoselectivity.

Photoredox cycle and stereocontrol model. A series of stoichio-
metric experiments with preformed enamine 6awere tested under the
dual photoredox and cobalt catalytic conditions. The alkenylation
reaction proceeds to give the desired product 3a with excellent
enantioselectivity, verifying the enamine catalysis nature (Fig. 6, I). The
addition of water to the stochiometric reaction led to a minor yet
noticeable drop of the enantioselectivity. Similar detrimental polar
effects were observed during the process of optimization of solvents,
with protic solvents showing rather poor reactivity and enantioselec-
tivity (Supplementary Table 8). Stepwise multivariant linear free
energy correlation (LFER) analysis revealed an excellent correlation
between enantioselectivity and the solvent acidity scale, Catalán’s SA
(Fig. 6, II)33,34. The observed water additive effect and solvent LFER
analysis suggest a critical ionic interaction in the stereocontrolling
step. Furthermore, Stern-Volmer fluorescence quenching experiments
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revealed that the excited state [IrIII]* was only quenched effectively by
cobalt 5a or 5b, a clear indication of a reductive quenching mechan-
ism, supporting a SET sequence involving cobalt-iridium-enamine
(Fig. 6, III).

Proposed cycle. On these bases, a catalytic cycle was proposed as
shown in Fig. 7. The combination of [Ir], DMAP, and cobalt 5b pro-
vides an efficient photoredox oxidative system, leading to the gen-
eration of α-imino radical and [CoIII]-H species through a sequence
of electron and proton transfer process. A radical-radical complex A,
an ion pair consisting of the imino radical 6a-I and Co(II) that is
sensitive to polar media, was proposed to dictate the stereo-
selectivity. Subsequent cooperative radical addition to alkene
through transition state TS-I results in the formation of the critical
C-C bond (Fig. 7). A following photo-mediated dehydrogenation
leads to the alkenylation product and another [CoIII]-H species.
Subsequent hydrolysis would regenerate aminocatalyst 4a and
complete the catalytic cycle. The reduction process between
2-nitrotoluene and the two molecules of [CoIII]-H species complete

the cobalt catalysis, and its effectiveness is critical to override the
undesired hydroalkylation process.

Discussion
We have developed an efficient catalytic system to achieve the direct
oxidation of secondary enamine intermediate which can be applied to
enantioselective α-C(sp3)-H functionalization of carbonyls with
alkenes by combining photoredox-cobalt-chiral primary amine cata-
lysis under visible light irradiation. This synergistic system leads to the
formation of alkenylation adducts with excellent stereoselectivity
through a cooperative radical addition process that involves a chiral
α-imino radical and Co(II)-metalloradical. A series of mechanistic stu-
dies revealed an elaborate electron and proton transfer process that
was involved. The successful development of asymmetric alkenylation
is also attributed to the presence of hydrogen acceptor to quench the
in-situ generated cobalt hydride, thus improving chemoselectivity. We
believe the current strategy would find broad applications in elusive
asymmetric radical transformations.

Methods
General procedure for dehydrogenative alkenylation
In an oven-dried 5mL pyrex tube equipped with a magnetic stir bar,
β-ketocarbonyls 1 (0.1mmol), [Ir(ppy)2dtbbpy]PF6 (1.86mg, 2mol%),
Co(dmgBF2)2 ·2H2O (3.36mg, 8mol%), chiral primary amine 4a
(6.72mg, 20mol%), DMAP (0.98mg, 8mol%), alkene 2 (0.5mmol)
and MeCN (0.3mL) were added. The mixture was equipped with a
rubber septum and bubbled with argon gas. The sample was then
irradiated by a 30W blue LED under −10 °C condition for 48 h. After
that, the reaction mixture was directly loaded onto silica gel column
and eluted with ethyl acetate/hexane to obtain the alkenylation
product.

Data availability
All data are available from the corresponding author upon request.
Supplementary Information is available and includes general infor-
mation, substrate and reagent synthesis, optimization details, general
experimental procedures, and compound characterization, determi-
nation of the absolute configuration, mechanistic studies, HPLC, NMR
spectra, andDFT calculations. Sourcedata are present. Source data are
provided with this paper.

 
Fig. 6 | Mechanistic investigation. I Stoichiometric experiment with preformed enamine 6a. II LFER analysis with different solvents. III Stern-Volmer quenching
experiments with [Ir].
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