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Engineering a transposon-associated
TnpB-ωRNA system for efficient gene editing
and phenotypic correction of a tyrosinaemia
mouse model

Zhifang Li 1,10, Ruochen Guo1,2,10, Xiaozhi Sun1,3,10, Guoling Li4,10, Zhuang Shao1,
Xiaona Huo1,5, Rongrong Yang1,5, Xinyu Liu2, Xi Cao1,6, Hainan Zhang4,
Weihong Zhang4, Xiaoyin Zhang1,5, ShuangyuMa7, Meiling Zhang8, Yuanhua Liu2,
Yinan Yao2, Jinqi Shi1, Hui Yang 2,4,5, Chunyi Hu 9 , Yingsi Zhou 4 &
Chunlong Xu 1,3,5

Transposon-associated ribonucleoprotein TnpB is known to be the ancestry
endonuclease of diverse Cas12 effector proteins from type-V CRISPR system.
Given its small size (408 aa), it is of interest to examine whether engineered
TnpB could be used for efficientmammalian genomeediting. Here, we showed
that the gene editing activity of native TnpB from Deinococcus radiodurans
(ISDra2 TnpB) inmouse embryos was already higher than previously identified
small-sized Cas12f1. Further stepwise engineering of noncoding RNA (ωRNAor
reRNA) component of TnpB significantly elevated the nuclease activity of
TnpB. Notably, an optimized TnpB-ωRNA system could be efficiently delivered
in vivo with single adeno-associated virus (AAV) and corrected the disease
phenotype in a tyrosinaemia mouse model. Thus, the engineered miniature
TnpB system represents a new addition to the current genome editing tool-
box, with the unique feature of the smallest effector size that facilitate efficient
AAV delivery for editing of cells and tissues.

The TnpB proteins represent a family of transposon-associated RNA-
guided endonucleases. Recent biochemical studies1,2 revealed that
TnpB proteins are ancestry predecessors of Cas12 effector proteins in
the type-V CRISPR system, and a 247-nucleotides (nt) noncoding RNA
(termed ωRNA or reRNA) derived from the right end of transposon

element is the required component for ISDra2 TnpB to recognize and
cleave target DNA. The size of TnpB proteins, with ~400 amino acid
(aa) residues, is much smaller than their evolutionary progeny Cas12
proteins (mostly ~1000 aa). Furthermore, in vitro studies1,2 demon-
strated that TnpB exhibited double-strand DNA cleavage activity
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guided byωRNA. Therefore, there is potential for the use of this TnpB
system in genome editing and therapeutic applications.

Gene editing using Cas9 or Cas12 systems has been widely used in
animal models and recently applied in clinical trials. At present, AAV is
themost commonly used delivery system and shown to be safe in gene
therapy3. However, themaximal cargo size of AAVwas limited to be 4.7
kilobase (kb) pairs, hindering efficient in vivo delivery of the large Cas9
or Cas12 protein via single AAV injection. This size problem is exa-
cerbated in the use of base and prime editors comprising Cas9 (or
Cas12) and fusion enzymes. Recent identification of compact CRISPR
effector proteins Cas12f1 (~500 aa)4 and Cas13 (~700 aa)5,6 represent
potential solutions. However, thegene editing efficiencyofCas12f1was
relatively low7–11, whereas Cas13 exhibited collateral RNA cleavage
activity with uncertain safety profile12,13.

In this study, we demonstrated that genome editing activity of
TnpB was markedly higher than that of Cas12f1 in cultured cells and
mouse embryos. To further optimize the TnpB system, we engineered
TnpB-associated ωRNA in a stepwise manner to identify the optimal
ωRNA variant with the shortest sequence length and elevated gene
editing activity. Importantly, we showed that the optimized TnpB-
ωRNA system could be effectively delivered in vivo via a single AAV
injection in tyrosinaemia model mice, leading to the correction of the
disease phenotype. Thus, we have shown the applicability of the
engineered hypercompact TnpB for genome editing in vivo.

Results
TnpB exhibited gene editing activity higher than Cas12f1
Previous studies have shown the endonuclease activity of several
Cas12f1 orthologs from type-V-U CRISPR family that have small sizes.
As the ancestry enzyme of Cas12 proteins, TnpB (~400 aa) represents
the smallest programmable nuclease among common single effector
Cas proteins, including SpCas9, LbCas12a, Un1Cas12f1, and IscB
(Fig. 1a). However, the mammalian genome editing potential of TnpB
remained to be fully characterized. Thus, we selected several genomic
loci to evaluate the editing activity of ISDra2 TnpB (hereafter as TnpB)
from Deinococcus radiodurans in mouse embryos. First, we in vitro
transcribed ωRNA that targets the mouse Tyr gene (Fig. 1b), and
injected ωRNA together with TnpB mRNA into mouse embryos. The
injected embryos were then transferred into surrogate female mice to
generate gene-modified offspring. Since Tyr gene encodes the black
coat color of C57BL/6 mice, we estimated the efficiency of TnpB-
induced gene disruption by directly examining the coat color change
in TnpB-injected mice. We found that TnpB treatment completely
converted black coat color into albino white in all newborn mice
(Fig. 1c). In contrast, similar embryo injection of Un1Cas12f1 together
with sgRNA targeting the Tyr gene did not change the black coat color
in the newborn mice (Fig. 1c), suggesting a much lower Tyr gene dis-
ruption efficiency of Un1Cas12f1 than that of TnpB. Further deep-
sequencing for Tyr gene showed that 20% and 90% of indel mutations
were induced by Un1Cas12f1 and TnpB, respectively (Fig. 1b and Sup-
plementary Fig. S1). Although Cas12f1 and TnpB have different
requirements for target adjacentmotif (TAM, also known as PAM) that
recognizes the target sequence,wehave chosen the targeted sequence
in Tyr gene to have 17-bp overlap (among 20 bp) for both enzymes
(Fig. 1b). Thus, the higher editing efficiency of TnpB as compared to
Cas12f1 was largely due to its intrinsic activity.

To further evaluate the gene editing activity of TnpB,we chose six
additional loci in the mouseDmd gene (Fig. 1d) for targeting inmouse
embryos, by injecting ωRNA targeting these loci with TnpB mRNA. As
shown by deep-sequencing results, TnpB exhibited an average of 90%
editing efficiency for all six targeted loci in the Dmd gene (Fig. 1d and
Supplementary Figs. S2 and S3). Furthermore, the gene editing out-
come was verified by immunostaining of dystrophin protein encoded
byDmdgene that is specifically expressed inmuscle tissues. In contrast
towild-typemice, TnpB-treatedmice showedundetectable dystrophin

expression in heart, Diaphragm (DI) and Tibialis anterior (TA) muscles
(Fig. 1e and Supplementary Fig. S4), suggesting the complete disrup-
tion of Dmd gene by TnpB and ωRNA injection. Finally, these immu-
nostaining results were confirmed by western blotting of dystrophin
protein of various muscle tissues (Fig. 1f). Consequently, rotarod and
grip strength assessment of TnpB-treated DMDmice found functional
dysfunction of muscle (Supplementary Fig. S5). Thus, our finding
indicated more robust gene editing activity of TnpB than that of
Un1Cas12 f1 in mammalian tissues.

Engineered TnpB-associated ωRNA with elevated editing
efficiency
Cognate ωRNA scaffold associated with TnpB is 231 nt, much longer
than sgRNA scaffold for most single effector Cas proteins. Previous
findings reported that the sgRNA engineering could improve the per-
formance of gene editing enzymes14. We thereby hypothesized that
ωRNA truncation and optimization might be helpful for enhancing
TnpB activity in mammalian cells. To this end, we predicted the sec-
ondary structure of ωRNA and formulated a stepwise strategy to
truncate ωRNA (Fig. 2a). Based on the stem loops in predicted struc-
ture, we divided ωRNA into six segments, named as S1 to S6 for the
truncation experiment (Fig. 2b). To facilitate screen ofωRNA variants,
we designed a gene editing reporter with TnpB target DNA placed
within a split and frameshift GFP genewhich could only be repaired via
the single-strand annealing (SSA) pathway15 after disruption of TnpB
target sequence to express GFP (Fig. 2a). We tested the reporter with
cognate ωRNA to prove the conditional activation of GFP after treat-
ment of TnpB guided by ωRNA targeting frameshift mutation in GFP
gene (Fig. 2a). At first, we deleted S1 to S6 one by one and run the
reporter assay. It showed that only deletion of S4 and S6 ablated the
activity of TnpB (Fig. 2c), suggesting the dispensable role of S1, S2, S3,
and S5 for normal ωRNA function. Furthermore, sequence deletion of
S1 slightly increase TnpB activity (Fig. 2c).

To interrogate combined deletion effect of S1 to S6, we added S2
to S5 deletion in the S1 deletion variant of ωRNA to conduct reporter
assay. It found that simultaneous deletion of S1, S2, and S3 inωRNA-v1
not only supported the normal function of TnpB but also significantly
increased the gene editing efficiency (Fig. 2d). These results implied
that theωRNA sequence from S4 to S6 dictated the enzymatic activity
of TnpB. Secondary structure of ωRNA after combined truncation of
S1, S2, and S3 showed typical stem-loop conformations with three
distinguishable and consecutive stem-loop (SL) domains, termed as
SL1, SL2, and SL3 (Fig. 2e). To further determine the effect of these
three SL domains on TnpB activity, we iteratively remove SL1, SL2, and
SL3 for reporter test. In addition, we also generated two other ωRNA
variants with partial deletion of SL2 subdomain or substitution of G:U
with G:C pairs (Fig. 2e). We found that SL1, SL2 and SL3 are necessary
for the normal function of TnpB since deletion variants lack of any
single SL fully blocked the reporter activation (Fig. 2f). However, par-
tial replacement of SL3 subdomain with 5’-GAAA-3’ loop sequence
actually enhanced the TnpB activity (Fig. 2f). G:C substitution for G:U
pair exhibited no additive effect on the performance of TnpB (Fig. 2f).
Based on these results, we finally identified an optimal ωRNA variant
ωRNA-v2 or ωRNA* that improved TnpB performance. The predicted
secondary structure of ωRNA* presented with three compact stem-
loop domains in contrast to the loose organization of cognate ωRNA
structure (Fig. 2g).

Characterization of endogenous gene editing and off-target
activity for TnpB-ωRNA system
To verify the reporter assay results for ωRNA*, we selected 14 endo-
genous genomic loci for further evaluation of gene editing perfor-
mance inHEK293T (Fig. 3a). Among 14 human loci tested, 10 individual
target sites showed significant increase of TnpBgene editing efficiency
with ωRNA* compared to original ωRNA (Fig. 3b). Moreover, we also
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compared the gene editing activity of TnpB-ωRNA and -ωRNA* with
that of SaCas9 and SpCas9 in both mouse N2a and human
HEK293T cells. Our results showed that TnpB-ωRNA* exhibited simi-
larly high efficiency with SaCas9 but only slightly lower activity than
SpCas9 (Fig. 3c and Supplementary Figs. S6–9). To investigate broad

improvement effect of ωRNA* in mammalian cells, we further per-
formed the gene editing in mouse N2a cells targeting four disease-
relevant genes, including Klkb1, Tyr, Hpd and Pcsk9. It found that all
genomic sites exhibited significantly increased gene editing efficiency
for ωRNA* compared to the original ωRNA (Supplementary Fig. 10).
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Quantitative analysis revealed twofold increase of gene editing effi-
ciency in N2a for ωRNA* versus wild-type ωRNA (Supplementary
Fig. 10). In particular, theωRNA* even supported TnpB editing of some
loci that are edited with very low efficiency using the cognate ωRNA
(Supplementary Fig. 10). Furthermore, we packaged TnpB-ωRNA and

-ωRNA* with AAV to evaluate their gene editing efficiency in mice,
which also confirmed the significantly improved performance with
TnpB-ωRNA* in vivo (Supplementary Fig. 11). Therefore, we demon-
strated the enhanced TnpB activity in both mammalian cells and mice
via the identification of ωRNA* after stepwise engineering.
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To examine the off-target effect of TnpB, we carried out predic-
tion of potential off-target genomic loci with Cas-OFFinder16 for off-
target analysis when designing ωRNA against a target site in Hpd gene
(Fig. 3d). For the top ten predicted off-target sites, no gene editing
events was detected for TnpB-ωRNA targeting Hpd (Fig. 3d). Further-
more,we alsoperformedgenome-wideoff-target analysisbyPEM-seq17

to identify potential translocation between on-target and off-target
loci. Our PEM-seq results showed that there is no induction of trans-
location events related to gene editing of Hpd gene by the engineered
TnpB-ωRNA treatment (Fig. 3e).

Correction of fatal liver disease with in vivo delivery of TnpB-
ωRNA via single AAV
Given the hypercompact size of TnpB, it would greatly facilitate in vivo
delivery via single AAV for gene editing therapy. To demonstrate the
potential of TnpB in disease intervention, we chose the Hpd as ther-
apeutic target for gene editing therapy of type I hereditary tyr-
osinaemia (HT1) in Fah−/− mousemodel. Adult Fah−/− was administrated
with AAV-TnpB (TnpB only without ωRNA), AAV-TnpB-ωRNA, or AAV-
TnpB-ωRNA* (Fig. 4a) and kept without nitisinone (NTBC) drug, an
inhibitor of 4-hydroxyphenylpyruvate dioxygenase (HPD) to examine
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the therapeutic effect after gene editing. We observed that AAV-TnpB-
ωRNA- and -ωRNA*-treated Fah−/− mice was still alive after 75 days
without NTBC, but all mice in TnpB only group died at about 65 days
(Fig. 4b). Furthermore, Fah−/− mice subjected to AAV-TnpB-ωRNA
treatment gained body weight after experiencing a short period of
weight loss (Fig. 4c, d). Notably,micewithAAV-TnpB-ωRNA* treatment
did not experience weight loss after NTBC withdrawal (Fig. 4c, d),
indicating better therapeutic efficacy than that of wild-type TnpB-
ωRNA. In addition, we found that Un1Cas12f1-treatment could also
rescue HT1 mice but with significantly decreased therapeutic efficacy
compared to AAV-TnpB-ωRNA and -ωRNA* in terms of body weight
loss (Supplementary Fig. 12). Contrarily, mice treated without ωRNA
exhibited rapid weight loss until death (Fig. 4c and Supplementary
Fig. 12). These results suggested the importance for improving gene-
editing activity with the engineered ωRNA to increase the therapeutic
effect for disease correction. To examine the histological correction by
gene editing treatment, we performed H&E and Sirius red staining to
find dramatically reduced fibrotic pathology in TnpB-ωRNA/ωRNA*
treated mice, whereas massive liver fibrosis in mice treated without
ωRNA (Fig. 4e).

Furthermore, we also analyzed the HPD expression in treated
versus untreated mice. It showed the remarkable decrease of HPD
protein (Fig. 4f) and large HPD-negative liver region in AAV-TnpB-
ωRNA-treated mice (Supplementary Fig. 13a, b). To investigate
the in vivo gene editing outcomes, we collected liver tissue from
mice for deep-sequencing analysis. We found 20% and 60% of indel
rate for AAV-TnpB-ωRNA- and AAV-TnpB-ωRNA*-treated mice in
1 month, respectively (Supplementary Fig. 13c, d). Consistently,
liver metabolic functions were significantly ameliorated after
AAV-TnpB-ωRNA treatment as indicated by the blood biochemical
profiling results of alanine aminotransferase (ALT), aspartate ami-
notransferase (AST), total bilirubin and tyrosine (Supplementary
Fig. 14a–d). Moreover, we analyzed the succinylacetone level in
TnpB-ωRNA-treated mice and confirmed that TnpB-ωRNA treat-
ment largely reduced succinylacetone in both plasma and urine of
treated mice (Supplementary Fig. 14e, f), consistent with pheno-
typic correction of HT1 mice after TnpB-ωRNA administration.
Therefore, our results showed the proof-of-concept for applying
the engineered TnpB-ωRNA system in disease control via single AAV
delivery in vivo.

Discussion
Diverse CRISPR-Cas systems evolved from immune battle between
microbe and mobile genetic elements (MGE), providing us abun-
dant resources for the identification of gene editing enzymes18. In
the past years, various single effector Cas proteins including Cas919,
Cas1220, and Cas1321 were found to deploy DNA or RNA editing
activity in different organisms for both research and therapeutic
purpose22. Recently, TnpB-like proteins, including IscB and TnpB
associated with microbe transposon element, were identified to be
active ancestry endonuclease for Cas9 and Cas121,2. Given the
hypercompact size of TnpB and IscB, they are excellent candidates
for developing miniature gene editing tools that would facilitate
in vivo delivery via AAV. To this end, our present study demon-
strated the potential of TnpB for robust genome editing in both
cultured cells and animal tissues. Although Kim et al. recently

reported engineering base editor from a 557-aa “TnpB”23, both
Siksnys and Doudna group lately demonstrated that “TnpB” used by
Kim et al. study should be actually annotated as Cas12f1 that works
as dimer unlike monomer TnpB24,25. Thus, our work was the first
study to extensively show the rational optimization of TnpB to
achieve excellent in vitro and in vivo performance for gene editing.
Furthermore, we also showed the effectiveness of TnpB based gene
editing therapy to correct fatal genetic disease in mouse model of
tyrosineamia via in vivo single AAV delivery of TnpB and ωRNA.
Interestingly, we performed stepwise truncation of cognate ωRNA
to generate aωRNA variant with short sequence and high efficiency.
Our study represents a good start point to optimize TnpB or even
IscB for more broad and convenient use in research and therapeutic
scenario.

Endonuclease activity ofTnpBwasonly shownwith limiteddata in
2021 by Karvelis et al. study1. Extensive characterization of TnpB
activity in mammalian cell and tissue were currently needed. Our
finding corroborated the results from Karvelis et al. study, revealing
unexpected higher activity of TnpB than that of Cas12f1 without fur-
ther engineering. Moreover, we showed that deletion of 5’-end and
partial internal sequence in ωRNA could enhance the gene editing
performance of TnpB both in vitro and in vivo. Intriguingly, such
deletion strategy was supported by two structural studies26,27 of TnpB-
ωRNA-DNA ternary complex published lately, suggesting the potential
useful applicability of our ωRNA engineering strategy for more TnpB-
like systems. In addition, the TnpB structure could accelerate the
rational engineering of such compact enzyme with more demanding
properties such as relaxed limitation of target-adjacent motif (TAM),
enhanced editing activity and specificity etc.

Gene editing therapy was partly impeded by the limited AAV
cargo capacity of only ~4.7 kb considering the fact that common Cas9,
Cas12 and their derived base or primeeditors have protein sizebeyond
1000 aa3,28. TnpB with less than 500 aa are highly desired gene editing
enzymes for AAV delivery in vivo. Our results with TnpB in treating
fatal tyrosineamia in mice signify the advantage of reducing gene
editing cargo size despite the modest modification efficiency for Hpd
target gene after TnpB-ωRNA optimization. Besides, compact TnpB
size could permit using sophisticated regulatory sequences for
switchable gene editing and reducing the AAV administration dose for
high expression to enable safe therapeutic applications. Furthermore,
our optimized ωRNA* variant with less than 100 nt would also be easy
for synthesizing chemically modified ωRNA, which is very useful for
ribonucleoprotein (RNP)-based gene editing applications. To investi-
gate the anti-TnpB immunity in human population, we performed the
ELISA and western blot analysis using human blood samples to find
that there exists somebut not all individuals without carrying antibody
against TnpB, similar to SpCas9 (Supplementary Figs. 15 and 16).
Therefore, to extend the applicability of TnpB for broad population in
the future, it warranted the identification of more TnpB orthologs
given the high diversity of TnpB in nature.

Overall, our study demonstrated the enhanced gene editing
activity of TnpB viaωRNA engineering in cultured cells and showed its
disease correction ability in animal models, indicating the potential of
hypercompact TnpB-ωRNA system as effective miniature gene editing
modality for more AAV-based disease treatment in animal models and
even human patients.

Fig. 4 | Correction of fatal liver disease with in vivo delivery of TnpB-ωRNA via
single AAV. a Diagram of AAV-TnpB-ωRNA/ωRNA* vector and gene therapy
schematics in Fah−/− mouse model of type I hereditary tyrosinaemia. b Survival
curve for disease mice treated with AAV-TnpB-ωRNA/ωRNA* or AAV-TnpB without
ωRNA (TnpB only group). c Body weight change during the observation period for
disease mice in different treatment groups. d Body weight ratio for TnpB-ωRNA or
TnpB only versus TnpB-ωRNA*-treated mice in 19-day after NTBC withdrawal.

eHistology analysis with H&E and Sirius red staining for mouse liver from different
treatment groups. fWestern blot for HPD protein from untreated and TnpB-ωRNA-
treated HT1 mice. Data are represented as means ± SEM. A dot represents a biolo-
gical replicate (n = 3 or more). Unpaired two-tailed Student’s t tests. Significant
differences between conditions are indicated by an asterisk (*P <0.05, **P <0.01,
***P <0.001, ****P <0.0001, NS non-significant.). Scale bars, 200μm. Source data
are provided as a Source Data file.
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Methods
Study approval
The objectives of the present study were to show proof-of-concept for
in vivo TnpB-mediated gene editing in wild-type and disease mice. All
animal experiments were performed and approved by the Animal Care
and Use Committee of Shanghai Center for Brain Science and Brian-
Inspired Technology, Shanghai, China. All animal experiments com-
pliedwith theARRIVE guidelines for reporting animal experiments. De-
identified blood samples were obtained with the patients’ written
consent in strict observance of the legal and institutional ethical reg-
ulations and approved as a non-human study by the Institutional
Review board of International Peace Maternity and Child Health Hos-
pital, School of Medicine, Shanghai Jiao Tong University, Shanghai,
China. No recruitment criteria was used and demographic information
about our blood samples were also de-identified for the patient’s
privacy.

Plasmid constructions
The pCBh-TnpB-hU6-BpiI plasmid encoded a human codon-optimized
TnpB driven by CBh promoter, and hU6-driven ωRNAs with BpiI
cloning site. The sgRNA and ωRNA were designed to be suitable for
Un1Cas12f1, TnpB or other Cas proteins, then synthesized as DNA oli-
gonucleotides and cloned into pCBh-Un1Cas12f1, pCBh-TnpB or other
Cas plasmids to get the gene editing plasmids. Related plasmids were
deposited to Addgene.

Cell culture, transfection, and flow cytometry analysis
HEK293T were maintained in Dulbecco’s modified eagle medium
(DMEM) (Gibco, 11965092) supplemented with 10% fetal bovine serum
at 37 °C and 5% CO2 in a humidified incubator. For gene editing ana-
lysis, 1μg TnpB or CRISPR plasmids and reporter plasmids were co-
transfected using polyethylenimine (PEI) transfection reagent. After
transfected cells were cultured for 48 h, we carefully resuspended the
cell pellet, and then analyzed or sorted by BD FACSAria II for deep
sequencing. Flow cytometry results were analyzed with FlowJo
X (v.10.0.7).

In vitro transcription of TnpB and ωRNA
TnpB mRNA was transcribed using the mMESSAGE mMACHINE T7
Ultra Kit (Invitrogen, AM1345). T7 promoter was added to ωRNA
template by PCR amplification of pCX2280 using forward and reverse
primers in the supplementary files. The PCR products purified with
Omega gel extraction Kit (Omega, D2500-02) as templates were
transcribed using the MEGAshortscript Kit (Invitrogen, AM1354). The
TnpB mRNA and ωRNA were purified by MEGAclear Kit (Invitrogen,
AM1908), eluted with RNase-free water and stored at −80 °C.

Zygote injection and embryo transplantation
Eight-week-old B6D2F1 female mice were superovulated and mated
with B6D2F1 male mice, and fertilized embryos were collected from
the oviduct. The mixture of TnpB mRNA (50ng/µL) and ωRNA
(100 ng/µL) was injected into the cytoplasm of fertilized eggs using a
FemtoJet microinjector (Eppendorf). The injected embryos were
cultured in KOSMmedium with amino acids at 37 °C under 5% CO2 in
a humidified incubator overnight and then transferred into oviducts
of pseudo-pregnant 8-week-old ICR foster mothers at 0.5-d.p.c. (day
post coitus).

ωRNA engineering
At first, we performed the secondary structure prediction of ωRNA
with online RNAfold webserver (http://rna.tbi.univie.ac.at/cgi-bin/
RNAWebSuite/RNAfold.cgi). Based on the predicted structure, we
divided ωRNA into six subdomains or segments and tested the influ-
ence of each segment on gene editing activity by deleting each seg-
mentonebyone. In thefirst-roundengineering,we found that deletion

of segment #1, #2, and #3 (corresponding to ΔS1, ΔS2, and ΔS3 in
Fig. 3b) does not affect gene editing efficiency of TnpB as shown in
Fig. 2c, d. In the second-round engineering, wedemonstrated segment
#4, #5, and #6 (corresponding to ΔSL1, ΔSL2 and ΔSL3 in Fig. 2e)
necessary for the normal gene editing activity of TnpB. In addition,
substitution of terminal stem-loop structure with 5’-GAAA-3’ resulted
in the finalωRNA* variant shown in Fig. 2g with improved gene editing
efficiency and small RNA size.

Targeted deep sequencing
To analyze TnpB gene editing efficiency, the DNA of successfully
transfected cells or AAV-TnpB-ωRNA treated tissues were extracted
with TIANamp Genomic DNA Kit (TIANGEN,) according to the manu-
facturer protocol. DNA was amplified with Phanta max super-fidelity
DNA polymerase (Vazyme, P505-d1) for Sanger or deep sequencing
methods. Deep-sequencing libraries were generated by adding Illu-
mina flow cell binding sequences and specific barcodes on the 5′ and 3’
end of the primer sequence. The products were pooled and sequenced
with 150 bp paired-end reads on an Illumina Hiseq instrument. FASTQ
format data were demultiplexed using the Cutadapt (v.2.8)41 accord-
ing to the assigned barcode sequences. CRISPResso2 was used for
gene editing analysis29.

PEM-seq analysis
Genome-wide off-target analysis was performed following PEM-seq
protocol17. The 20μg genomic DNA from TnpB edited or control
samples were fragmented with Covaris sonicator to generate
300–700 bp DNA. DNA fragments was tagged with biotin at 5’-end by
one-round PCR extension using a biotinylated primer, primer leftover
removed by AMPure XP beads and purified by streptavidin beads. The
single-stranded DNA on streptavidin beads is ligated with a bridge
adapter containing 14-bp random molecular barcode, and PCR pro-
ductwas generated via nested PCR to enrich DNA fragment containing
the bait DSB events and tagged with illumine adapter sequences. The
prepared sequencing library was sequenced by Hi-seq 2500 with
150 bp pair-end reads. PEM-seq data analysis was performed using
PEM-Q pipeline with default parameters.

AAV virus production
The adeno-associated virus 8 (AAV8) serotype was used in this study.
The TnpB plasmids with ωRNA was sequenced before packaging into
AAV8 vehicle, and the AAV vectors were packaged by transfection of
HEK293T cell with helper plasmids. The virus titer was 5 × 1013 (AAV-
TnpB-ωRNA) genome copies/mL as determined by qPCR specific for
the inverted terminal repeat.

Gene editing treatment for tyrosinaemia mouse model
Mice were housed in a barrier facility with a 12-h light/dark cycle and
18–23 °C with 40–60% humidity. Diet and water were accessible at all
times. The Fah−/− mouse model harbors the same homozygous G to A
point mutation of the last nucleotide of exon 8, which result in exon
skipping and the loss of FAH. Fah−/− mice were kept on 10mg/L NTBC
(Sigma-Aldrich, Cat. No. PHR1731) in drinking water when indicated.
For viral particle injection, AAV8 (4 × 1011 vg/mouse) in 200μl saline
were injected via the tail vein into 8–10 weeks old male and female
mice.Micewere kept off NTBCwater at 7 days post injection, and their
body weights were recorded every 3–5 days. Mice were euthanized by
CO2 asphyxiation and harvested at 75 days after NTBC water with-
drawal for histology and DNA analysis. Control mice off NTBC water
were harvested when reaching >20% weight loss.

Histological analysis, immunohistochemistry, and
immunofluorescence
For histological analysis, liver sections embedded in paraffin were
initially deparaffinized in xylene, followed by rehydration with a
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gradient of ethanol ranging from 100% to 50%. Subsequently, the
sections were washed in distilled water and stained with hematoxylin
and eosin (H&E) and picrosirius red solution (0.1%) for histological
examination.

Immunohistochemistry was conducted on deparaffinized sec-
tions, starting with the inhibition of endogenous peroxidase activity
using a 0.6% hydrogen peroxide/methanol solution. Antigen retrieval
was achieved using EDTA antigen retrieval solution. To minimize
nonspecific binding, a 3% BSA solution was applied for 30min, fol-
lowed by overnight incubation at 4 °Cwith the primary antibody (HPD
antibody, Santa Cruz, sc-390279, dilution 1:100). On the following day,
slides were washed and incubated with the secondary antibody (Goat
Mouse IgG, Abcam, ab97023, dilution 1:1000). Staining was visualized
using the DAB peroxidase substrate kit.

For mouse tibialis anterior, diaphragm, and heart muscle tissues,
immunofluorescence was carried out on frozen sections. Nonspecific
binding was blocked with 5% normal goat serum in TBST for 1 h. The
slides were then incubated overnight at 4 °C with primary antibodies
(dystrophin antibody, Abcam, ab15277, dilution 1:100; laminin-2 anti-
body, Sigma-Aldrich, L0663, dilution 1:100) in 5%normal goat serum in
TBST. Subsequently, slides were washed in TBST and incubated
with secondary antibodies (Alexa Fluor 488 Goat Rabbit, Invitrogen,
A-11008, dilution 1:1000; Alexa Fluor 594 Goat Rat IgG, Invitrogen,
A-11007, dilution 1:1000) for 1 h. Imaging was performed using an
FV3000 confocal microscope.

Serum and urine biochemistry
Mouse blood was collected using retro-orbital puncture before mice
were sacrificed. Mouse urine was collected every 24h for a total of
three times. Mouse plasma tyrosine levels were measured on a high-
performance liquid chromatograph (HPLC1200) according to the
standard protocols. ALT, AST, and bilirubin levels in plasma were
determined using diagnostic ELISA Kits (Abcam). Succinylacetone
levels were measured using High-Performance Liquid Chromato-
graphy (ACQUITY UPLC I-Class) coupled to tandem mass spectro-
meter (AB Sciex API 4000 LC-MS/MS).

TnpB protein expression and purification
To express TnpB in E. coli, a prokaryotic TnpB expression plasmid
(pCX2691) was constructed by cloning TnpB fragment in a pET2b-
derived plasmid. TnpB expression plasmid was then transformed into
Rosetta (DE3) competent cells for growth in LBmediumwith ampicillin
(100 µg/ml) at 37 °C. After the OD600 reaches 0.6–0.8, TnpB expres-
sion was induced with IPTG. Induced cells were further cultured at
16 °C for 14–16 h. Next, we pelleted bacteria by centrifugation and
resuspended in lysis buffer (20mM Tris-HCl pH 7.0, 250mM NaCl,
5mM 2-mercaptoethanol, 25mM imidazole, 2mM PMSF and 5% (v/v)
glycerol). After sonication, the cell lysate was centrifugated to remove
cell debris, and the supernatant was load onto Ni2 + -charged HiTrap
chelating HP column (GE Healthcare). TnpB protein was eluted with
imidazole. Pooled TnpB fractions were dialyzed against storage buffer
(20mM Tris-HCl (pH 8.0 at 25 °C), 250mM NaCl, 2mM DTT and 50%
(v/v) glycerol) and stored at −20 °C for further use.

Human serum antibody analysis for TnpB and SpCas9 by ELISA
Adult serum was provided by Center for Reproductive Medicine,
International Peace Maternity and Child Health Hospital, Innovative
Research Team of High-level Local Universities in Shanghai, School of
Medicine, Shanghai Jiao Tong University, Shanghai, China. About 2ml
of adult blood samples were collected from veins and left at room
temperature for 30min. Subsequently, they were centrifuged at
1800× g for 10min at room temperature, and the resulting super-
natants were carefully transferred to tubes. The transferred samples
were then subjected to a second centrifugation at 1300×g for 2min
and stored at −80 °C for future use.

The ELISA protocol was adapted from the standard
methodologies30,31. In a concise summary, each antigen (TnpB, spCas9,
human albumin) was coated onto a 96-well plate (0.5μg/well) over-
night at 4 °C in a coating buffer. Following this, the plates underwent
five washes for 3min each with TBST wash buffer. Subsequently, the
plates were blocked with a 5% bovine serum albumin (BSA) blocking
solution for 1 h at room temperature.

Serum samples were diluted 50-foldwith 1% BSADiluent Solution,
added to the wells, and incubated for 1 h at 37 °C with shaking
(200 rpm).Afterward, theplateswerewashed three times.Horseradish
peroxidase-conjugated goat anti-human IgG Fc secondary antibody
(Epigentek, cat#A-9000, dilution 1:5,000) was then applied and incu-
bated for 1 h at room temperature. Following this, 3,3′,5,5′-Tetra-
methylbenzidine substrate solution was added and allowed to develop
for 15min before sulfuric acid was added to stop the reaction. The
absorbance at 450nm was measured using a SpectraMax i3X micro-
plate reader.

Immunoblot
For the detection of HPD expression in mouse liver, the murine liver
tissues were incubated in RIPA Lysis and Extraction Buffer. Equal
amounts of proteins were separated on SDS-polyacrylamide gel elec-
trophoresis gels. Primary antibodieswere listed as below: Anti-CRISPR-
Cas9 (ET1703, HUABIO; dilution 1:1000), Anti-Human-lgG (ALPVHHs,
dilution 1:1000), anti-HPD antibody (Santa Cruz, sc-390279; dilution
1:100 or 1:500), anti-P21 antibody (Abcam, ab109199; dilution 1:200),
anti-Vinculin (Cell Signaling Technology, 13901 S; dilution 1:100), anti-
dystrophin antibody (Abcam, ab15277; dilution 1:100), anti-laminin-2
antibody (Sigma-Aldrich, L0663; dilution 1:100). For anti-TnpB/SpCas9
antibody analysis, aliquots of 1 μg TnpB and 1μg SpCas9were resolved
in buffer respectively and then applied to a 10% SDS-polyacrylamide
gel electrophoresis. Samples were transferred to a PVDF membrane
and blocked with 5% BSA in TBST for 1 h at room temperature.
Immunoblots were then incubated overnight in TBST with 0.05% BSA
with a 1:10 dilution of serum. Immunoblots were washed three times
for 8min in TBST on a shaker and then incubated with horseradish
peroxidase-conjugated goat anti-human IgGFc secondary antibody for
1 h at room temperature. After the incubation with Chemiluminescent
substrates (#WP20005, Invitrogen), the membranes were viewed by
the Image Lab™ Software 5.2.

Statistical analysis
The number of independent biological replicates is shown in the figure
legend. The data are presented as means ± SEM. Differences were
assessed using unpaired two-tailed Student’s t tests or one-way
ANOVA. Differences in means were considered statistically sig-
nificant at P < 0.05 (*P <0.05. **P < 0.01. ***P < 0.001. ****P < 0.0001).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Deep-seq data are deposited to the GEO repository under accession
number PRJNA973546. Source data are provided with this paper.
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