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High-performance van der Waals antiferro-
electric CuCrP2S6-based memristors

Yinchang Ma 1,6, Yuan Yan 2,6, Linqu Luo 1,6, Sebastian Pazos 1,
Chenhui Zhang 1, Xiang Lv3, Maolin Chen 1, Chen Liu1, Yizhou Wang1,
Aitian Chen 1, Yan Li 1, Dongxing Zheng 1, Rongyu Lin 1, Hanin Algaidi 1,
Minglei Sun 1, Jefferson Zhe Liu 2, Shaobo Tu1, Husam N. Alshareef 1,
Cheng Gong 4, Mario Lanza 1, Fei Xue 5 & Xixiang Zhang 1

Layered thio- and seleno-phosphate ferroelectrics, such as CuInP2S6, are pro-
mising building blocks for next-generation nonvolatile memory devices.
However, because of the low Curie point, the CuInP2S6-basedmemory devices
suffer from poor thermal stability (<42 °C). Here, exploiting the electric field-
driven phase transition in the rarely studied antiferroelectric CuCrP2S6 crys-
tals, we develop a nonvolatile memristor showing a sizable resistive-switching
ratio of ~ 1000, high switching endurance up to 20,000 cycles, low cycle-to-
cycle variation, and robust thermal stability up to 120 °C. The resistive
switching is attributed to the ferroelectric polarization-modulated thermal
emission accompanied by the Fowler–Nordheim tunneling across the inter-
faces. First-principles calculations reveal that the good device performances
are associated with the exceptionally strong ferroelectric polarization in
CuCrP2S6 crystal. Furthermore, the typical biological synaptic learning rules,
such as long-term potentiation/depression and spike amplitude/spike time-
dependent plasticity, are also demonstrated. The results highlight the great
application potential of van der Waals antiferroelectrics in high-performance
synaptic devices for neuromorphic computing.

Ferroelectric materials, with permanent electric dipoles that can be
reversed by electric fields, play an important role in advanced infor-
mation storage devices1. Recently, two-dimensional (2D) vanderWaals
(vdW) ferroelectrics have garnered considerable interest because of
their stable polarization, dangling bond-free interfaces, and atomic-
scale integration2,3. These vdW ferroelectrics have demonstrated rich
physics4,5 and advanced memory performance with brain-like
perception–storage–computing functionalities6. In particular, thio-
and seleno-phosphate ferroelectrics are a class of dielectric materials
with wide band gaps. These materials exhibit unique polar physics,

e.g., dipole locking7, quadruple-potential wells8 and giant piezoelectric
domain walls9. Furthermore, they can also be utilized to develop tun-
nel junctions with high ON/OFF ratios10–13 and ferroelectric field effect
transistors (Fe-FETs) with long retention14,15.

To date, among the layered thio- and seleno-phosphate ferro-
electrics, most previous efforts have been made on CuInP2S6 (CIPS).
Since the discovery of ferroelectricity in 4 nm-thick CIPS flakes in
201616, a number of architectures for CIPS-based nonvolatile, pro-
grammable memory devices have been proposed, delivering high
device performance and versatile functionalities toward next-
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generation computing hardware. By leveraging CIPS, Wang et al. rea-
lized reconfigurablememory devices with long retention time via vdW
engineering in a ferroelectric transistor memory cell17. Using MoS2/
CIPSheterostructures, Si et al. obtained Fe-FETswith stable nonvolatile
memory properties18. Moreover, by adopting CIPS/graphene hetero-
structures, gate-tunable memristive effects were discovered19. How-
ever, because of the low Curie point (Tc = 42 °C) of CIPS, high
temperatures above 42 °C could destroy the ferroelectric order and
induce a transition to the paraelectric order, consequently deterior-
ating the performance of these memory devices8,20,21. This poor ther-
mal stability severely limits the application of thio- and seleno-
phosphate ferroelectric materials in harsh environments.

Despite holding a similar crystal structure to ferroelectric CIPS,
CuCrP2S6 is indeed an antiferroelectric crystal22,23; as such, its appli-
cation in the development of nonvolatile memory devices is challen-
ging because of the lack of remnant polarization24. Here, exploiting an
electric field-driven phase transition25–27, we transform the anti-
ferroelectricity of CuCrP2S6 into ferroelectricity and realize non-
volatile CuCrP2S6 memristors with two-terminal vertical architectures.
Among all reported vdW ferroelectric memristors, CuCrP2S6 memris-
tors exhibit analog synaptic functionalities, high endurance (up to
20,000 cycles), and high thermal stability (>120 °C). Piezoresponse
force microscopy (PFM), second harmonic generation (SHG), and
temperature-dependent electrical measurements demonstrate that
the resistive-switching behavior is associatedwith polarization flipping
and barrier-height variation. Moreover, first-principles calculations
reveal the large polarization and low polarization-reversal energy in
CuCrP2S6, which provides a plausible explanation for the observed low
operation voltage, high endurance, and thermal robustness.

Results and discussion
The crystal structure of CuCrP2S6 is schematically depicted in Fig. 1a
(top view) and d (side view). The metal cations are confined in octa-
hedral frames constructed by sulfur atoms, and the layers are held
together by the vdW force. Cu atoms are alternately arranged up and
down in the antiferroelectric phase (Fig. 1d, middle panel), whereas in
the ferroelectric phase, all Cu atoms are displaced in the up or down
position collectively (Fig. 1d, top and bottom panels), resulting in
remnant ferroelectric polarization. High-quality plate-like CuCrP2S6
crystals with typical lateral dimensions of ~5mm× ~5mm (inset of
Fig. 1b) are synthesized using the chemical vapor transport (CVT)
method (see “Experimental” section). The X-ray diffraction (XRD)
analysis confirms the high single-crystallinity of the as-grownCuCrP2S6
crystals (the top panel of Fig. 1b). The Raman spectrum in the bottom
panel of Fig. 1b displays phonon peaks at 204, 266, 378, and 591 cm−1,
agreeing well with the previous report22. Energy-dispersive X-ray
spectroscopy (EDS) (Supplementary Fig. 1) is applied to confirm the
expected elemental composition, with the atomic ratio of Cu, Cr, P,
and S approximately 1:1:2:6.

To date, previous studies primarily explored CuCrP2S6’s low-
temperature (<300K) properties23,28,29, while its behavior in the high-
temperature range remains elusive. Here, employing a variety of
characterization techniques including PFM, ferroelectric tester, SHG,
and dielectric measurements, we surprisingly discover that the polar
states of CuCrP2S6 can persist at room temperature and above. First,
the CuCrP2S6 flakes are characterized by PFM. As shown in the bottom
panel of Fig. 1c, hysteresis loops and “butterfly” curves for the ampli-
tude and phase of piezoresponse are detected for the 10-nm flakes,
indicating the alignment of reversible electric dipoles along the out-of-
plane direction with remnant polarization, i.e., a signature of ferroe-
lectricity. The top left panel of Fig. 1c shows the PFM phase images
after the tip-induced domain reversal in a box-to-box pattern by
applying a voltage bias of ±10 V. The clear contrast between the inner
andouter parts in the phase image indicates thedomain reversal under
the PFM tip-induced electric field. Moreover, polarization–electric

field (P–E) curves were acquired for a 50-nm thick CuCrP2S6 flake.
Pronounced hysteresis loops (Fig. 1f and Supplementary Figs. 2 and 7)
are observed, which unambiguously demonstrate the existence of
ferroelectricity. A possible reason for the observed ferroelectricity in
this antiferroelectric crystal is that the electric field can induce a
structural transition from the antiferroelectric to the ferroelectric
phase25,27,30–32. Over time, the domains naturally relax back to the
ground state, i.e., antiferroelectricity (the top right panel of Fig. 1c).

Second, the ferroelectricity in CuCrP2S6 crystals was probed using
SHG. Figure 1e and Supplementary Fig. 3 show that the poledCuCrP2S6
flake generates a strong SHG signal, indicating a broken inversion
centrosymmetry associated with ferroelectricity. The SHG intensity
shows sixfold symmetry, which agrees well with the hexagonal sym-
metry in the CuCrP2S6 crystal. CuCrP2S6 belongs to the space group of
P3 (No. 143), consistent with the fact that the SHG intensity can be
fitted by I = I0 cos2(3θ), where θ is the angle between the incident laser
polarization and the a-axis33. Notably, some flakes showdetectable six-
fold SHG intensity even without prior exposure to an electric field,
suggesting a possible coexistence of antiferroelectric and ferroelectric
coupling.

Supplementary Fig. 4 displays thickness-dependent SHG intensity
mapping of CuCrP2S6 flakes. A thicker sample exhibits a stronger SHG
signal, and the decreased SHG responses in thin samples may be
attributed to the substrate clamping effect, which is consistent with
previous reports of thickness-dependent PFM responses16. Besides,
Supplementary Fig. 5 shows that SHG intensity is enhanced by elec-
trical poling, revealing the electric-field-induced antiferroelectric-to-
ferroelectric transition (details are discussed in Supplementary
Note 1). In addition to the SHG results, scanning Kelvin probe micro-
scopy (SKPM) measurement (Supplementary Figs. 6 and 21 and Sup-
plementary Note 2) demonstrates a clear contrast between pristine
and poled regions, confirming the ferroelectricity.

The most striking discovery from our material characterization is
the observation of a phase transition occurring above room tem-
perature, which was not previously reported. In Fig. 1g,h, a remarkable
drop in SHG intensity is observed around 470K, suggesting a transi-
tion from the ferroelectric to the paraelectric phase. In good agree-
ment with this observation, our dielectric measurement shows a clear
cusp appearing at 470K in the dielectric curves (Fig. 1i), further con-
firming the occurrence of a phase transition around this critical tem-
perature (470K). Remarkably, previous studies identified two phase
transitions at Tc1 = 145K and Tc2 = 195 K23,34,35. Here, we report
Tc = 470K as a newly discovered critical temperature for ferroelectric
phase transition, above which the dipole coupling completely van-
ishes. Note that multiple phase transitions are quite common in fer-
roelectrics when they evolve from ordered to disordered states,
resulting inmultiple critical temperatures36. Therefore, we believe that
Tc1 and Tc2 are the first two critical temperatures for the dipole cou-
pling strength changes, whereas Tc = 470K may be the actual Curie
temperature.

Using a mechanically exfoliated CuCrP2S6 nanoflake, a vertical
memristor crossbar array was fabricated (Fig. 2a–c). The thickness of
the nanoflake was 10 nm, characterized by atomic force microscopy
(AFM) (Supplementary Fig. 8). Ti andAuweredeposited on the top and
bottom sides to form asymmetric interfaces (Fig. 2b) for optimizing
the resistive-switching behavior37. Supplementary Fig. 9 shows the
cross-sectional transmission electron microscopy (TEM) image of a
typical device. Figure 2d shows the current–voltage (I–V) curves for a
typical CuCrP2S6 memristor measured by sweeping voltages between
±1 V. The bipolar resistive-switching behavior is clearly observed with
anON/OFF ratio of ~1000 (read at0.1 V). Figure 2e shows the expanded
hysteretic I–V curveswithdifferent sweeping voltages from±0.1 to ±1 V
in a 0.1-V step. Supplementary Figs. 2 and 20 indicate that the required
electric field for resistance switching is comparable to that for polar-
ization switching. Figure 2f shows the voltage-sweeping dependence
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of the currents and the switching ratio read at 0.1 V. The high resis-
tance state (HRS) currents exhibit a weak dependence on the
sweeping-voltage variation, whereas the low resistance state (LRS)
currents increasebyover threeorders as the voltage increases from0.1
to 1 V. Our control experiment shows that the breakdown voltage is
around 10V (Supplementary Fig. 10 and SupplementaryNote 3),which
is much larger than the voltages we normally applied. Figure 2g shows
the stable I–V curves for 1000 consecutive cycles. Figure 2h, i shows
that the HRS and LRS conductance values do not change noticeably
after 1000 consecutive cycles, indicating a low cycle-to-cycle varia-
bility. Supplementary Fig. 11 shows the LRS and HRS conductance
values of all 16memristors in the 4 × 4 array, which exhibit gooddevice
uniformity. To investigate the retention, the as-fabricated memristors
are set with pulses of ±1 V/5 s, after which the corresponding resis-
tances are read at a 5-s interval. As shown in Fig. 2j, both HRS and LRS

currents remain nearly unchanged over 5000 s. In addition to reten-
tion, endurance is another important figure of merit for memristors.
After the DC sweeping measurements, we performed AC pulse mea-
surements. We used AC pulses with an amplitude/width of 2 V/1ms to
test the endurance. The pulse waveform and current variation are
shown in Supplementary Fig. 12. Each cycle comprises a positive pulse
for “setting” the memristor to the “ON” state and a negative pulse for
“resetting” the memristor to the “OFF” state. The “set” or “reset” pro-
cess is followed by a 1 V/1ms reading process. Figure 2k, l shows that
the LRS and HRS conductance does not degrade even after testing
20,000 cycles. This represents the best endurance performance ever
reported among 2D ferroelectric memristors38,39.

To implement electronic synapses for neuromorphic computing,
multilevel conductance states are desirable. We examined the possi-
bility of synapse emulation. A pulse can be used to emulate the
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biological spikes transported between different neurons, and the
change of the device conductance can mimic the synaptic weight
update between two neurons. In Fig. 3a, the top panel shows the
synaptic-weight update (potentiation/depression process) as a

function of the continuous pulses, whereas the bottom panel shows
the schematics of the applied pulse trains with five cycles. The first
cycle comprises 8 identical positive pulses and 8 identical negative
pulses, denoted as “8(+) + 8(−)” for simplicity. The subsequent four
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cycles are denoted as 10(+) + 10(−), 20(+) + 20(−), 30(+) + 30(−), and
40(+) + 40(−), respectively. Eachpulse is followedby a voltage of 0.1 V to
read the device’s conductance. As shown in the top panel of Fig. 3a, the
conductance steadily increases under positive-pulse excitation, thus
emulating the “potentiation” process of the synapses; however, it
gradually decreases under negative-pulse excitation, thus emulating
the “depression” process. An increasing number of pulses produce
additional intermediate resistance states, indicating the effective
modulation of the device conductance through electrical pulses.
These results show that consecutive pulse sequences unambiguously
exert a training effect on the device conductance, which is referred to
as the “synaptic behavior”.

We continued to investigate the dependence of conductance
evolution on the applied voltage amplitude and interval. Figure 3b

shows the evolution of the device conductance stimulated by pulse
sequences with different voltage amplitudes of 0.4, 0.6, 0.8, and 1 V.
The conductance is gradually potentiated by the positive voltage
pulses, whereas it is gradually depressed by the negative voltage pul-
ses. Evidently, a large pulse amplitude corresponds to a large con-
ductance. The conductance values reach 0.017, 0.18, 1.0, and 3.9μS
with pulse amplitudes of 0.4, 0.6, 0.8, and 1.0V, respectively. The
minimum/maximum conductance versus the pulse amplitude is plot-
ted in the bottom panel of Fig. 3b. With increasing pulse (spike)
amplitude, the maximum conductance exponentially increases,
whereas the minimum conductance remains almost unchanged. Fur-
thermore, as shown in Fig. 3c, with a relatively high spike rate (short
time interval betweenpulses), the conductance is potentiated to a high
level. Unlike the spike-amplitude dependence shown in Fig. 3b, the
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Fig. 3 | Emulation of the key synaptic behaviors by a CuCrP2S6 memristor.
a Potentiation and depression with different numbers of pulses. The applied vol-
tage pulse sequences are shown in the bottom panel. b Emulation of the spike
amplitude-dependent plasticity. The pulses with amplitudes of 0.4, 0.6, 0.8, and
1.0 V were applied. The conductance evolution of the device is shown in the top
panel. The conductance increases with the pulse amplitude. The conductance
maximum and minimum are extracted and plotted in the bottom panel. A large

pulse amplitude enables the conductance to reach a higher level. c Spike rate-
dependent plasticity. The pulses are set to be 1 V/300ms, and the intervals between
pulses are set as 0.4, 0.6, 1.1, 2.0, and 3.0 s. The pulse-rate dependence of the
conductance maximum and minimum are extracted and plotted in the bottom
panel. Insets of b and c show the variables (pulse–amplitude and pulse–time
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behaviors. Set/reset voltage: ±1 V; read voltage: 0.1 V.
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bottom panel of Fig. 3c highlights that the maximum conductance
exponentially decreases as the pulse interval increases (corresponding
to low spike rates), whereas the minimum conductance only under-
goes a slight change. To summarize, the conductanceof thememristor
can be effectively potentiated and depressed by modulating the pulse
intervals, amplitudes, and numbers, which emulates the synaptic
weight update under stimuli from pre-neuron and post-neuron spikes.
Based on the observed potentiation and depression behaviors, we
examine the repeatability of the training effect. The pulse sequence
comprising ten “10(+) + 10(−)” cycles is shown in Fig. 3d, where the
potentiation and depression processes are marked in red and blue,
respectively. All intermediate states are distinct, uniform, and repro-
ducible for all ten cycles, demonstrating the good repeatability of the
training effect.

The flipping of the ferroelectric polarization is responsible for the
observed resistive switching. The resistive-switching mechanism can
be interpreted by using the asymmetric energy-band model40.
Figure 4a–c shows the energy band diagram of the device in the
unpoled state, HRS, and LRS, respectively. An electric field transforms
CuCrP2S6 from an antiferroelectric state into a ferroelectric state and
enables the switching of the ferroelectric dipoles. Furthermore, it
modifies the band alignment at the interfaces by tilting the energy
band of CuCrP2S6, which consequently modulates the energy barrier
involved in the electron-conduction process37. Note that, due to the

ionic nature of CuCrP2S6, ferroelectric polarization switching may be
accompanied by ion migration and ion migration-related charge
trapping/detrapping effects during the resistive switching, which is
often observed in oxide ferroelectric memory devices41,42. However,
the ion-related filamentary switching is firmly ruled out by our control
experiments (Supplementary Fig. 13 and Supplementary Note 4).

To understand the mechanism of the electron conduction,
temperature-dependent electrical transport measurements were per-
formed from room temperature to 107 °C (380K). In previous studies
of 2D ferroelectric memristors, the Schottky emission was considered
the main conduction mechanism43. However, Supplementary Fig. 14
shows that the Schottkymodel cannot explain our results in the strong
electricfield region. Therefore, the electrical transport is unlikely to be
governed by the thermal excitation of carriers, particularly in the
strong electric field (the detailed analyses are presented in Supple-
mentary Note 5 and Supplementary Fig. 15). We collected a set of I–V
curves (Supplementary Fig. 16) for samples with varied thicknesses.
The resistive switching ratio is enhanced as the sample thickness
decreases. Intuitively, a decrease in thickness down to the nanoscale
brings the sample closer to the critical thickness of ferroelectricity, and
thus a larger interfacial depolarization field can deteriorate the ferro-
electric behavior and related resistive switching. Therefore, an
improvement in device performancewith reduced thicknesses implies
that the origin of resistive switching is not only based on interface
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Fig. 4 | Schematics of the mechanisms of resistive switching and the
temperature-dependent electrical transport measurements. a–c Energy-band
diagrams of the CuCrP2S6 memristor in the unpoled state, HRS, and LRS, respec-
tively. The energy band tilts in different directions, corresponding to different
polarization states. Two conduction mechanisms (① Schottky emission and ② FN
tunneling) are marked by arrows in (b) and (c). The average energy barriers are

marked as Φ1 and Φ2 (Φ1 >Φ2), which lead to HRS and LRS, respectively.
d Temperature-dependent electrical-transport measurements plotted in the form
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effects. Considering that the CuCrP2S6 flakes with low thicknesses
(~10 nm) could allow electron tunneling, we expect that both the
Schottky emission and Fowler–Nordheim (FN) tunneling will con-
tribute to the electron conduction in this device44. The FN tunneling
current can be expressed as follows:

I / V 2 exp �4
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where I is current, ħ is reduced Planck’s constant,m* is effective mass,
V is applied voltage, andΦ is barrier height. The current wasmeasured
at different temperatures by sweeping the voltage in the range of ±1 V,
and the data are plotted in the formof I V−2 vs. V−1 in a logarithmic scale
(Fig. 4d, e). The apparent lineardependencebetween ln(I V−2) andV−1 in
the strong electric-field region (details are shown in Supplementary
Note 6) indicates that the FN tunneling dominates the electrical
transport mechanism under the strong electric field as expected. The
physical processes of the FN tunneling are illustrated in Fig. 4b, c,
marked as②, in contrast with the Schottky-emission processesmarked
as ①. Under a strong electric field, both the height and width of the
tunneling barrier reduce, enhancing the electron tunneling transmis-
sion (Supplementary Fig. 17), which is consistent with the fact that the
FN tunneling results from the barrier-narrowing effect. These results
confirm that tunneling conduction indeed contributes to resistive
switching beyond the well-recognized ordinary thermal emission4.

Having identified the physics behind the nonvolatile memory
effect, we still expect to unveil themechanism underlying the synaptic
behaviors (potentiation/depression process). Because all the above-
mentioned observations are related to the ferroelectric polarization
switching in CuCrP2S6, we deduce that the potentiation and depres-
sion processes are correlated with the ferroelectric domain
dynamics21,45. To experimentally confirm this postulation, we transfer
CuCrP2S6 flakes onto the bottom electrode connected to a pulse
generator and subsequently performed PFM measurements to map
out the domain-evolution processes (Fig. 5e). Figure 5a–d shows the
piezoresponse amplitude images under consecutive pulses. The flake
was initially poled with a long pulse of −8V/10 s, thus resulting in a
uniform dark image. This indicates that the entire ferroelectric
domains were completely reversed downward, thus forming a single
domain state (Fig. 5a). With increasing pulse (8V/0.5 s) numbers, the
upward domain was first nucleated at the left and subsequently pro-
pagated to the right (Fig. 5b, c), during which an increasing number of
dipoles were aligned upward (along the electric-field direction).
Finally, after >20 pulses, the entire sample was fully poled upward
through the domain-wall motion. The sample became a single-domain
state (Fig. 5d) but with a polarization opposite to that of the initial
state. The process of increasing the upward domains with the number
of positive pulses should correspond to the potentiation process. On
the contrary, if we continuously apply negative pulses, the size of the
down domains will increase, corresponding to the depression process.
Figure 5a, d corresponds to the HRS and LRS, respectively, while
Fig. 5b, c corresponds to the intermediate transition states. Therefore,
many stable states indeed exist between the LRS and HRS. Based on
these observations, macroscopic synaptic characteristics can be cor-
related with the microscopic dynamics of these domains46.

To examine the thermal stability of these memristors, we tested
their performances at high temperatures. Figure 6a shows that the
switching window remains open from room temperature to 120 °C,
demonstrating the excellent thermal stability of the memristor. Fur-
thermore, this excellent stability satisfies the requirements for most
practical applications, because the temperature of common working

environments for microprocessors is ~80 °C47. As the temperature
increases further, the resistive-switching ratio gradually decreases and
finally vanishes at 150 °C (Supplementary Fig. 18), which is consistent
with the temperature-dependent Raman measurements (Supplemen-
tary Fig. 19). The absence of resistive-switching behavior at high tem-
peratures conforms to the nature of ferroelectric–paraelectric
transition in ferroelectrics. Using first-principles calculations, we
attribute the superior performance of our memristors to the inherent
polar nature of CuCrP2S6. After optimizing the crystal-structuremodel
of CuCrP2S6 and CIPS (Fig. 6b) using density functional theory (DFT)
calculations, we calculated their ferroelectric polarization strengths
(Fig. 6c) for one unit cell with one formula unit (f.u.). Remarkably,
CuCrP2S6 possesses a much stronger polarization (3.4757 × 10−11 Cm−1)
than its counterpart, CIPS (4.5168 × 10−12 Cm−1), which explains its
robust performance in the device. Furthermore, we calculated and
compared the energy barriers for the polarization-reversal processes
in CuCrP2S6 and CIPS with the nudged elastic band (NEB)method. The
energy barriers are 0.1894 eV and 0.3128 eV per f.u. for CuCrP2S6 and
CIPS, respectively (Fig. 6d). This explains the low-voltage operation of
the CuCrP2S6memristor. Based on these calculation results, we ensure
that the electric dipoles are strongly stabilized and coupled in the
CuCrP2S6 memristors, which successfully explains their superior
stability.

In summary,we demonstrated anapproach to electric-field driven
phase transition for implementing antiferroelectric vdW crystals in
nonvolatile memory devices using CuCrP2S6. We demonstrated the
multiple distinctive features of the CuCrP2S6 memristor, including a
high ON/OFF ratio (~103), excellent endurance (20,000 cycles), high
thermal stability (>120 °C), a lowoperation voltage (1 V), and the ability
tomimic synaptic behaviors.We investigated the polarization reversal,
domain evolution, and electrical transport mechanisms in the mem-
ristors, which provides a fundamental understanding for improving
antiferroelectrics-based resistive-switching devices. Our work expands
the library of 2D materials for nonvolatile memory and synaptic devi-
ces, which opens an avenue to high-performance memristors and
brain-inspired in-memory computing hardware.

Methods
Material growth and characterization
High-quality single crystals of CuCrP2S6 were synthesized by the CVT
method. Cu (99.99%, Sigma-Aldrich), Cr (99.99%, Sigma-Aldrich), P
(99.999%, Sigma-Aldrich), and S (99.98%, Alfa Aesar) in the stoichio-
metric proportion of 1:2:3:6, with a total mass of 1 g, were mixed and
employed as precursors. To achieve the transport of matter, 80mg of
iodine serving as the transport agent was added to the precursors. The
mixturewas sealed in a quartz ampule (inner diameter: 10mm) inside a
glove boxfilledwithAr. Then, the quartz ampulewas tightly connected
to a mechanical pump and pumped to 10−4 mbar before being sealed
again. Subsequently, the ampule was transferred to a furnace with two
temperature zones. The hot and cold ends were set to 750 °C and
700 °C, respectively, establishing a temperature gradient of 3 °C/cm.
The thermal treatment lasted for seven days, at the end of which the
furnacewas switched off and allowed to cool to room temperature at a
very low rate of 0.7 °C/min. The single-crystal XRD pattern was
recorded using a Bruker D8 Advance X-ray diffractometer with CuΚα
radiation. Raman measurement was performed using a 633-nm exci-
tation laser on aWITec alpha300 apyron confocal Ramanmicroscope.
The laser power was maintained below 0.5mW to avoid local laser-
induced heating.

Device fabrication
Thin-bottom electrodes were patterned by electron-beam lithography
(EBL: CABL-9000C), followed by metal sputtering (5 nm Ti/10 nm Au)
and lift off on a 300nm SiO2/Si substrate. The CuCrP2S6 crystal was
exfoliated on a Si wafer and subsequently transferred to the bottom
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electrode using the standard dry-transfer technique with a polymer
stamp. Subsequently, the top electrodes (20 nm Ti/70 nm Au) were
deposited by e-beam evaporation after the EBL patterning.

Ferroelectric characterization
PFM measurements were performed using a scanning probe micro-
scope (Asylum Research MFP-3D) in the dual-AC resonance mode on
conductive gold-coated substrates. A conductive tip (coatedwith Pt/Ir,
spring constant: 3 Nm−1, produced by Bruker) was employed. The PFM
mapping was acquired with a 0.8 V AC bias applied to the probe. SHG
measurements were performed using an MStarter 100 Ultrafast SHG
microscope spectrometer (Nanjing Metatest Optoelectronics

corporation) with an excitation light source of 1064 nm picosecond
pulse laser. The ferroelectric hysteresis (P–E) loops were measured
using a commercial ferroelectric workstation (Radiant Technologies,
Inc. Precision Premier 200V ferroelectric test system), and the mea-
surement frequency was set as 0.1 Hz.

Device characterization
All electrical measurements of the memristor were performed using
both Keithley 4200 and Agilent B1500A semiconductor parameter
analyzers. The I–V curves were collected in a quiet sweep mode using
Keithley 4200. All electrical measurements were performed in air at
room temperature.

Fig. 5 | Observation of the intermediate transition states using PFM.
a–d Piezoresponse-amplitude image of the domain-evolution processes. Scale bar:
1μm. a, d The HRS and LRS of the memristor, respectively. b, c Intermediate

resistance states. The outlines of the bottom electrode are marked by the white
dashed lines. e Experimental setup for the PFM measurements. The PFM tip is
grounded, and the bottom electrode is connected to a pulse generator.
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First-principles calculations
First-principles calculations were performed using the Vienna ab
initio Simulation Package. We adopted the projector-augmented
wave method48 and the Perdew–Burke–Ernzerhof exchange-
correlation functional49. The cut-off of the plane-wave kinetic
energy was set to 400 eV. For all structural relaxations,
k > 25

a × 25
b × 1 gamma-centered k-point grid was used to sample the

Brillouin zone, where a and b are the lattice constants of the
supercell. Then, a precise k-point mesh of k > 60

a × 60
b × 1 was used

for all static calculations. A large vacuum space of ≥20 Å in the
direction of c was applied to avoid any spurious interaction
between the periodically repeating layers. All structures were
completely relaxed until the energy converged within 10−6 eV and
the forces within 10−3 eV Å−1. The climbing-image nudged elastic
band method50 was employed to calculate the phase-transition
barriers.

Data availability
All the data used to reach the conclusion of this study are presented in
the paper and the Supplementary Materials. Source data are available
from the Figshare repository under https://doi.org/10.6084/m9.
figshare.24459703.
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