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Causal effect of blood osteocalcin on the risk of Alzheimer’s
disease and the mediating role of energy metabolism
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Growing evidence suggests an association between osteocalcin (OCN), a peptide derived from bone and involved in regulating
glucose and lipid metabolism, and the risk of Alzheimer’s disease (AD). However, the causality of these associations and the
underlying mechanisms remain uncertain. We utilized a Mendelian randomization (MR) approach to investigate the causal effects of
blood OCN levels on AD and to assess the potential involvement of glucose and lipid metabolism. Independent instrumental
variables strongly associated (P < 5E-08) with blood OCN levels were obtained from three independent genome-wide association
studies (GWAS) on the human blood proteome (N= 3301 to 35,892). Two distinct summary statistics datasets on AD from the
International Genomics of Alzheimer’s Project (IGAP, N= 63,926) and a recent study including familial-proxy AD patients (FPAD,
N= 472,868) were used. Summary-level data for fasting glucose (FG), 2h-glucose post-challenge, fasting insulin, HbA1c, low-density
lipoprotein cholesterol, high-density lipoprotein cholesterol, total cholesterol (TC), and triglycerides were incorporated to evaluate
the potential role of glucose and lipid metabolism in mediating the impact of OCN on AD risk. Our findings consistently
demonstrate a significantly negative correlation between genetically determined blood OCN levels and the risk of AD (IGAP: odds
ratio [OR, 95%CI]= 0.83[0.72–0.96], P= 0.013; FPAD: OR= 0.81 [0.70–0.93], P= 0.002). Similar estimates with the same trend
direction were obtained using other statistical approaches. Furthermore, employing multivariable MR analysis, we found that the
causal relationship between OCN levels and AD was disappeared after adjustment of FG and TC (IGAP: OR= 0.97[0.80–1.17],
P= 0.753; FPAD: OR= 0.98 [0.84–1.15], P= 0.831). There were no apparent instances of horizontal pleiotropy, and leave-one-out
analysis showed good stability of the estimates. Our study provides evidence supporting a protective effect of blood OCN levels on
AD, which is primarily mediated through regulating FG and TC levels. Further studies are warranted to elucidate the underlying
physio-pathological mechanisms.
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INTRODUCTION
Alzheimer’s disease (AD) is the most prevalent neurodegenerative
disorder, affecting more than 35 million individuals worldwide [1].
Osteoporosis, characterized by low bone mass and deterioration of
bone quality, is a degenerative condition associated with an elevated
risk of fractures and mortality [2]. Previous studies have revealed a
bidirectional relationship between osteoporosis and AD, yet the
underlying mechanisms remain elusive [3]. Recent evidence suggests
that certain bone-derived factors, known as osteokines, play a role in
regulating various physiological and pathophysiological processes,
including brain development and cognitive function [4–6].
Among these osteokines, osteocalcin (OCN) is a hormone-like

peptide primarily synthesized by osteoblasts responsible for bone
formation and mineral density maintenance [7]. OCN also exerts
significant effects on energy homeostasis, improving glucose and
lipid metabolism, as well as on male fertility, muscle function, brain

development, and cognitive function [8–11]. For instance, our recent
research using a transgenic mouse model of AD demonstrated that
OCN improved memory impairment of AD mice by promoting
glycolysis in neuroglia [12]. Additionally, clinical studies have
indicated that decreased blood OCN levels correlate with an
increased risk of cognitive impairment and AD [13–15]. However,
due to the limitations of traditional observational studies, such as
susceptibility to confounding and reverse causation, the results have
been inconsistent [13, 15], and the causal relationship between
circulating OCN levels and AD remains unclear. Moreover, as
abnormalities in glucose and lipid metabolism are closely associated
with AD risk [16, 17], it is yet unknown whether the effects of OCN
on AD are dependent on its role in regulating glucose and/or lipid
metabolism.
Mendelian randomization (MR) is a powerful statistical approach

that utilizes genetic variants as instrumental variables (IVs) to
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investigate causal relationships between different traits [18]. By
capitalizing on the random allocation of genetic variants during
conception, MR can provide robust evidence for causality while
mitigating the biases introduced by confounding and reverse
causation. The MR study design offers two main approaches:
univariable MR (UVMR) and multivariable MR (MVMR). UVMR
allows for the assessment of the causal association between a
specific exposure and its corresponding outcomes, while MVMR
enables the evaluation of potential mediators in these associa-
tions. In light of this, we employed both UVMR and MVMR
methodologies to ascertain the causal relationship between blood
OCN levels and the risk of AD, while also exploring the role of
energy metabolism in this relationship.

METHODS
Data source and study design
In this MR study, single nucleotide polymorphisms (SNPs) derived from
summary statistics of genome-wide association studies (GWAS) were
employed as instrumental variables (IVs). Summary-level data on blood
OCN levels were obtained from three comprehensive GWAS on the human
blood proteome of European descent, utilizing an aptamer-based
approach known as the SOMAscan assay to measure the concentrations
of human blood proteins. The sample sizes for the three GWAS from
Eldjarn et al. [19], Gudjonsson et al. [20], and Sun et al. [21] were 35892,
5368, and 3301, respectively.
For the AD phenotype, summary statistics were obtained from a GWAS

meta-analysis conducted by the International Genomics of Alzheimer’s
Project (IGAP). This meta-analysis incorporated data from various consortia,
including the Alzheimer Disease Genetics Consortium (ADGC), Cohorts for
Heart and Aging Research in Genomic Epidemiology Consortium
(CHARGE), European Alzheimer’s Disease Initiative (EADI), and Genetic
and Environmental Risk in AD/Defining Genetic, Polygenic and Environ-
mental Risk for Alzheimer’s Disease Consortium (GERAD/PERADES). The
IGAP dataset comprised 21,982 AD cases and 41,944 controls of European
descent [22]. Additionally, summary statistics from the latest GWAS
analysis involving familial-proxy AD (FPAD) patients from the UK Biobank
were utilized to further validate the MR results [23].
For the glucose metabolism phenotype, summary-level data on fasting

glucose (FG, N= 200,622), post-challenge 2h-glucose (2h-Glu, N= 63,396),
fasting insulin (FI, N= 151,013), and glycated hemoglobin (HbA1c,
N= 200,622) were obtained from the Meta-Analysis of Glucose and

Insulin-related Traits Consortium (MAGIC) [24]. Summary statistics for lipid
metabolism traits, including low-density lipoprotein cholesterol (LDL-C),
high-density lipoprotein cholesterol (HDL-C), total cholesterol (TC), and
triglycerides (TG), were obtained from a meta-analysis of GWAS conducted
by the Global Lipid Genetics Consortium (GLGC). To avoid potential bias
introduced by sample overlapping, only the summary statistics excluding
UK Biobank samples from the GLGC with up to 930,672 participants of
European descent were used in this study [25]. For detailed information on
the study design, please refer to the original publication (Supplementary
Table S1). This study was performed using publicly available data, and no
separate ethical approval was required.

Instrumental variables selection and mendelian
randomization analysis
To ensure the validity of our MR analysis, three key assumptions must be
satisfied. First is the relevance assumption, which requires IVs to be
strongly associated with blood OCN levels. Second is the independence
assumption, which states that IVs should not be associated with any
confounding factors. Lastly, the exclusivity assumption suggests that IVs
should directly affect the risk of AD through blood OCN (Fig. 1). To meet
these MR assumptions, we selected SNPs that surpassed the genome-wide
significance threshold (P < 5E–08) as IVs. These SNPs were then clumped
based on the linkage disequilibrium (LD) structure from the 1000 Genomes
Project, with a threshold of r2 < 0.01 within 10 Mb for individuals of
European descent. In cases where a corresponding outcome had missing
SNPs, we substituted them with overlapping proxy SNPs that exhibited
complete LD (r2= 1). Additionally, we also calculated the F-statistic value
for each IVs using the formula (β/SE)2 [26]. Meanwhile, the Steiger filtering
test was applied, and only those SNPs with a higher explanatory variance
in the exposure than the outcome was retained [27]. For MVMR analysis,
conditional F-statistics were computed to evaluate the strength of the
genetic instruments after conditioning on other exposures in the model
[28]. This MR study was conducted in compliance with the strengthening
the reporting of observational studies in epidemiology using MR (STROBE-
MR) guideline [29, 30].
The random-effect inverse variance weighted (IVW) model served as the

primary approach for calculating causal estimates. To assess the stability of
the MR results, we conducted six sensitivity analyses, including MR-Egger,
weighted median, weighted mode, simple median, maximum likelihood,
and MR-Pleiotropy RESidual Sum and Outlier (MR-PRESSO) tests. The MR-
Egger regression intercept was used to examine the presence of horizontal
pleiotropy in the MR analysis. The MR-PRESSO method enabled the
identification of outliers and provided a causal estimate without their

Fig. 1 Flowchart and three assumptions to be satisfied in this Mendelian randomization study. The stop sign means genetic variables not
associated with confounding factors and AD. Relevance assumption indicates that IVs are strongly associated with blood osteocalcin levels,
independence assumption indicates that IVs are not associated with confounding factors, and exclusivity assumption indicates that IVs affect
the risk of AD via blood osteocalcin levels directly. AD Alzheimer’s disease, SNP single nucleotide polymorphism, LD linkage disequilibrium,
2h-Glu 2h-glucose post-challenge, HbA1c glycated hemoglobin, HDL-C high-density lipoprotein cholesterol, LDL-C low-density lipoprotein
cholesterol, TG triglycerides, TC total cholesterol, UVMR univariable Mendelian randomization, MVMR multivariable Mendelian randomization,
IGAP International Genomics of Alzheimer’s Project, N number .
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influence. We also performed leave-one-out analysis to evaluate the
stability of the MR estimates, and Cochran’s Q statistic was utilized to
assess heterogeneity. For the MVMR analysis, we iteratively combined the
IVs for blood OCN levels from Eldjarn et al. and glucose metabolism (FG,
2h-Glu, FI, HbA1c) as well as lipid metabolism (LDL-C, HDL-C, TC, TG) as
previously described [31]. After that, we included those putative mediators
(P < 0.05) in the same MVMR model to further assess their role in mediating
the relationship between blood OCN and AD risk. Three statistical
methods, namely IVW, MR-Egger, and Lasso, were employed to calculate
the MVMR estimates. For multiple comparisons adjustment, a P-value less
than 0.017 (0.05/3 exposures) were considered as statistical significance,
while a P-value less than 0.05 as suggestive significance. To perform the
statistical analyses and generate plots, we utilized the following software
packages: TwoSampleMR (V-0.5.6), MR-PRESSO (V-1.0), MendelianRando-
mization (V-0.7.0), MVMR (V-0.4.0), and forestploter (V-0.2.3) in R software
(V-4.2.2) [28, 32–34].

RESULTS
After harmonizing exposure and outcome effects, there were ten,
two, and one valid IVs for blood OCN levels from Eldjarn et al.,
Gudjonsson et al., and Sun et al., respectively. For the ten IVs from
Eldjarn et al. two of them were missing in AD GWAS from IGAP
and only eight IVs were available for MR analysis using the IGAP
dataset. The F-statistic values for the MR study ranged from 30.03
to 448.98, indicating no weak instrument bias. Detailed informa-
tion on each IV is provided in Table 1.
Using the IVW method and summary statistics from Eldjarn

et al., the UVMR results demonstrated a negative association
between genetically determined blood OCN levels and the risk of
AD (IGAP: odds ratio [OR] = 0.83, 95% confidence interval [CI] =
0.72–0.96, P= 0.013; FPAD: OR= 0.81, 95%CI= 0.70–0.93,
P= 0.002) (Fig. 2A). This association was further confirmed using
summary-level data from Gudjonsson et al. and Sun et al. (Fig. 2B,
C). The results obtained from other sensitivity analysis approaches
showed consistent trends, although not all of them reached
statistical significance (Fig. 2). The MR-Egger regression intercept
test indicated no apparent horizontal pleiotropy. The Cochran Q
statistic suggested potential heterogeneity in the AD-proxy
dataset but not in the IGAP datasets (Supplementary Table S2).
There were two potential outliers (rs185320691 and rs241430)
were identified in the MR-PRESSO test using the AD-proxy dataset,
but the results consistently showed an inverse association
between OCN levels and AD risk after correcting the outliers
(OR= 0.82, 95%CI= 0.73–0.93, P= 0.013). Leave-one-out analysis
did not reveal any significant single SNP driving the bias of
estimates, indicating robust results (Fig. 3). In addition, to explore

the biological relevance of OCN in AD, we further used IVs within
gene regions involved in bone homeostasis to validate the effect
of OCN on AD. Four SNPs, including rs1831272, rs2019727,
rs3830076, and rs61803031 previously reported to be associated
with genes suggestively linked to bone homeostasis were used
[35–40] (Table 1). The results consistently suggested an inverse
relationship between OCN levels and AD risk (IGAP: OR= 0.59,
95%CI= 0.38–0.93, P= 0.022; FPAD: OR= 0.77, 95%
CI= 0.62–0.96, P= 0.019) (Supplementary Fig. S1).
Using the IVW approach and summary statistics from Eldjarn

et al. in the MVMR analysis, the results indicated a significant and
consistent association between blood OCN levels and a reduced
risk of AD after adjusting for 2h-Glu (OR= 0.81, 95%CI= 0.72–0.91,
P < 0.001), FI (OR= 0.80, 95%CI= 0.71–0.91, P < 0.001), HbA1c
(OR= 0.83, 95%CI= 0.72–0.96, P= 0.009), HDL-C (OR= 0.83, 95%
CI= 0.75–0.93, P < 0.001), LDL-C (OR= 0.85, 95%CI= 0.76–0.96,
P= 0.007), and TG (OR= 0.87, 95%CI= 0.77–0.97, P= 0.013).
These associations were further validated in the FPAD dataset,
as shown in Table 2. However, using the IGAP dataset, the causal
association between blood OCN levels and AD risk disappeared
after adjusting for FG (OR= 0.88, 95%CI= 0.76–1.02, P= 0.087) or
TC (OR= 0.89, 95%CI= 0.78–1.01, P= 0.066), but not well
replicated in the FPAD dataset with MR-Egger and Lasso methods
(Table 2). The conditional F-statistics were larger than 10 for blood
OCN levels and glucose profiles (2h-Glu, FI, HbA1c, and FG), but
less than 10 for lipid profiles (HDL-C, LDL-C, TG, and TC), indicating
that weak instrument bias may occur in the MVMR analysis for
OCN and lipid profiles (Table 2).
To further assess the combined impact of FG and TC in

mediating the effect of OCN on AD, a MVMR was performed by
putting FG and TC in the same MVMR model. Using the IVW
approach, the MR estimates showed that the protective effect of
OCN on AD was disappeared after adjusting for FG and TC at the
same time dataset (IGAP: OR= 0.97, 95%CI= 0.80–1.17, P= 0.753;
FPAD: OR= 0.98, 95%CI= 0.84–1.15, P= 0.831). The MVMR
estimates obtained from the MR-Egger and Lasso methods were
consistent with the IVW results (Table 3), indicating good stability.
The conditional F-statistics were larger than 10 for blood OCN
levels in MVMR analysis after conditioning on both FG and TC
(Table 3).

DISCUSSION
The association between OCN, cognitive function, and AD has
been a subject of significant research interest over the past

Table 1. Effect sizes of single nucleotide polymorphism associated with blood osteocalcin levels (r2 < 0.01).

SNP CHR BPa EA NEA EAF BETA SE P-VALUE N F-statistic Gene PMID

rs1831272 1 196766611 G A 0.182 −0.057 0.010 6.71E-09 35667 33.62 Near CHFR3 37794188

rs185320691 6 32522515 C G 0.094 0.087 0.013 9.70E-11 35768 41.88 HLA-DRB5 37794188

rs2019727 1 196705584 A T 0.165 0.107 0.010 4.31E-25 35667 107.06 CFH 37794188

rs241430 6 32835043 C T 0.597 0.050 0.008 1.39E-10 35767 41.18 TAP2 37794188

rs3132469 6 31488790 G A 0.810 0.120 0.010 1.29E-34 35768 150.57 MICB-DT 37794188

rs3830076 6 32128467 T C 0.091 0.085 0.013 2.25E-10 35772 40.24 ATF6B/FKBPL 37794188

rs61803031 1 161632464 T C 0.182 −0.055 0.010 3.37E-08 35689 30.48 FCGR3B 37794188

rs76359966 6 32487803 G T 0.659 0.136 0.007 3.48E-77 35768 345.77 Near HLA-DRB9 37794188

rs9263708 6 31127493 C T 0.191 0.084 0.010 8.28E-18 35771 73.88 PSORS1C1 37794188

rs9273429 6 32659679 A G 0.562 0.164 0.008 1.18E-99 35768 448.98 HLA-DQB1 37794188

rs3117116 6 32399240 A G 0.775 0.209 0.023 6.59E-20 5368 84.10 BTNL2/TSBP1-AS1 35078996

rs35617250 1 196710552 T C 0.167 0.166 0.026 8.73E-11 5368 42.26 CFH 35078996

rs71631868 1 196846581 C T NA 0.168 0.031 4.27E-08 3301 30.03 CHFR2 29875488

SNP single nucleotide polymorphism, CHR Chromosome, BP Base position, EA Effect allele, NEA Non-effect allele, SE Standard error, N Number, NA Not available.
abased on GRCh38.
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decade, revealing some observed associations. In this MR study,
utilizing summary statistics from two different AD studies, we
further strengthen the evidence by demonstrating a causal
relationship between genetically predicted blood OCN levels
and a decreased risk of AD. These findings suggest a protective
role of OCN in the development of AD. Furthermore, our MVMR
analysis results indicate that the protective effect of OCN on AD
may primarily rely on its regulation of FG and TC levels.
OCN, a crucial peptide derived from osteoblasts, is known to

play a role in bone remodeling and is closely linked to bone
mineral density (BMD) [41, 42]. Clinical studies have shown that
individuals with osteopenia or osteoporosis are at a higher risk of
developing AD [43, 44]. Moreover, lower blood OCN levels have
been associated with brain microstructural changes and poorer
cognitive function in elderly adults [13, 45]. Consistent with these
findings, our MR analysis demonstrates an inverse relationship
between genetically determined blood OCN levels and the risk of
AD. Additionally, a recent animal study from our research group
has shown that OCN can improve cognitive impairment in an AD
transgenic mouse model (APP/PS1 mice) [12]. However, it is worth
noting that some studies have suggested increased blood OCN
levels in AD patients [15, 46]. It remains unclear whether this is a
compensatory response of the bone to combat underlying
diseases, similar to the situations observed in obesity and diabetes
[47, 48], or if there are other unidentified mechanisms.
Dysfunction in both glucose metabolism and lipid metabolism

has been consistently associated with an increased risk of AD
[16, 17, 49]. For example, patients with Type 2 diabetes (T2D) or

elevated levels of TC and LDL-C were at a higher risk of AD
[50, 51]. A cohort study reported an association between early-
onset AD and higher levels of LDL-C [52]. Similarly, a systematic
review involving nearly 6500 AD patients revealed elevated LDL-C
levels in individuals with AD [53]. Another meta-analysis by Liu
and colleagues with up to 5948 individuals also showed that
blood TC and LDL-C levels were tightly associated with mild
cognitive impairment and AD [50]. Pathologically, increased blood
levels of LDL-C, TC, TG, and decreased levels of HDL-C have been
linked to an accumulation of β-amyloid plaques in the hippo-
campus and adjacent temporal lobe of AD patients [54].
Furthermore, previous MR studies have demonstrated a positive
association between blood FG, TC and LDL-C levels and the risk of
AD [55, 56], while lowering blood glucose and LDL-C levels has
shown a causal effect in reducing the risk of AD [57, 58].
To evaluate the role of glucose and lipid metabolism in the

causal relationship between OCN and AD, we conducted an MVMR
analysis. Our findings indicate that the inverse association
between blood OCN levels and AD risk is diminished after
adjusting for FG and TC, suggesting that OCN may ameliorate AD
through its regulation of both FG and TC. Indeed, population
studies have shown a negative correlation between serum OCN
levels, FG, and TC [59]. Our previous meta-analysis involving
23,381 participants also revealed a negative correlation between
blood levels of OCN and FG and HbA1c [60]. Moreover, animal
studies have further revealed that OCN treatment significantly
reduces serum FG and TC levels in both diabetic and non-diabetic
rats [61].

Fig. 2 Effects of blood osteocalcin levels on the risk of Alzheimer’s disease. Using two different summary-level data on AD, genetically
predicted blood osteocalcin levels were associated with a decreased risk of AD via seven different statistical approaches. A–C Showed the MR
estimates using summary-level data on blood osteocalcin from Eldjarn et al. (A), Gudjonsson et al. (B), and Sun et al. (C), respectively. AD
Alzheimer’s disease, IVW inverse variance weighted, SNP single nucleotide polymorphism, MR Mendelian randomization, MR-PRESSO
MRPleiotropy RESidual Sum and Outlier, OR odds ratio, IGAP International Genomics of Alzheimer’s Project, N number.
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Fig. 3 Scatter plots and leave-one-out plots for the causal association between blood osteocalcin levels and Alzheimer’s disease.
A, B Showed the SNPs’ effect on blood osteocalcin levels (Eldjarn et al.) and AD using GWAS summary-level data from IGAP and study with
familial-proxy AD. The slope indicated the causal estimates for each method. C, D Showed the leave-one-out plots for the causal effect of
blood osteocalcin levels on AD. AD Alzheimer’s disease, IVW inverse-variance weighted, MR Mendelian randomization, SNP single nucleotide
polymorphism, IGAP International Genomics of Alzheimer’s Project.
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The underlying mechanism behind the beneficial role of OCN in
reducing the risk of AD through the amelioration of glucose and
lipid metabolism, particularly by lowering FG and TC levels, is
complex. There are reports linking dysregulated lipid metabolism
to AD. For example, elevated cholesterol levels within the lipid
rafts of neuron cell membranes can enhance the activity of key
enzymes involved in amyloid protein precursor (APP) cleavage,
such as β-secretase/β-site amyloid precursor protein cleavage
enzyme-1 (BACE-1) and γ-secretase, leading to increased produc-
tion of β-amyloid [62–64]. Additionally, the neurotoxic cholesterol
oxidation product 27-hydroxycholesterol has been implicated in
the pathogenesis of AD [65]. Therefore, regulating lipid metabo-
lism may be an important approach to reduce the development of
AD. It is worth noting that OCN stimulates the release of
adiponectin, an important adipokine that can have a beneficial
effect on lipoprotein metabolism, including TC reduction [66].

Meanwhile, our MVMR results revealed that the causal effect of
OCN on AD was also partially dependent of glucose metabolism,
especially for FG. Numerous studies have showed that impaired
FG was related to increased cerebral beta-amyloid accumulation
and atrophy, and associated with a higher risk of AD [67, 68]. It is
reported that the levels of glucose transporter-3 in AD patients
were decreased, leading to impaired glycolytic flux, which was
related to the severity of AD pathology [69]. In contrast, studies in
both humans and animals have showed that blood osteocalcin
levels were associated with improved glucose metabolism and
insulin sensitivity [60, 70, 71]. Furthermore, in our recent mouse
study, we discovered that OCN can improve cognitive defects in
AD mice by promoting glycolysis in neuroglia [12]. Taken together,
these findings suggest that both glucose and lipid metabolism
may play an essential mediating role in the causal pathway
between OCN and AD.

Table 2. MVMR results of blood osteocalcin on the risk of AD after adjustment of each mediator.

Exposure Mediators Method AD (IGAP) AD (with familial-proxy)

SNP (N) OR(95%CI) P Conditional F-statistics SNP (N) OR(95%CI) P Conditional
F statistics

Blood osteocalcin levelsa 2h-Glu IVW 23 0.81 (0.72–0.91) <0.001 31.48 24 0.81 (0.72–0.91) <0.001 31.48

Egger 23 0.82 (0.72–0.92) 0.001 24 0.81 (0.71–0.92) 0.001

Lasso 23 0.81 (0.72–0.92) <0.001 24 0.81 (0.72–0.90) <0.001

FG IVW 102 0.88 (0.76–1.02) 0.087 13.83 105 0.86 (0.77–0.96) 0.008 13.45

Egger 102 0.80 (0.67–0.94) 0.008 105 0.86 (0.77–0.96) 0.007

Lasso 102 0.85 (0.75–0.96) 0.010 105 0.87 (0.80–0.95) 0.002

FI IVW 52 0.80 (0.71–0.91) <0.001 22.06 54 0.81 (0.73–0.91) <0.001 21.56

Egger 52 0.83 (0.71–0.95) 0.009 54 0.83 (0.74–0.93) 0.001

Lasso 52 0.81 (0.72–0.91) <0.001 54 0.83 (0.76–0.91) <0.001

HbA1c IVW 95 0.83 (0.72–0.96) 0.009 15.26 99 0.83 (0.74–0.92) <0.001 14.69

Egger 95 0.83 (0.72–0.96) 0.009 99 0.83 (0.75–0.92) <0.001

Lasso 95 0.82 (0.73–0.92) <0.001 99 0.81 (0.75–0.88) <0.001

HDL-C IVW 798 0.83 (0.75–0.93) <0.001 2.65 844 0.83 (0.77–0.89) <0.001 2.59

Egger 797 0.83 (0.73–0.94) 0.004 843 0.83 (0.77–0.90) <0.001

Lasso 797 0.82 (0.75–0.89) <0.001 843 0.85 (0.80–0.90) <0.001

LDL-C IVW 554 0.85 (0.76–0.96) 0.007 7.94 577 0.85 (0.78–0.92) <0.001 7.48

Egger 552 0.85 (0.74–0.97) 0.020 575 0.85 (0.78–0.92) <0.001

Lasso 552 0.85 (0.77–0.94) 0.001 575 0.90 (0.84–0.96) 0.002

TG IVW 642 0.87 (0.77–0.97) 0.013 2.78 680 0.89 (0.82–0.96) 0.003 2.70

Egger 642 0.82 (0.71–0.94) 0.005 680 0.86 (0.78–0.94) 0.002

Lasso 642 0.84 (0.76–0.93) <0.001 680 0.89 (0.84–0.95) <0.001

TC IVW 713 0.89 (0.78–1.01) 0.066 1.99 748 0.89 (0.82–0.98) 0.016 1.96

Egger 713 0.87 (0.73–1.03) 0.098 748 0.90 (0.82–0.98) 0.021

Lasso 713 0.84 (0.76–0.94) 0.002 748 0.94 (0.87–1.01) 0.090

MVMR Multivariable Mendelian randomization, IGAP International Genomics of Alzheimer’s Project, IVW Inverse variance weighted, AD Alzheimer’s disease, 2h-Glu
2h-glucose post-challenge, FG Fasting glucose, FI fasting insulin, HbA1c Glycated hemoglobin, HDL-C High-density lipoprotein cholesterol, LDL-C Low-density
lipoprotein cholesterol, TG Triglycerides; TC Total cholesterol, P P-value, N Number, SNP Single nucleotide polymorphism, OR Odds ratio, CI Confidence interval.
asummary-level data from Eldjarn et al.

Table 3. MVMR results of blood osteocalcin on the risk of AD after adjustment of FG and TC.

Exposures Method AD (IGAP) AD (with familial-proxy)

SNP (N) OR(95%CI) P Conditional
F statistics

SNP (N) OR(95%CI) P Conditional
F statistics

Osteocalcin
levelsa

(FG and TC)

IVW 798 0.97(0.80–1.17) 0.753 32.24 839 0.98(0.84–1.15) 0.831 32.37

MR-Egger 790 0.97(0.81–1.18) 0.790 831 0.98(0.84–1.15) 0.821

Lasso 790 0.89(0.80–0.99) 0.032 831 0.96(0.89–1.03) 0.230

MVMR Multivariable Mendelian randomization, IGAP International Genomics of Alzheimer’s Project, IVW Inverse variance weighted, AD Alzheimer’s disease,
FG Fasting glucose, TC Total cholesterol, P P-value, N Number, SNP Single nucleotide polymorphism, OR Odds ratio, CI Confidence interval.
abased on summary-level data from Eldjarn et al.

X. Guo et al.

6

Translational Psychiatry          (2024) 14:205 



LIMITATIONS
There are several limitations to consider in this study. Firstly, we
employed a relatively relaxed r2 threshold (=0.01) to select a
sufficient number of instrumental variables (IVs) for MR analysis,
which may have led to an overestimation of the causal association.
Secondly, although the MR estimates from different approaches
showed consistent trends, some of them did not reach statistical
significance, possibly due to the small sample size for blood OCN
levels. Thirdly, the Cochran Q test revealed potential heterogeneity.
However, the results of MR-PRESSO test consistently showed an
inverse association between OCN levels and AD after correcting the
outliers. Fourthly, despite the genetic instruments strongly predict-
ing blood OCN levels in the UVMR analysis, the MVMR analysis may
remain susceptible to bias due to conditionally weak instruments,
diminishing the power of MVMR in estimating causal effects. Thus,
the potential mediating influence of energy metabolism, especially
lipid profiles, on the causal pathways linking blood OCN levels with
AD in our study requires further confirmation. Finally, the findings
of this study were based on individuals of European descent, and
further validation in other racial/ethnic groups is needed.

CONCLUSION
In summary, this MR study provides evidence that elevated blood
OCN levels are associated with a decreased risk of AD through the
regulation of FG and TC, indicating a potential beneficial role of OCN
in preventing AD. However, it is essential to conduct additional
studies in both human populations and animal models to verify these
causal associations and fully elucidate the underlying mechanisms.
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