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Integrative omics analysis reveals epigenomic and
transcriptomic signatures underlying brain structural deficits in
major depressive disorder
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Several lines of evidence support the involvement of transcriptomic and epigenetic mechanisms in the brain structural deficits of
major depressive disorder (MDD) separately. However, research in these two areas has remained isolated. In this study, we
proposed an integrative strategy that combined neuroimaging, brain-wide gene expression, and peripheral DNA methylation data
to investigate the genetic basis of gray matter abnormalities in MDD. The MRI T1-weighted images and Illumina 850 K DNA
methylation microarrays were obtained from 269 patients and 416 healthy controls, and brain-wide transcriptomic data were
collected from Allen Human Brain Atlas. The between-group differences in gray matter volume (GMV) and differentially methylated
CpG positions (DMPs) were examined. The genes with their expression patterns spatially related to GMV changes and genes with
DMPs were overlapped and selected. Using principal component regression, the associations between DMPs in overlapped genes
and GMV across individual patients were investigated, and the region-specific correlations between methylation status and gene
expression were examined. We found significant associations between the decreased GMV and DMPs methylation status in the
anterior cingulate cortex, inferior frontal cortex, and fusiform face cortex regions. These DMPs genes were primarily enriched in the
neurodevelopmental and synaptic transmission process. There was a significant negative correlation between DNA methylation
and gene expression in genes associated with GMV changes of the frontal cortex in MDD. Our findings suggest that GMV
abnormalities in MDD may have a transcriptomic and epigenetic basis. This imaging-transcriptomic-epigenetic integrative analysis
provides spatial and biological links between cortical morphological deficits and peripheral epigenetic signatures in MDD.
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INTRODUCTION
Altered gray matter volumes (GMV) in key cognitive and
emotional brain regions, such as the medial and inferior prefrontal
cortex (MPFC, IFC), the dorsolateral prefrontal cortex (DLPFC), and
the anterior cingulate cortex (ACC) have consistently been
implicated in major depressive disorder (MDD) [1–4]. Genetic
and environmental factors play a significant role in shaping gray
matter (GM) structures and contribute to the GM abnormalities in
MDD [5, 6]. The regional GM abnormalities of the cerebral cortex
are highly heritable and result from a complex genetic architec-
ture involving multiple biological processes [7]. Genome-wide
association studies (GWAS) have identified hundreds of genomic
loci as genetic susceptibility factors in the pathogenesis of MDD
[8]. Risk genotypes appear to be associated with diminished
neurotransmitter uptake at synaptic terminals, resulting in
decreased GMV in brain regions involved in emotion processing,
particularly the prefrontal cortex and cingulate cortex in MDD
[9, 10]. Genotype is not the sole determinant of phenotypes in the

disorder [8]. In fact, genetic variation appears to explain only a
small proportion of GMV alterations in MDD [11]. Risk genes may
contribute to GMV reduction through their effects on gene
expression, which more directly reflect the genetic processes
responsible for GM structure [12, 13]. Further, epigenetic
processes, such as DNA methylation, influence if and how genes
are expressed and may mediate the effects of gene-gene or gene-
environment interactions in MDD [11, 14]. They are also
considered major mechanisms for neural plasticity [11, 15]. There
is converging evidence to suggest that epigenetic effects
contribute to GM atrophy in prefrontal cortex regions in MDD
[16, 17]. Variations in DNA methylation have been shown to
differentially correlate with cortical thickness in frontal, temporal,
parietal, and occipital brain regions in MDD [18]. Because MDD
arises from a complex genetic landscape involving multiple genes,
previous neuroimaging studies involving DNA methylation of
specific disease mechanisms may have limited relevance to the
disorder [5, 19, 20]. A more comprehensive understanding of the
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epigenetic effects can be obtained through epigenomic studies.
Therefore, integrating transcriptomic, epigenomic, and neuroima-
ging data may provide a more comprehensive in-vivo perspective
of genetic influences on GMV alterations in MDD.
The development of gene expression brain atlases and

molecular arrays has significantly advanced the field of imaging
transcriptomics in recent years [12]. The integration of transcrip-
tomic and neuroimaging data provided by these atlases offers a
more comprehensive framework for genomic and whole-brain
analyses and allows for the testing of gene-brain region
hypotheses and potential mechanisms in mental illness [21–23].
The publicly accessible Allen Human Brain Atlas (AHBA) maps
regional gene expression from postmortem samples across a
healthy brain, providing a spatial brain atlas of gene expression at
the level of mRNA transcription [12]. The AHBA has been used in
MDD studies by integrating the brain-wide transcriptomic
microarray and statistical brain mappings [21, 24, 25]. A recent
study found that neuronal-specific transcriptional changes, which
are involved in synaptic transmission and major monoamine
neurotransmitter systems, account for cortical structural differ-
ences in patients with MDD compared to healthy controls [26–28].
Another recent meta-analysis found that GMV changes in MDD
were linked with mRNA expression of genes involved in neuronal
development, metabolism, immune response, and transmem-
brane transport [28]. It is important to note that this meta-analysis
only utilized coordinates from published studies and did not
include individual subject data. This could lead to limitations and
inaccuracies in the results [29]. Notably, imaging transcriptomic
analysis is a framework to identify spatial correlation patterns
across regions but not across individuals [21, 25, 26]. Moreover, it
is also necessary to understand how such general transcriptional
correlates of neuroimaging variations represent region-specific
molecular underpinnings of brain structural alterations [28].
Identifying region-specific molecular mechanisms underlying
GMV alterations in MDD may have important clinical implications
in developing novel imaging phenotype guidance for precision
medicine approaches [30].
The integration of DNA methylation arrays with gene expression

brain atlases like the AHBA provides valuable insights into the role of
epigenomics in the regulation of gene expression and its effects on
GMV alterations in MDD. Additionally, the moderate correlation
between peripheral DNA methylation and brain DNA methylation
indicates that peripheral DNA methylation could be used as a proxy
for brain DNA methylation, providing a more accessible and cost-
effective method for epigenomic analysis [11, 31, 32]. Converging
evidence suggests that epigenetic changes are associated with gray
matter atrophy in the key brain regions of MDD [16, 17, 33]. The
traditional research is based on single or couples of genes to analyze
the correlation between DNA methylation and brain structural
changes in MDD [5, 19, 20]. Few studies have integrated the
associations among brain imaging phenotypes, gene expression, and
DNA methylation at the genome-wide level, which can bring
together multi-omics data to offer a more complete understanding
of how molecular alterations at the microscale level contribute to
macroscale brain abnormalities in MDD.
In this study, we aim to shed light on the molecular

underpinnings of GMV alterations in MDD by conducting a
comprehensive analysis. First, we compare GMV between patients
with MDD and HC. Next, we use the AHBA to identify genes whose
mRNA expression is spatially correlated with GMV changes.
Subsequently, we utilize DNA methylation arrays to identify
differentially methylated positions (DMPs) in MDD compared to
HC. We then focus on DMPs within the biological pathways
enriched for genes that are related to GMV changes. Finally, we
explore the links between multiple DNA methylation changes and
GMV alterations in individual patients with MDD. To gain further
insight, we analyze the relationship between DNA methylation
and gene expression across genes to better understand how

epigenetic modifications impact GMV in the disorder. Based on
the findings from the imaging transcriptomic and imaging
epigenetic studies mentioned above, we hypothesized that GMV
changes in MDD may have a transcriptomic and epigenetic basis.

MATERIALS AND METHODS
Participants
We recruited 269 patients with MDD and 458 healthy controls (HC). The
patients with MDD were recruited from the inpatient department of the
Shenyang Mental Health Center and the outpatient clinic of the
Department of Psychiatry of the First Affiliated Hospital of China Medical
University in Shenyang, China. Participants over 18 years old provided
written consent themselves. For those under 18, a parent or legal guardian
provided written informed consent. This study was approved by the Ethics
Committee of the first affiliated Hospital of China Medical University.
Details about all participants’ demographic and clinical information,
including diagnostic procedures and clinical ethics, are presented in the
Supplementary Materials.

Image acquisition and MRI processing
The details of Structural MRI scanning parameters and acquisition require-
ments for participants are presented in Supplementary Materials T1-
weighted images were preprocessed using the Computation Anatomy
Toolbox (CAT 12; Christian Gaser; Department of Psychiatry, University of
Jena) [34] implemented in Statistical Parametric Mapping (SPM 12; Wellcome
Department of Cognitive Neurology, University of London, UK) for voxel-
based morphometry(VBM). The HCP (https://humanconnectome.org/) atlas
was used as the template [35]. This parcellation was used to extract mean
values of regional gray matter volume density within all ROIs as ROI-wise
GMV for each subject, which were used in previous studies [36, 37]. ROI-wise,
GMV was used to investigate abnormalities in each brain region in MDD.
Details are presented in the Supplementary Materials.

GMV comparison between groups
To identify GMV abnormalities in MDD, we performed a general linear
model (GLM) and t-test between MDD and HC groups for each brain
region, with age, gender, education, medication status, and total
intracranial volume (TIV) as covariates. Medication status was included as
a covariate since 131 MDD participants (48% of the MDD group) were
taking antidepressants, and 8 patients (0.02% of the MDD group) were
taking antipsychotic drugs. Abnormal GMV regions were selected using a
significance level of p < 0.05, FDR corrected. An overview of the study is
presented in Fig. 1.

Imaging transcriptomic analysis using GMV changes and gene
expression
Transcriptional profiles were obtained from 3702 brain tissue samples of
6 donors from the Allen Human Brain Atlas (AHBA) website
(https://human.brain-map.org/). The expression data underwent pre-
processing following five previously reported major steps [38], with
further details provided in the Supplementary Methods. The examina-
tion of transcriptome-neuroimaging relationships across different
groups was limited by the use of gene expression profiles from only
six postmortem healthy human brains in the AHBA. Additionally, the
AHBA dataset included data for the right hemisphere of the brain for
only two participants, which restricts the representation of the entire
brain in relation to the transcriptional changes and MDD-related GMV
alterations. Using partial least squares (PLS) regression, as previously
performed in other imaging transcriptomics studies [24, 26], we
examined the spatial associations between the T-statistic map of GMV
alterations and gene expression values in the HCP Atlas left hemisphere
(180 regions). Then, we selected the first component in the PLS
regression (PLS1) genes with weights |Z| > 3, p < 0.05 corrected as
candidate genes whose spatial expression correlated with GMV
abnormalities in MDD. The details were provided in the Supplementary
Materials.

Principal component regression between individual GMV and
DNA methylation
The Infinium Human Methylation850 (850 K) microarray was used to assess
DNA methylation levels. The DNA methylation levels were expressed as β-
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values at the targeted CpG site. We presented the details of DNA
methylation preprocessing in the Supplementary Methods. we performed
a general linear model (GLM) and t-test for each CpG site with age, gender,
education, and medication as covariates to identify differentially methy-
lated CpG positions (DMPs) in MDD compared to HC. We then selected the
DMPs of genes as features from the pathways in which the overlapped
genes between PLS1 genes and DMPs genes enriched. The feature
selection processing details were described in the Supplementary
Methods.
We used principal component regression (PCR), which combined

principal component analysis (PCA) and linear regression to examine
the correlation between regional GMV and DMPs across all patients
with MDD. Then, PCA was calculated to reduce the high dimensions of
DMPs features. The top components that explained up to 80% of the
accumulated variance were selected. Then, we used a stepwise
multiple linear regression (SMLR) model to test the associations

between GMV changes and DMPs components within the MDD group.
The significant level of the SMLR models was set at p < 0.05, and FDR
correction was used to control the false positive rate. We also
performed leave one out cross validation (LOOCV) to validate DMPs
features prediction for GMV in patients with MDD. The details of the
LOOCV processing were presented in the Supplementary Materials. We
selected top-weighted DMPs in GMV-related DMPs components and
used Spearman linear correlation to calculate the associations between
DMPs methylated states and gene expression of their annotated genes
in each GMV-changed region. The details were presented in the
Supplementary Materials. We also validated the consistent methylation
status between blood and brain in the Top DMPs using online
tools (blood–brain DNA methylation comparison tool, https://
epigenetics.essex.ac.uk/bloodbrain/, and blood–brain epigenetic con-
cordance; BECon; https://redgar598.shinyapps.io/BECon/) provided in
previous studies [39, 40].

Fig. 1 Schematic overview of the workflow in this study. a The multi-omics data were from 269 patients with MDD, 416 healthy controls,
and 6 postmortem donors from AHBA(http://human.brain-map.org). b Peripheral DNA methylation was tested by illumine 850 K chip from 129
MDD and 176 HC, and abnormal CpG sites in the promoter region were identified in MDD compared to HC; T1 images and gray matter
volume were collected from all participants; the gray matter volume changes in MDD were tested; Brainwide gene expression was
coregistered to HCP atlas to produce a 180(regions) × 10,027(genes) gene expression matrix. c Partial least squares (PLS) regression was then
used to identify imaging transcriptomic associations. The DNA methylation of CpG sites in overlaps between imaging transcriptomic
associated genes and methylated changes genes were selected. Finally, principle component analysis (PCA) features reduction and stepwise
multiple linear regression (SMLR) were performed to find the associations between regional GMV changes and DNA methylation changes
across individuals with MDD. We also test the relationships between epigenetic changes and gene expressions across GMV-related genes.
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GMV, DMPs, clinical information correlation analysis
We also test whether GMV changes and DMPs components were
associated with clinical symptoms in patients with MDD. Using the SMLR
regression model, we examined the relationship between GMV alterations,
DMPs, and clinical measures such as the Hamilton Depression Rating Scale
(HAMD) total scores and Hamilton Anxiety Rating Scale (HAMA) total scores
in patients with MDD. The significant level was set at p < 0.05.

RESULTS
GMV abnormalities and GMV spatial expression associated
genes in MDD
The schematic overview of the workflow in this study is shown in
Fig. 1. The detailed demographic and clinical data of the
participants are summarized in Table S1. We first found patients
with MDD had significantly decreased GMV in left hemisphere
frontal cortex regions, mainly in the inferior frontal cortex (IFG),
dorsolateral prefrontal cortex (DLPFC), anterior cingulate cortex
(ACC), and visual cortex regions in the fusiform face complex
region (FFC) and posterior inferotemporal region (PIT) (p < 0.05,
FDR corrected, Table S2, Fig. S1). The GMV of these regions was
shown to decrease in patients (p < 0.05) when considering
medication effects as a covariate (Table S3). The GMV changes
of these regions in the right hemisphere were also presented in
Supplementary Table S4.
We then used PLS regression to determine differences between

regional GMV in the left hemisphere and gene expressions. The
first component (PLS1) is defined as the spatial map that captures
the greatest fraction of total gene expression variance across
cortical areas. The PLS1, with explained 23.8% of the variance,

showed spatial correlations with GMV changes (Pspin= 0.008, this
permutation test randomly “spins” the GMV map to account for
spatial correlation, Fig. 2A, Fig. 2B). We found that the PLS1
weighted gene expression map was spatially correlated with the
case–control t-map (Pearson’s r= 0.48, p < 0.0001, Fig. 2C). We
ranked genes by the normalized weights of PLS1 based on
permutation tests and found 871 PLS1+ (Z > 3) and 561 PLS1−
(Z <−3) (all p < 0.05 FDR corrected) positively (or negatively)
weighted gene expressions were overexpressed (or under-
expressed) as increased (or decreased) regional changes in GMV,
respectively. The Top PLS genes associated with GMV changes are
shown in Fig. 2D.

The overlap of DMPs genes and PLS genes
In total, 316 genes constituted the overlapped genes between
1432 PLS gene and 2346 DMPs genes (Fig. 3A). The delta beta
values of DMPs in the overlapped genes were shown in Fig. 3B.
The overlapped genes were significantly enriched in the biological
processing mainly involving in the neurodevelopmental, neuro-
transmitter, cellular response to stimulus and metabolic process,
most of which were consistent with the pathways enriched by
only PLS genes and by meta enrichment analysis (Figs. 3C, S2, S3
and Table S5, S6).

DNA methylation and GMV associations in MDD
We used PCA dimensionality reduction for those DMPs in the
overlap genes and finally got 25 components (Comp) with an
accumulated explained variance of 80.1% (Fig. S4). All of the 25
components were used in SMLR models to predict GMV in

Fig. 2 Imaging transcriptomics analysis of abnormal GMV in MDD. a Changes in regional GMV in the left hemisphere form t-test between
MDD and HC (upper) and A weighted gene expression map of regional PLS1 scores in the left hemisphere(lower). b A descending curve of
variance explanation ratios in each component from PLS regions mode. The PLS1 had the highest variance explanation ratio, 23.8, and the
weights of PLS1 were correlated with GMV by spatial correction (Pspin= 0.008). c A scatterplot of regional PLS1 scores (a weighted sum of
10,027 gene expression scores) and regional changes in GMV (Pearson’s r= 0.485, p < 0.0001). d Ranked PLS1 loadings GMV-related genes
positively (i.e., ADIPOR1: Pearson’s r= 0.26, p= 0.0015; GREM1: Pearson’s r=−0.30, p= 0.0003).
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patients. The regression model predicted GMV values were
significantly positively related to the true GMV values in FFC, IFG
(p47r), and ACC (p24) regions (Fig. 4A, Table S7). Moreover, the top
25 DMPs components were selected as features to predict GMV
individually. LOOCV was performed, and Pearson correlation
coefficients results showed significant correspondences between
real GMV and predicted GMV values in IFG (r= 0.22, p= 0.012),
ACC (r= 0.27, p= 0.0012), FFC (r= 0.1854, p= 0.035) across
individual patients with MDD (Fig. S5). We found 17 DMPs with
the Top weights (weights > 0.2) in PCA components, which were
significantly correlated with GMV in IFG, ACC, and FFC. The 17
DMPs and their annotated genes are present in Fig. 4B and Table
S8. These associations between DMPs and GMV showed the
region-specific patterns among IFG, ACC, and FFC. The DMPs in
genes, including PPARA, ADIPOR1, NTRK3, GRB2, CACNG3, CRHBP,

and HTR1A, had higher weights that are correlated with GMV in
IFG. Meanwhile, the DMPs in genes, including TMOD1, SPRY4,
TIPARP, DIAPH1, SRC, YWHAZ, and CHRM1, had higher weights
that are correlated with GMV in ACC. While the DMPs in genes
including CHRM1, SNPH, EFHD1, and DDX10 had higher weights
that are correlated with FFC (Fig. 4B).
Moreover, we found the methylation status of 11 top weights

DMPs was significantly negatively correlated with gene expression
in the IFG region (r=−0.76, p= 0.003, permutation test
p= 0.0015, Fig. 5A). We also extracted the regional gene
expression of the 11 Top DMPs genes and found that 8 PLS+
genes were significant positively correlated with GMV changes in
MDD (r= 0.27, p= 0.001) and 3 PLS− genes were significant
negatively correlated with GMV changes t values (r=−0.20,
p= 0.016) (Fig. 5B). The consistent hypomethylated beta values of

Fig. 3 Pathway meta enrichment of Aberrant DM genes and PLS genes. a There were 316 overlap genes (purple lines) between 2346 DMPs
genes (red loop) and 1432 PLS genes (blue loop). b The delta methylation beta values of all the DMPs were showed: gray dots: DMPs not in
PLS genes; blue dots: abnormal DMPs (MDD < HC) in overlap genes; red dots: abnormal DMPs (MDD > HC) in overlap genes. c The pathways
were enriched by the 316 overlap genes.
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the Top DMPs in blood and PFC region were validated (Table S10).
The details are presented in Supplementary Table S9, Figs. S6, S7,
and S8.

GMV and DNA methylation changes correlated with
symptoms of patients
We found a statistically significant model for predicting HAMD
scores using methylation features (F= 6.255, p= 0.0026) but
found no significant model for predicting HAMD scores using GMV
features or relating HAMA scores with either GMV or DMPs
features.

DISCUSSION
In this study, we investigated the genetic underpinnings of MDD-
related GMV changes by integrating multiple omics data sources,
including transcriptome and DNA methylation data. We observed
that significantly decreased GMV were spatially associated with
gene expression mainly involved in neural development, neuro-
transmitter function, and metabolic processes. Moreover, the
DMPs were significantly correlated with regional GMV changes
within individual patients. Furthermore, we observed a strong
negative correlation between the DNA methylation status of DMPs
associated with GMV changes and gene expression in IFG. These

findings reveal complex associations among transcriptomic
features, epigenetic changes, and regional-specific structural
variations in MDD and expand our understanding of the genetic
mechanisms underlying brain structural deficits in MDD.
Our findings showed that patients with MDD had decreased

GMV in ACC, IFG, FFC, PIT, and DLPFC. The findings of GMV
abnormalities in prefrontal regions (DLPFC, ACC, and IFG) were in
line with those detected in the previous meta-analysis, which
summarized the most robust GMV reductions in MDD [3]. It is
notable that we validated all of these altered GMV while
considering medication effects as covariates. We used AHBA gene
expression profiles and the multivariate PLS analysis, to identify
genetic correlates of global structural variations in MDD and found
that genes associated with GMV changes in MDD are mainly
involved in neurodevelopmental, cellular, and metabolic pro-
cesses. The enriched biological pathways were mostly consistent
with previous transcriptional findings based on a meta-analysis of
GMV changes [28]. Neurodevelopment-related processes, such as
neuron projection development, head development, regulation of
nervous system development, and regulation of anatomical
structure size, were implicated in the pathogenesis of MDD.
Previous GWAS studies also observed that neuron projection
development and neuron projection terms were enriched by
MDD-risk genes [8, 41]. Regulation of nervous system

Fig. 4 Abnormal methylated genes associated with regional GMV changes in MDD. a The associations between components of altered
methylated genes and GMV changes in MDD, including component 2 and 22 are correlated with GMV in IFG (p47r) (regression F= 5.97,
p= 0.03 FDR corrected, predicted value correlation r= 0.30, p < 0.0001), component 12, 17, 20, and 23 are correlated with GMV in ACC (p24)
(regression F= 5.22, p= 0.006 FDR corrected, predicted value correlation r= 0.379, p < 0.0001), component 7, 9, and 25 are correlated with
GMV in FFC (regression F= 4.65, p= 0.04 FDR corrected, predicted value correlation r= 0.334, p < 0.0001). b The top DMPs genes with the
highest sum of weights in components associated with each of the regions were summarized. The distinct pattern of epigenetic changes
associated with GMV was shown.
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development and head development were also found to be
related to the neuronal cell body in imaging transcriptional studies
of MDD [28].
To our knowledge, this is the largest dataset combining MRI and

epigenome-wide DNA methylation study. We used high-
throughput DNA methylation microarray data and performed a
data-driven analysis to identify epigenetic features associated with
GMV changes in MDD. The imaging transcriptomic analysis was
used as the feature selection strategy to identify brain-wide GMV
change-related genes and further reduce the high dimensions of
the candidate CpG sites. The imaging transcriptional analysis is a
versatile method for feature selection in our previous imaging
genetic studies [42, 43]. In addition, the PCR method could
examine both common and region-specific DMPs associated with
GMV changes. Besides, we also found that enriched biological
processes of genes with DMPs and those detected in the imaging-

transcriptomic spatial correlations overlapped in neurodevelop-
ment, response to stimulus, and energy metabolic processes. The
associations between methylation of DMPs and GMV changes
across individuals could also serve as a validation for genetic
features identified through spatial imaging-transcriptomic regres-
sion across different brain regions. Thus, the proposed analysis
pipeline in this study may prove to be valuable in revealing
associations among GMV changes, gene expression, and DNA
methylation abnormalities in MDD. In this study, we also observed
that the DNA methylation status of DMPs was significantly
associated with patients’ HAMD total scores. These findings
suggest that epigenetic changes in blood, which were related to
brain structural deficits, may serve as a potential biomarker for
predicting clinical symptoms in MDD patients.
In our study, we identified region-specific epigenetic features

associated with GMV changes. Concretely, genes including PPARA,

Fig. 5 Associations of Top weighted DMPs methylation and gene expression in IFG. a The averaged methylation beta values of the top
DMPs with higher weights in components associated with GMV in IFG were found to be negatively correlated with their averaged gene
expressions in IFG. b The 5000 times permutation test was performed to show the correlation coefficients between randomized DMPs
methylation and gene expressions in IFG. The distributions of the permutations were present as blue bars. The one-way cumulative
probability was set permutation p value (p= 0.0015) and shown in red color. c The gene expressions mapping (left brain map) of top DMPs
genes with PLS+ (PLS z values > 0) were positively correlated with t maps (middle brain map) of GMV changes in MDD (r= 0.27, p= 0.001); the
gene expressions mapping(right brain map) of top DMPs genes with PLS− (PLS z values < 0) were negatively correlated with t maps (middle
brain map) of GMV changes in MDD (r=−0.20, p= 0.016).
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ADIPOR1, NTRK3, GRB2, CACNG3, CRHBP, and HTR1A, which are
involved in metabolism, neurotransmitter and synaptic plasticity,
stress response, were strongly related to GMV in IFG. The
polymorphisms of most of these genes had been previously
reported to be associated with the risk of MDD [8, 44, 45]. Previous
findings indicated that adiponectin acts on 5-HT neurons through
ADIPOR1 receptors to regulate depression-related behaviors in a
sex-dependent manner [46]. Low plasma adiponectin levels are
associated with insulin resistance and can increase the risk of
depression and anxiety. Some clinical studies indicate a negative
correlation between depression severity and circulating adiponec-
tin. The ADIPOR1 gene encodes a protein that acts as a receptor for
adiponectin, a hormone secreted by adipocytes that regulates fatty
acid catabolism and glucose levels. Adiponectin is a recently
described adipokine that has been recognized as a key regulator of
insulin sensitivity and tissue inflammation. The abnormal DNA
methylation status of the promoter region in the ADIPOR1 gene
may affect its gene expression and then might have effects on the
protein related to adipokine. Our finding also provided that the
disturbances in adipokine secretion can be an independent risk
factor for depression, as previous results [46, 47]. Besides that, a
previous study implicated that chronic stress significantly
decreased the mRNA of PPARA in mice models, and The PPARA
agonist WY14643 improved depressive-like behavior, which
suggested PPARA is a therapeutic target for depression [48, 49].
PPAR family genes that regulate stress response play a role in
several neural psychopathologies by mediating anti-inflammatory
and metabolic actions and directly regulating synaptic transmis-
sion and the propagation of nerve signals. Our findings also extend
our understanding of the molecular role of the epigenetic changes
of the PPARA gene and its gene expression pattern, which were
associated with brain structural abnormality in the PFC region in
MDD. Moreover, CHRM1 and NTRK3, which are involved in
neurodevelopment and synaptic signaling functions, were found
to be associated with GMV changes in IFG and ACC. In general, our
finding suggested that the genes involved in neurotransmitter and
synaptic plasticity might had a common effect on brain structural
changes, and both epigenetic changes and transcriptional values
of the stress-related genes play an important role in GMV reduction
in the prefrontal cortex.
There are several limitations in this study that need to be

addressed. Firstly, the statistical power of DNA methylation
microarray analysis was limited due to the small sample size
used for identifying DMPs. We mitigated this by selecting DMPs
that overlapped with candidate PLS genes and controlling for
potential false positive rates in the multiple tests conducted to
examine the associations between DMPs and changes in GMV in
patients. Future studies with larger sample sizes, including multi-
ethnic cohorts, would be desirable to improve the statistical
power and generalizability of the findings. Secondly, the
examination of transcriptome-neuroimaging relationships across
different groups was limited by the use of gene expression
profiles from only six postmortem healthy human brains in the
AHBA. Additionally, the AHBA dataset included data for the right
hemisphere of the brain for only two participants, which restricts
the representation of the entire brain in relation to the
transcriptional changes and MDD-related GMV alterations.
Consequently, we did not attempt to analyze the associations
between epigenetic markers, gene expression, and GMV
changes specifically in the right hemisphere. Future studies
should aim to incorporate larger and more diverse datasets to
explore these relationships comprehensively. Thirdly, we
included a subset of adolescent participants in our study to
increase the sample size. To account for potential confounding
effects, we regressed the influences of age and gender on GMV
and DMPs in our statistical analyses. However, the complex
effects of medication on GMV and DNA methylation might not
have been completely eliminated, even with the inclusion of

these covariates. Therefore, it is important to conduct further
studies with larger samples of drug-naïve MDD patients to better
understand the associations between these variables while
minimizing potential confounding factors.
In summary, we utilized an integrative omics approach to

investigate the genetic basis of MDD-related GMV changes at the
level of transcriptional and epigenetic regulation. By combining
transcriptome and DNA methylation data, we were able to identify
key genetic determinants underlying region-specific structural
variations in MDD. Our findings suggest that GMV abnormalities in
MDD may have a transcriptomic and epigenetic basis. This
imaging-transcriptomic-epigenetic integrative analysis provides
spatial and biological links between the morphological changes of
the central nervous system and peripheral molecular changes
in MDD.
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