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Autism spectrum disorder (ASD) is a complex disorder of neurodevelopment, the function of long noncoding RNA (lncRNA) in ASD
remains essentially unknown. In the present study, gene networks were used to explore the ASD disease mechanisms integrating
multiple data types (for example, RNA expression, whole-exome sequencing signals, weighted gene co-expression network analysis,
and protein-protein interaction) and datasets (five human postmortem datasets). A total of 388 lncRNAs and five co-expression modules
were found to be altered in ASD. The downregulated co-expression M4 module was significantly correlated with ASD, enriched with
autism susceptibility genes and synaptic signaling. Integrating lncRNAs from the M4 module and microRNA (miRNA) dysregulation data
from the literature identified competing endogenous RNA (ceRNA) network. We identified the downregulated mRNAs that interact with
miRNAs by the miRTarBase, miRDB, and TargetScan databases. Our analysis reveals thatMIR600HG was downregulated in multiple brain
tissue datasets and was closely associated with 9 autism-susceptible miRNAs in the ceRNA network. MIR600HG and target mRNAs
(EPHA4,MOAP1,MAP3K9, STXBP1, PRKCE, and SCAMP5) were downregulated in the peripheral blood by quantitative reverse transcription
polymerase chain reaction analysis (false discovery rate <0.05). Subsequently, we assessed the role of lncRNA dysregulation in altered
mRNA levels. Experimental verification showed that some synapse-associated mRNAs were downregulated after the MIR600HG
knockdown. BrainSpan project showed that the expression patterns of MIR600HG (primate-specific lncRNA) and synapse-associated
mRNA were similar in different human brain regions and at different stages of development. A combination of support vector machine
and random forest machine learning algorithms retrieved the marker gene for ASD in the ceRNA network, and the area under the curve
of the diagnostic nomogram was 0.851. In conclusion, dysregulation of MIR600HG, a novel specific lncRNA associated with ASD, is
responsible for the ASD-associated miRNA-mRNA axes, thereby potentially regulating synaptogenesis.
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INTRODUCTION
Autism spectrum disorder (ASD) refers to a group of early-onset,
lifelong, clinically heterogeneous, neurodevelopmental disorders with
deficits in social functioning and the presence of repetitive and
restricted behaviors or interests [1]. ASD also manifests significant
genetic heterogeneity; thousands of common variants and rare, de
novo single nucleotide mutations are estimated to contribute to ASD
[1, 2]. Some studies have shown that ASD-associated mutations affect
both coding and noncoding parts of the genome [3]. Most
annotation sites in the human genome are noncoding, and a
significant portion of noncoding transcripts are represented by long
noncoding RNAs (lncRNAs) [4], which are defined as RNA molecules
with >200 nucleotides. Among all other ncRNAs, lncRNAs are highly
expressed in the human brain-specific regions of the neural tissues
[5]. The lncRNAs are also involved in brain development and
neurogenesis; thus several lncRNAs lead to defective neurogenesis
and abnormal neural circuits after knockdown or aberrant alternative
splicing [6, 7]. However, the contribution of the regulatory mechan-
isms of these lncRNAs with respect to ASD is yet to be elucidated.

Recent studies have identified the contribution of genetic,
environmental, epigenetic, neuropathological, and immunological
factors [8, 9]. LncRNAs play a role in various biological processes,
including epigenetic regulation, chromatin remodeling, and the
regulation of transcription and translation levels [10]. Several
studies have shown that lncRNA is involved in many key biological
functions and responds to environmental factors in the brain [3].
lncRNAs are fundamental regulators of transcription and can
regulate susceptibility genes involved in psychiatric disorders and
neurodevelopment [11–13]. The disruptions in lncRNAs, such as
SHANK2-AS and BDNF-AS, can affect synapse, neuron function,
and the development of autism [14]. Hitherto, only a small fraction
of lncRNAs in the brain has been studied. For example, two
primate-specific lncRNAs, LINC00693 and LINC00689, are upregu-
lated in the ASD cortex [11]. The competing endogenous RNA
(ceRNA) theory proposes crosstalks between ncRNAs and coding
RNAs via microRNA recognition elements (MREs), which are
microRNA (miRNA) complementary sequences [15]. However, the
specific role of ceRNA networks in ASD has not been elucidated.
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In the present study, weighted gene co-expression network
analysis (WGCNA) and differential analysis were performed to
screen the disease-associated lncRNAs, while integrating multiple
data sources (such as five human postmortem datasets, GTEx, and
Brainspan) to probe into ASD disease mechanisms using gene
networks. Quantitative reverse transcription polymerase chain
reaction (qRT-PCR) assays confirmed the dysregulation of lncRNAs
and target genes at the peripheral circulation level. The in vitro
experiments characterized MIR600HG for regulating the synapse-
related genes through the ceRNA mechanism. Herein, our
comprehensive bioinformatics analysis provides a framework for
assessing the functional participation of lncRNAs in ASD.

MATERIALS AND METHODS
Data collection and differential expression analysis
The RNA-seq data of the prefrontal cortex from 34 autism patients in the
GSE59288 and 38 normal samples in the GSE51264 dataset [16], obtained by
sequencing on the Illumina HiSeq 2000 GPL11154 platform, was collected
from the NCBI Gene Expression Omnibus (GEO) database. The microarrays
and RNA-seq datasets, including GSE30573 (high coverage RNA-seq),
GSE64018 (high coverage RNA-seq), GSE113834 (expression microarray),
and GSE28521 (expression microarray), used for validation were integrated
(Supplementary Table S1). First, the downloaded SRA file contained the
sequencing reads for each sample, and its quality control was performed by
FastQC (version 0.11.5). Then, the filtered reads were used to map to the
hg38 genome reference genome (http://ftp.ensembl.org/pub/release-104/
gtf/) using HISAT2 (version 2.1.0) [17] with default parameters. Third, the
bam file was quantified using featureCounts [18] and filtered to remove the
low-count genes expressed in <75% of samples. Finally, based on the raw
counts matrix, we identified the differentially expressed protein-coding
RNAs (DEmRNAs) and differentially expressed lncRNAs (DElncRNAs) using
DEseq2 (|fold-change (FC)| > 1.3 and p-value < 0.05) for further analysis.

Functional and pathway enrichment analyses
Gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway, gene set enrichment analysis (GSEA), and gene set variation
analysis (GSVA) were performed using the R package “clusterProfiler” [19].
The cutoff criterion was p < 0.05. The datasets of multiple psychiatric
disorders [20], the gene set of rare de novo variants associated with ASD
by whole-exome sequencing study (WES) [21], different types of neuronal
cell markers [22, 23], postsynaptic density [24], and embryonic develop-
ment [21] were integrated for GSEA using Fisher’s exact test. The details of
gene set selection and sources are summarized in Supplementary Table S2,
p-values were adjusted for multiple comparisons using
Benjamini–Hochberg correction to assess the false discovery rate (FDR).

Screening of key modules based on WGCNA
Weighted gene co-expression network analysis facilitates the classification of
genes based on their similar expression patterns. We used the “WGCNA” R
package [25] to construct a scale-free co-expression network that adheres to
the scale-free property. The scale-free network exhibits a power law
distribution, which closely resembles the biological reality and demonstrates
robustness. The soft-threshold power β= 6 was selected to construct a
scale-free network. The adjacency matrix was transformed into a topological
overlap matrix to describe the similarity between nodes. Furthermore,
module-trait correlations were calculated to screen for modules with a
significant correlation with autism (p < 0.05). The GSEA of each module was
carried out using Fisher’s exact test. We extracted a protein-protein
interaction (PPI) subnetwork for each associated module from the STRING
database [26]. WGCNA was used to identify modules and susceptibility
genes associated with autism. In this study, the corresponding gene
significance (GS) and module membership (MM) of each gene in the core
module were estimated. The genes satisfying the screening criteria
(|MM| > 0.85 and |GS| > 0.2) were selected for further analysis. Pearson’s
correlation coefficient was used to calculate the correlations between genes.

Construction of ceRNA network
In order to identify candidate genes for the ceRNA network, the most
significant lncRNAs and mRNAs based on WGCNA were intersected with
the DElncRNAs and DEmRNAs. The differentially expressed candidate
lncRNAs were input into the online database lncbaseV3 (https://diana.e-

ce.uth.gr/lncbasev3) to identify the putative binding to miRNAs. We also
identified the targeted miRNAs that interact with candidate mRNAs based
on interactions generated by the miRTarBase [27], miRDB [28], and
TargetScan [29] databases. Next, we searched for case-control studies
exploring the differentially expressed miRNAs (DEmiRNAs) between
patients with autism and healthy controls from multiple documents [30].
The interactions between DEmiRNAs and lncRNAs or mRNAs were
integrated to construct a hub ceRNA regulatory network.

Expression pattern analysis of ceRNA network
Pearson’s correlation analysis was used to determine any positive
correlations between DEmRNAs and DElncRNAs. The tissue-expression
heterogeneity of DEmRNAs and DElncRNAs in the ceRNA network was
explored using the Genotype-Tissue Expression database (GTEx) (https://
www.gtexportal.org/) and FUMA GWAS (https://fuma.ctglab.nl) [31].
Further, we retrieved spatial and temporal expression of the transcriptome
in the human brain generated from the BrainSpan project (http://
www.brainspan.org/).

Participants
This study enrolled 70 Han Chinese autistic children (male/female ratio: 50/
20) with a mean age of 3.68 (±0.61) (±standard deviation) years. A total of
75 age- and sex-matched healthy children (male/female ratio: 55/20) from
the same ethnic group were selected as controls. All participants were
recruited at the Peking University Sixth Hospital (Beijing, China). The
peripheral blood samples were collected from all participants. Individuals
with ASD were diagnosed based on DSM-IV criteria and had no other
neuropsychiatric, metabolic, or immune-related conditions.

Quantitative reverse transcription polymerase chain reaction
The RNA was extracted using the Tiangen RNAsimple Total RNA Kit
(Tiangen, DP419, Beijing, China) and reverse-transcribed using a FastKing
reverse transcriptase kit (Tiangen, KR116-02, Beijing, China), TransGen
TransScript miRNA First-Strand cDNA Synthesis SuperMIX (TransGen,
Beijing, China), and lnRcute lncRNA First Strand cDNA Synthesis Kit
(Tiangen, KR202-02, Beijing, China). qRT-PCR was performed on a
LightCycler 96 (Roche, Switzerland). The expression of the target lncRNA
and mRNAs was normalized to that of the control GAPDH. For miRNAs, data
were normalized with endogenous control RNU6. All primers are listed in
Supplementary Table S3. For the robustness of the results, genes with low
gene expression abundance (CT value > 32) were excluded. The relative
quantitation for genes was calculated using the 2−ΔΔCt method.

Cell culture
The human embryonic kidney (HEK) 293 cells were obtained from the
American Type Culture Collection (ATCC) and regularly checked for
mycoplasma contamination. For cell culture, the cells were maintained in
high-glucose Dulbecco’s modified Eagle medium (DMEM) containing 10%
fetal bovine serum (FBS, GIBCO, 10099-141C, USA). For plasmid transfec-
tion, the cells were inoculated into 6-well plates and the plasmids were
infected into 293 cells at 70% confluence. The expression plasmid [pLKO.1-
CMV-copGFP-PURO or pLKO.1-sh-MIR600HG-CMV-copGFP-PURO] (Supple-
mentary Table S3) was transfected using the jetPRIME® transfection
reagent, following the manufacturer’s instructions. After 6 h, the medium
was changed to fresh DMEM containing 10% FBS and cultured for 24 h.

Diagnostic nomogram for ASD based on machine learning
algorithms
A combination of support vector machine (SVM) recursive feature
elimination (SVM-RFE) algorithm and random forest (RF) were used to
screen the potential genes in the ceRNA network using the “e1071,”
“randomForest” R package [32]. Next, a diagnostic nomogram was
established based on the overlapping genes generated by SVM-RFE and
RF algorithms. The nomograms were generated via the R package “rms”.
Finally, the receiver operating characteristic (ROC) curve was used to
investigate the efficiency of this diagnostic model. The area under the
curve (AUC) > 0.65 was considered significant.

Statistical analyses
All data were analyzed using SPSS. The differences in the relative
expression for each mRNA and lncRNA between patients with autism
and controls were examined using a nonparametric Mann–Whitney U test
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(two-tailed). Data are presented as the median and interquartile range. FDR
was used for multiple comparison corrections. Downregulation of lncRNA
and corresponding miRNA and mRNA regulatory axes was verified in cell
experiments, and statistical significance was calculated using unpaired
Student’s t-test (two-tailed). All data in accordance with the normal
distribution were represented as means ± SEM. The threshold of signifi-
cance accepted for all statistical analyses was the p-value or FDR < 0.05.

RESULTS
DEmRNAs and DElncRNAs Identification
We profiled differential gene expression (DGE) analysis in 72
postmortem brain tissue samples from 34 ASD cases (GSE59288)
and 38 controls (CTL) (GSE51264). A filtering flowchart for the study
is shown in Fig. 1. The 388 DElncRNAs (207 upregulated and 181

downregulated) were identified between CTL and ASD samples. We
also identified 2428 up- and 1549 downregulated DEmRNAs (Fig. 2
and Supplementary Table S4). Principal component analysis (PCA)
revealed the following findings (Fig. 2C): the ASD samples were
separated from CTL samples by PCA1.

Enrichment analysis (Fisher’s exact test) for gene sets of
interest
To explore the correlation between the DEmRNAs and the neural
cell type marker gene sets, multiple psychiatric disorders, and
broad scope of ASD risk genes, including genes with evidence of
de novo risk variants, we systematically assessed whether the
DEmRNAs are enriched for these genes (Fisher’s exact test,
FDR < 0.05; “Methods” section). We observed that the DEmRNAs

Fig. 1 Flowchart of the overall approach. ASD autism spectrum disorder, DE differential expression, GO gene ontology, GSEA gene set
enrichment analysis, GS gene significance, GSVA gene set variation analysis, HC healthy control, KEGG Kyoto Encyclopedia of Genes and
Genomes pathway, LGD likely gene-disruptive mutations, MM module membership, PCA principal component analysis, PPI protein-protein
interaction, PSD postsynaptic density, ROC receiver operating characteristic, SVM-REF support vector machine recursive feature elimination,
WGCNA weighted gene co-expression network analysis.
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are significantly enrichment for a variety of neural cell type marker
genes. The ASD-upregulated genes are associated with oligoden-
drocyte, astrocyte and microglial function, while the down-
regulated genes are associated with neurons, CA1 pyramidal
neurons, S1 pyramidal neurons, interneurons and mural cells
(Fig. 2E and Supplementary Table S2). The other types of immune
cell marker analysis found that CD4+ memory T cells were
enriched in the upregulated genes (Supplementary Fig. S1).
Interestingly, the downregulated DEmRNAs are enriched for genes
causally connected with autism (Fig. 2F) but not for other brain
disease-associated genes. We also observed enrichment for the
downregulated DEmRNAs hit by de novo variations (likely gene-
disruptive (LGD) mutations, missense, and synonymous). These
downregulated DEmRNAs also significantly overlapped with
encoding postsynaptic density (PSD) proteins and embryonically
expressed genes (Fig. 2G and Supplementary Table S2).

Pathway enrichment analyses
The hierarchical clustering of biological process (BP) terms by
measuring similarity revealed that the upregulated set was related
to immunity and cell adhesion function (Fig. 3A). The down-
regulated set was divided into several categories, including
“regulation of axonogenesis,” “nervous development,” and
“synaptic function” (Fig. 3B). Next, we performed a series of
pathway enrichment analyses to characterize these genes. The
NOD-like receptor signaling pathway and the PI3K-Akt signaling
pathway are two immune-related processes that are linked to the
upregulated DEmRNAs (Fig. 3C). Notably, the downregulated
groups are involved in the activation of synaptic-related pathways
(such as GABAergic synapses and glutamatergic synapses),
Calcium signaling pathways, and oxytocin signaling pathways;
these pathway targets form a network of tighter interactions than

accidentally expected, providing independent confirmation of
pathway-level co-regulation (Fig. 3D).
Based on these findings, we defined the changing trend of

molecular pathways and conducted GSEA analysis on the two
groups of samples (Fig. 3E, F). The results of the GSEA analysis on
samples shared similarities with those of GO and KEGG analyses
of the DEGs and also exhibited specific characteristics. Interest-
ingly, the intestinal immune network for the IgA production
pathway is upregulated in ASD (Fig. 3E). The details of GSEA
pathways are described in Supplementary Fig. S2. The results of
the GSVA analysis (Fig. 3G) further confirmed the reliability of
the GSEA results. First, the pathways related to the inflammation
immune microenvironment-related pathways (RIG-I-like recep-
tor signaling pathway and NOD-like receptor signaling pathway)
were significantly upregulated in the ASD group, as well as the
metabolic pathways of fatty acids. In line with the desired
results, the downregulated pathways in the ASD group were
largely consistent with the results of GSEA, which mainly
focused on the pathways related to axon development, neuron
projection guidance, and regulation of synapse structure or
activity (Fig. 3F, G).

Perturbation of lncRNA co-expression modules in ASD brain
To further assess the correlations between lncRNA expression
changes and disease status, we applied WGCNA (Supplementary
Fig. S3 and Supplementary Table S5) to assign the lncRNAs and
mRNAs to co-expression modules. Subsequently, 16 modules
(Fig. 4A) were identified, and their biological function was
examined. Next, we identified five modules that were correlated
with the disease status (Pearson’s correlation, p < 0.05); three
downregulated (M1, M3, and M4) and two upregulated (M8 and
M10) in ASD samples (Supplementary Fig. S3F–J). The GSEA
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(Fisher’s exact test) of each module (Supplementary Table S6)
showed that the upregulated M8 module was associated with
glial cell differentiation and enriched in oligodendrocytes. On the
other hand, the M3 (nervous system development) and M4
(synaptic signaling) modules showed highly significant enrich-
ment for known autism susceptibility genes and multi-neuronal

markers. The M3 modules showed significant correlations with
age and hence, were excluded from subsequent analysis.
However, M4 was significantly correlated with disease status
but not correlated with critical experimental covariates (age and
sex) (Fig. 4A). Next, we plotted the PPI network of the modules to
show functional interactions between proteins, with the
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Fig. 4 lncRNA and mRNA co-expression modules dysregulated in postmortem ASD cortex. A Pearson’s correlation analysis between
module eigengenes and different covariates (upper part). Correlation coefficients and p-values are shown at p < 0.05. The right side is named
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strongest protein interactions for the M4 module (Fig. 4B–F). The
key gene co-expression module (M4) was significantly correlated
with ASD, enriched for DEGs between ASD and control
(Supplementary Table S4). The screening criteria for the
DElncRNAs and DEmRNAs of the M4 module were based on
the MM and GS assessment (Supplementary Table S7;
“Methods”).

Identification of the ceRNA network associated with ASD
We first searched for the target miRNAs of the DElncRNAs from
the M4 modules and identified 98 lncRNA-miRNA interactions, as
described above. Next, the potential interactions of 63 miRNAs
with DEmRNA, based on a collection of interactions supported
simultaneously by three miRNA target prediction databases,
were identified. A preliminary ceRNA regulatory network
exhibited a positive correlation between the expression of
lncRNA and mRNA (Fig. 5A; Supplementary Table S8). Next, we
searched for case-control studies on the miRNA dysregulation
between patients with autism and healthy controls from multiple
documents. A total of 74 ASD-associated DEmiRNAs, reported
from at least two previous case-control studies (Supplementary
Table S9), were selected. The lncRNA-miRNA-mRNA associations
with the DEmiRNA as the core were screened, and a hub ceRNA
network consisting of 2 DElncRNAs, 9 DEmiRNAs, and 11
DEmRNAs was constructed (Fig. 5B; Supplementary Table S8).
Further enrichment analyses revealed the ceRNA network-related
signaling pathways, including “synaptic vesicle cycle,” “Fc
gamma R-mediated phagocytosis,” and “positive regulation of
JUN kinase activity” (Fig. 5C, D; Supplementary Table S10). The
GO enrichment analysis of key ceRNA networks revealed that
syntaxin-binding protein 1 (STXBP1) and secretory carrier
membrane protein 5 (SCAMP5) are involved in the positive
regulation of calcium-dependent exocytosis. And tyrosine kinase
ephrin receptor A4 (EPHA4), protein kinase C epsilon (PRKCE), and
STXBP1 are jointly involved in the regulation of transsynaptic
signaling (Supplementary Table S10).

Validation of ceRNA networks
We assessed the role of lncRNA dysregulation in altered mRNA
levels. In the ceRNA network, MIR600HG and AL049775.1 had
strong correlations with 11 DEmRNAs, as assessed by Pearson’s
correlation analysis (correlation coefficients > 0.75) (Supple-
mentary Fig. S4; Supplementary Table S11). Of these, MIR600HG
and MAP3K9 had the strongest correlation with high correla-
tion coefficients at 0.91. Furthermore, STXBP1 has a positive
correlation with another mRNA (correlation coefficients > 0.85).
For example, STXBP1 had interacts with MAP3KP9 (r= 0.93),
SCAMP5 (r= 0.94), PRKCE (r= 0.94), EPHA4 (r= 0.86), and
MOAP1 (r= 0.94). In addition, four microarrays and RNA-seq
datasets used for validation were integrated, and the down-
regulated expression of marker genes from ceRNA networks
was observed in the autistic brain tissue (Fig. 5F). MIR600HG
was found to be downregulated in GSE30573 (log2FC=−2.01)
and GSE64018 (log2FC=−0.49) (Fig. 5F and Supplementary
Table S12).

Validation of the hub genes in clinical samples
MIR600HG is the most closely related to nine known autism-
susceptible miRNAs (Fig. 5B). Among the identified lncRNA-
miRNA-mRNA interactions, we selected a DE-lncRNA (MIR600HG,
which was downregulated in multiple datasets) for the following
experimental validations. MIR600HG exhibited significant differ-
ential expression between patients with autism and controls by
qRT-PCR (log2FC=−0.62, FDR= 2.44E-04) (Fig. 5E and Supple-
mentary Table S13), and differences were observed in the male
samples (log2FC=−0.64, FDR= 1.81E-03) instead of the females
(Supplementary Fig. S5). PAK1 was downregulated in the

postmortem cortex and upregulated in whole blood. However,
6/10 DE-mRNAs (SLC12A5 excluded) were significantly
downregulated, including EPHA4 (log2FC=−0.56, FDR= 1.45E-
05), MAP3K9 (log2FC=−0.47, FDR= 7.81E-07), MOAP1 (log2FC=
−0.51, FDR= 1.14E-10), STXBP1 (log2FC=−0.38, FDR= 2.28E-03),
PRKCE (log2FC=−0.54, FDR= 1.95E-08), and SCAMP5
(log2FC=−0.54, FDR= 5.06E-05). The relative expressions of
these mRNAs, except for SCAMP5, were significantly down-
regulated in the peripheral blood of both male and female
patients (Supplementary Table S13; Supplementary Fig. S5).
Concurrently, the prefrontal cortex samples obtained from male
patients exhibited a significant downregulation in the expression
levels of MIR600HG and its associated target genes. In contrast, the
female samples displayed a declining trend, but the statistical
analysis did not yield significant evidence to support this
observation (Supplementary Fig. S6).

Correlation verification of mRNA regulation by MIR600HG
We found that significant DE-lncRNA (MIR600HG) and six
differential mRNAs were downregulated in the brain tissue and
peripheral blood. We observed an upregulation trend in nine
specific miRNAs following interference with MIR600HG. Notably,
hsa-miR-148b-3p, hsa-miR-7-5p, hsa-miR-106b-5p, and hsa-miR-
21-5p were significantly upregulated with statistical significance
(Supplementary Fig. S7). Previous studies have reported upregula-
tion of these miRNAs in the brain tissue of individuals with ASD
(Supplementary Table S9). These findings provide further support
for the regulatory role of MIR600HG in modulating the expression
of these specific miRNAs. The results showed that MIR600HG
knockdown affects the expression of its corresponding mRNAs
(STXBP1, MAP3K9, EPHA4, and MOAP1) (Fig. 5G). Notably, we
examined the expression of MIR600HG and the mRNA counter-
parts in various human tissues by GTEx profiles and found that
these genes were enriched in the brain (Supplementary Fig. S8A).
RNA-seq data from the BrainSpan project showed that MIR600HG
is broadly expressed in brain regions, but developmentally
regulated in the human brain from pregnancy to adulthood. In
this study, six main brain regions (dorsolateral prefrontal cortex
(DFC); ventrolateral prefrontal cortex (VFC); medial prefrontal
cortex (MFC); orbital frontal cortex (OFC); hippocampus (HIP), and
inferolateral temporal cortex (ITC)) were investigated. MIR600HG
has spatiotemporal co-expression with the targeted mRNA at each
developmental stage (prenatal, postnatal, and adulthood), which
may have similar molecular pathways or functions. The expression
patterns of MIR600HG and mRNA were similar in different human
brain regions and at different stages of development (Supple-
mentary Fig. S8B–G). Together, these findings hinted at the role of
a new lncRNA MIR600HG in regulating ASD-associated miRNAs
and mRNAs, suggesting a critical role of the ceRNA network in
ASD.

Construction of a diagnostic model based on machine
learning algorithms
Machine learning algorithms were selected for the diagnostic
modeling of the marker genes of ASD in the ceRNA network.
First, SVM-RFE analysis revealed that the first 10 genes were
identified as potential genes based on an optimum error rate
(0.316). Similarly, the RF algorithm screened 11 ASD-associated
diagnostic marker genes (Supplementary Fig. S9A). Finally, the
common genes obtained by the above two algorithms, PRKCE,
CALM3, STXBP1, GRAMD1B, MAP3K9, PAK1, MOAP1, KIAA0513, and
MIR600HG, were utilized to construct a diagnostic nomogram
(Supplementary Fig. S9B). The analyses of the AUC revealed that
these 9 genes hold potential as diagnostic biomarkers. The AUC
of the diagnostic nomogram was 0.851 for prefrontal cortex
samples, and the diagnostic performance of the model was
satisfactory (AUC > 0.65) in peripheral blood samples (Supple-
mentary Fig. S9C–E).
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DISCUSSION
The lncRNA and mRNA co-expression module was obtained by
WGCNA analysis and detected along with the DE genes for the
enrichment of autism-related gene signals. The ceRNA network
was constructed by integrating the candidate miRNA gene sets

from the literature. RT-PCR assays confirmed that lncRNAs and
target genes are dysregulated at the peripheral circulatory level.
Next, we hypothesized that MIR600HG regulating transcription-
level genes through the mechanism of ceRNA may lead to ASD
susceptibility. This model is supported by a positive correlation
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between the expression of lncRNAs and mRNAs affected by ASD;
also, the regulation of miRNA and mRNA targets was assessed by
lncRNA knockdown in cells. Overall, our findings suggested that
ASD-associated transcriptomic changes may be partially attributed
to lncRNA dysregulation.
MIR600HG is a common intersection of DGE analysis and co-

expression M4 modules. WGCNA analysis determined that M4
modules (downregulated) are correlated with ASD and signifi-
cantly overlapped with PSD proteins and synaptic signaling
function. Furthermore, the function of upregulated genes and
modules was related to immunity, as described previously [33, 34].
However, the upregulated genes did not show an enrichment of
the genetic components. Previous studies indicated that lncRNA is
a transcriptional and post-transcriptional regulator, and dysregula-
tion of ncRNAs plays a critical role in the pathogenesis of ASD
[6, 7, 11, 13]. MIR600HG in Alzheimer’s disease regulates Aβ
accumulation [35] and is associated with tumors [36, 37]. In the
present study, MIR600HG was downregulated in multiple datasets
of postmortem brain tissue.
The dysregulation of MIR600HG expression and the role of the

ceRNA regulatory axis in ASD have never been reported. Also, we
highlighted that MIR600HG interacts with multiple mRNAs through
autism-susceptible miRNAs (for example, hsa-miR-106a/b-5p, hsa-
miR-107, hsa-miR-92a-3p, hsa-miR-15b-5p, hsa-miR-21-5p, and
hsa-miR-148b-3p). The miRNA of interest has been associated
with ASD, providing a useful set of upstream regulatory (lncRNA-
miRNA axis) target genes. In this study, it was found that the
expression of some miRNAs was significantly upregulated after
inhibiting the expression of MIR600HG using shRNA knockdown.
These findings further support the role of lncRNA as endogenous
“sponges” for miRNAs [15]. These dysregulated miRNAs might
affect the expression of genes related to autism and neurodeve-
lopment [38–41]. The target mRNAs were downregulated in the
brain tissue (GEO datasets) and peripheral blood (Han Chinese
populations), including STXBP1, EPHA4, MAP3K9, MOAP1, PRKCE,
and SCAMP5.
STXBP1, localized primarily in the cell body and axon, is

associated with vesicle fusion and neurotransmitter release
throughout development [42–44]. The inactivation of Munc18-1
in mice leads to widespread neurodegeneration [43] and synaptic
impairments [45]. A decrease in STXBP1 by patient-derived
induced pluripotent stem cells (iPSCs) to generate induced
neurons resulted in neurite extension defects [46]. The mutations
in STXBP1 are associated with neurodevelopmental disorders,
such as ASD, developmental disorders, and epileptic encephalo-
pathy [47–49]. Recurrent de novo and likely gene-disruptive
mutations for STXBP1 have been reported in a Chinese ASD
patient cohort [50].
SCAMP5 is highly expressed in the brain and is involved in

transmitting nerve signals, regulating axonal trafficking, synaptic
localization, and synaptic plasticity [51]. De novo SCAMP5
mutation causes a neurodevelopmental disorder with autistic
features [52]. SCAMP5 has been shown to interact with soluble
N-ethylmaleimide sensitive factor attachment protein receptors
(SNAREs) molecules, which are important for intracellular vesicular
trafficking and developmental psychiatry [53, 54]. EPHA4 belongs
to the A subgroup of Eph receptors, which are key players in

synaptic plasticity and neural development [55, 56]. Rare changes
in EPHA4/p.P775L are linked to ASD [48] and EPHA3 identified as
candidate genes in ASD [57]. Both EphA4 and EphA7 affect cortical
neuronal migration during mouse brain development [56]. EphA4
knock-out (-/-) mice displayed impaired movements, which are
associated with disruption of axon-guided function [58].
MAP3K9 regulates signaling by the mitogen-activated protein

kinase (MAPK) and c-Jun amino-terminal kinase (JNK) pathways
[59]. The MAPK signaling pathway, critical for neurodevelopment,
is involved in neurogenesis migration and the development of
dendritic trees and spines [60]. Some studies have shown that the
MAPK signaling pathway and mitochondrial dysfunction are
involved in the pathogenesis of ASD [61]. Furthermore, in the
present study, among the ceRNA network, MIR600HG had a strong
correlation with DEmRNAs.
LncRNAs regulate gene expression in multiple ways at the

epigenetic, chromatin remodeling, transcription, and translation
levels, and as ceRNAs that attenuate the role of miRNAs on
targeted messenger RNA (mRNA) involved in the development of
tumors and neurological diseases [5, 10, 15, 62, 63]. Recently, the
mechanisms of immune-related ceRNA regulation in ASD diseases
have been deduced [64, 65]. However, the role of the synaptic-
associated ceRNA regulatory axis in ASD has never been reported
and remains largely unknown.
In the present study, we provided the corresponding ASD-

associated ceRNA network and characterized the targets of
MIR600HG-downregulated mRNA axis (for example, hsa-miR-21-
5p/hsa-miR-106b-5p-EPHA4 and hsa-miR-148b-3p-MAP3K9 axis)
in vitro. Thus, elucidating specific spatial and temporal expression
patterns of lncRNAs is crucial to identifying the role of lncRNAs in
nervous system development [66]. In this study, the expression
patterns of MIR600HG and targeted mRNA were similar in different
human brain regions and at different stages of development,
suggesting that they may have similar molecular pathways or
functions. Another study reported that the JNK and MAP kinase
pathways play a crucial role in synaptic formation [67]. Interest-
ingly, functional analysis revealed that EPHA4 and MAP3K9 genes
are related to JUN kinase activation, and EPHA4 and STXBP1 are
enriched in synaptic signal transduction and regulation of calcium
ion-dependent exocytosis; all these are involved in the pathogen-
esis of ASD. Moreover, lncRNAs, such as metastasis-associated lung
adenocarcinoma transcript 1 (MALAT1) [68], BDNF-AS [69], brain
cytoplasmic RNA 1 (BCYRN1) [70] regulate synapsis and synaptic
plasticity through alternative splicing or the expression of
synaptic-related genes. In summary, MIR600HG potentially reg-
ulates the expression of synaptic function-related genes at the
transcription level through ceRNA mechanisms.
Nevertheless, the present study has several limitations. For

example, further functional exploration of lncRNAs and mRNAs
with spatiotemporal expression pattern consistency is essential.
Due to the species-specific expression of this particular lncRNA
(MIR600HG) in humans, future investigations should prioritize the
inclusion of appropriate animal models to validate and extend the
findings of this study. The young brain samples from patients and
patient-derived brain organoids that mimic early brain develop-
ment will help in characterizing the dysregulation of lncRNAs and
potential ceRNA regulation mechanisms in autism. In the future,

Fig. 5 ceRNA network, functional enrichment analysis, and validation of the ceRNA network. A The preliminary lncRNA-miRNA-mRNA
(ceRNA) regulatory networks. B Key ceRNA network. C, D KEGG enrichment analysis of preliminary or key ceRNA network. E Expression of 10
hub DEmRNAs and 1 hub DElncRNA in patients with autism (n= 70) and healthy controls (n= 75). Mann–Whitney U test was used for
statistical analysis, and FDR was used for multiple testing corrections with each dot representing an individual. Data are presented as the
median and interquartile range. * FDR < 0.05, ** FDR < 0.01, *** FDR < 0.001, **** FDR < 0.0001. F Validation of the expression of ceRNA
network marker genes in four datasets. * |FC| > 1.3 and p-value < 0.05; x, the chip data cannot detect mRNA and lncRNA in the sample.
G Experimental validation of a downregulated lncRNA (MIR600HG) and the corresponding mRNA regulatory axis. Data are presented as
individual data points, with bar plots showing the mean and standard deviation (n= 11 for each group). Statistical significance was calculated
by Student’s t-test, * P < 0.05, ** P < 0.01, **** P < 0.0001, Mean ± SEM.
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the investigation of the manipulation of MIR600HG expression in
the brain and studying its impact at the molecular and behavioral
levels would provide a more comprehensive exploration of the
functional significance of this lncRNA in brain development and
behavior. Moreover, the present study focuses on transcriptomics
because the transcription process is affected by many factors, and
mRNA changes may vary between the blood and the brain. Thus,
the current findings need to be replicated with larger samples and
different ethnic backgrounds. The limited sample size of female
ASD patients in our study may have contributed to the lack of
statistical significance in the observed declining trend of
MIR600HG expression and its associated target genes. Future
studies with larger cohorts of female ASD patients are required to
validate and further explore these observations.
In conclusion, dysregulation of MIR600HG potentially regulates

the expression of synaptic function-related genes at the transcrip-
tion level through ceRNA mechanisms. Consequently, our findings
corroborate the role of lncRNA dysregulation and synaptic
signaling-related ceRNA regulatory axis in ASD. Our comprehen-
sive bioinformatics analysis provides a framework for assessing the
functional participation of lncRNAs in ASD. The role of lncRNA in
the development and function of the central nervous system
needs to be investigated further.
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