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Abstract
The freestanding of reduced graphene oxides/carbon nanotubes (rGO/CNTs) hybrid films are synthesized via the simple 
vacuum filtration and thermal reduction methods. And the electrochemical behaviors of rGO/CNTs hybrid films are inves-
tigated in KOH and in Et4NBF4/AN electrolyte, respectively. In three-electrode systems, the rGO/CNTs hybrid films show a 
maximum specific capacitance of 221 F g−1, a 71% capacitance retention, and an excellent cycle life in 1 M KOH electrolyte. 
And the electrochemical behaviors of rGO/CNTs films in Et4NBF4/AN electrolyte under three-electrode systems show 
a maximum specific capacitance of 174 F g−1 and good rate capability. Moreover, a symmetric supercapacitor of rGO/
CNTs//rGO/CNTs demonstrates a maximum specific capacitance of 24 F g−1 at 1 A g−1, a energy density of 20.8 Wh kg−1 
at 1.27 kW kg−1, and an excellent cycle life of 86.1% retention after 5000 cycles. It suggests that the symmetric superca-
pacitor could be regarded as an ideal energy storage system.
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1  Introduction

Among the various energy storage devices, supercapaci-
tors are drawn the great attention due to its high power 
density, rapid charge and discharge, and good cycle stabil-
ity [1–8]. And it has been successfully applied in electronic 
products, flexible and wearable electronic devices, and 
hybrid electric vehicles [9, 10]. However, the low energy 
density of supercapacitors still couldn’t satisfy the people’s 
demands [11]. To resolve these obstacles, the researcher 
have devoted to much time and energy to develop the 
novel supercapacitors. In recent years, they have realized 
that the good electrode materials and the rational struc-
ture of supercapacitor are the key to obtain the high elec-
trochemical performance supercapacitors [12, 13].

As reported, the electrode materials mainly focus on car-
bon materials, transition metal oxides/hydroxides [14–16], 
transition metal sulfides [17], transition metal nitrides/car-
bides [18, 19], and conductive polymers [20, 21]. Among 

these, carbon materials, such as reduced graphene oxide 
or graphene [22, 23], carbon nanotubes [24], porous car-
bon [25], active carbon [26], and carbon nanofibers [27], 
are the most potential candidate for supercapacitor elec-
trode materials [28]. Especially, reduced graphene oxides 
are regarded as the most promising electrode materials 
because of their excellent electronic conductivity, good 
chemical stability, and high oxygen content to enhance 
the electrolyte infiltration, which is favourable to improve 
the electrochemical performances. For instance, Cui et al. 
[29] reported that reduced graphene oxide/carbon nano-
tube showed a maximum specific capacitance of 272 F g−1 
at 5 mV s−1 and a potential windows of − 0.8 to 0 V. Wu 
et al. [30] investigated the electrochemical performances 
of ASCs based on rGO and polyaniline in 1 M H2SO4 elec-
trolyte, which showed a specific capacitance of 210 F g−1 
at 0.3 A g−1. Li et al. [31] demonstrated rGO as negative 
electrode for asymmetric supercapacitor and delivered a 
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specific capacitance of 182 F g−1 at 1 A g−1 in 1 M KOH 
electrolyte.

Generally, the supercapacitors usually be designed 
by three strategies of building an aqueous, organic elec-
trolyte or ionic liquid, and all-solid-state supercapacitor. 
Building a organic/ionic liquid symmetric supercapaci-
tor based on rGO as electrode material is an effective 
approach for advanced supercapacitors owe to the wide 
operation windows and the excellent chemical stability of 
rGO, resulting in a considerable benefit for practical appli-
cation in SCs. Furthermore, Et4NBF4/AN is considered one 
of the desirable electrolyte because of its low resistance 
[32]. Hence, it is worthwhile to fabricate a supercapacitor 
based on rGO electrode material in Et4NBF4/AN electro-
lyte. Herein, we report a simple strategy to prepare GO/
CNTs film electrodes by vacuum filter method and ther-
mal reduced at 300 °C to obtain a freestanding rGO/CNTs 
hybrid film as electrode materials. In rGO/CNTs films, rGO 
nanosheets could provide more active sites accessible 
to charge storage, resulting in high specific capacitance. 
Moreover, rGO nanosheets intertwined with carbon nano-
tubes also enhance mechanical stability, increase active 
surface area and electrode/electrolyte contact area, pro-
vide short diffusion length for ions and electrons and high 
conductivity to improve electrochemical performance 
[33–38]. Firstly, the electrochemical behaviors of rGO/
CNTs film electrode is investigated in 1 M KOH electro-
lyte using a three-electrode systems. The electrochemical 
results indicate that the the highest specific capacitance of 
221 F g−1 is obtained at 1 A g−1, along with long cycles life 
of 102.9% capacitance retention after 5000 cycles. Moreo-
ver, the electrochemical behaviors of rGO/CNTs with 1 M 
Et4NBF4/AN electrolyte are also evaluated in three and two 
electrode systems. In three electrode systems, rGO/CNTs 
hybrid film shows a high specific capacitance of 174 F g−1 
at 1 A g−1 and excellent cycle stability. In two electrode 
systems, a symmetric supercapacitor of rGO/CNTs//rGO/
CNTs exhibits a specific capacitance of 24 F g−1 at 1 A g−1, 
an energy density of 20.8 Wh kg−1 at 1.27 Wh kg−1, and 
excellent cycle life of 86.1% retention after 5000 cycles. 
It indicates that the good electrochemical performances 
of this symmetric supercapacitor has the great potential 
application value.

2 � Experimental

2.1 � Preparation of rGO/CNTs hybrid film

The freestanding hybrid films were built using a simple 
vacuum filtration and thermal reduced method. Firstly, the 
mixture of GO disperse and CNTs disperse with a mass of 
9:1, were sonicated for 10 min. And GO/CNTs films was 

obtained by vacuum filtration method [39]. Then the GO/
CNTs film was naturally peeled from the filter film. Finally, a 
freestanding rGO/CNTs hybrid film was obtained at 300 °C 
for 30 min under N2 atmosphere.

2.2 � Characterization

X-ray diffraction (XRD), Field-emission scanning electron 
microscopy (SEM), and transmission electron microscopy 
(TEM) were used to certify the structure, morphology, and 
the composites of as-prepared rGO/CNTs hybrid film.

2.3 � Electrochemical measurements

The as-prepared rGO/CNTs hybrid film (0.785 mg cm−2) 
was directly pressured between two pieces of nickel 
foam at 10 kPa pressure to obtain a working electrode. 
The electrochemical behaviors of working electrode was 
tested using 1 M KOH electrolyte, Hg/HgO reference elec-
trode, and Pt flake electrode in three-electrode systems. 
Moreover, the electrochemical behaviors of rGO/CNTs 
hybrid film electrode was evaluated using Ag/AgCl refer-
ence electrode, Pt flake electrode, and 1 M Et4NBF4/AN 
electrolyte in three-electrode systems. And a symmetrical 
supercapacitor based on rGO/CNTs film//Ni foam was also 
tested in 1 M Et4NBF4/AN electrolyte. All the electrochemi-
cal tests were conducted using a CHI 660E. The specific 
capacitance Cm (F g−1), energy density Em (Wh kg−1), and 
power density Pm (W kg−1) were determined based on the 
following equations [40]:

Herein, m (g), I (A), ∆t (s), ∆U (V) mean the mass of active 
materials, the charging/discharging current, the discharg-
ing time, and the operating voltage, respectively.

3 � Results and discussion

In this work, rGO/CNTs film is prepared at a temperature 
of 300 °C under N2 atmosphere, because it can balance 
specific capacitance and rate capability at this tempera-
ture [41]. To better understand the structure, morphology, 
composite information of rGO/CNTs film, it is character-
ized using XRD, SEM, TEM, Raman, and XPS, respectively. 
Furthermore, we also evaluate its electrochemical behav-
iors in KOH aqueous solution and Et4NBF4/AN electrolyte, 
respectively.

(1)C
m
= IΔt∕mΔV

(2)E
m
= CΔV2∕2 × 3.6

(3)P
m
= 3600E

m
∕t
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XRD patterns peaks of the rGO/CNTs film is exhibited in 
Fig. 1a. And it is observed that only one characterization 
peak appears at 2θ value of 25°, which attributes to the 
carbon peak of rGO/CNTs film (JCPDS Card No. 41-1487). 
This broad characteristic peak indicates the poor crystal-
line quality. To better understand the surface information 
of rGO/CNTs, XPS analysis is carried out to acknowledge 
the weight ratio of C/O and the chemical bonding of the 
sample, as given in Fig. 1b–d. From Fig. 1b, the peaks of 
C 1s and O 1s could be apparently observed, and the 
weight of O element and C element are 19.4% and 80.6% 
in rGO/CNTs samples, respectively. The C spectra of rGO/
CNTs samples is presented in Fig. 1c. Four main peaks at 

284.6 eV, 286.4, 288.1, and 289.9 eV are assigned to the 
groups of C=C, C–O–C, C=O, and C(O)OH, respectively 
[42]. Figure 1d shows the O spectra of rGO/CNTs films. It is 
observed that the groups of C=O, C–O–C, and C(O)OH are 
locked at peaks of 531.7, 533, and 535.1 eV, respectively 
[42]. This reveals that rGO/CNTs samples mainly contain 
C=C, C–O–C, C=O, and C(O)OH groups, which can favor the 
electrolyte infiltration to improve the specific capacitance. 
Additionally, the as-prepared rGO/CNTs film is also char-
acterized by Raman spectroscopy, because Raman spec-
trum analysis is regarded as one of most effective strategy 
to identify carbon-based materials. As shown in Fig. 1e, it 
demonstrates that Raman peaks at 1346 and 1586 cm−1 

Fig. 1   a XRD patterns of 
rGO/CNTs (JCPDS Card No. 
41-1487); b XPS survey spectra 
for rGO/CNTs; XPS spectra for 
C 1s (c) and O 1s (d); e Raman 
spectra of rGO/CNTs
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attribute to D-band and G-band of rGO/CNTs film. And 
1.03 of ID/IG means that rGO/CNTs samples can provide the 
good electrical conductivity due to GO samples removal 
the functional groups of carboxyl, hydroxyl, and epoxy at 
300 °C [41].

To acknowledge the detailed morphology, the as-pre-
pared rGO/CNTs films are characterized using SEM and 
TEM, and the morphology information of these films is 
exhibited in Fig. 2. From Fig. 2a, it is easily founded that the 
surface of rGO/CNTs films shows rGO junction with carbon 
nanotubes, which reveals that rGO/CNTs films could pro-
vide good mechanical stability and more active sites for 
ions. The EDS mapping of C and O elements further exhib-
its the consists of rGO/CNTs films (Fig. 2b, c). After rGO/
CNTs films sonicated in ethanol solvent for several min-
utes, the rGO/CNTs films are further examined by the TEM 
images in Fig. 2d–f. As shown in Fig. 2d, it is observed that 
the rGO nanosheets intertwine with carbon nanotubes 
and the diameter of carbon nanotubes is round 20 nm. In 
Fig. 2e, it is easily observed that the carbon nanotube junc-
tion with the reduced graphene oxide lead to the good 
mechanical strength and flexibility. We can clearly observe 
the interface of carbon nanotube junction with reduced 
graphene oxide in Fig. 2f.

Firstly, cyclic voltammetry (CV ), galvanostatic 
charge–discharge (GCD), and cycle stability are conducted 
in 1 M KOH electrolyte via a three-electrode system to 
explore electrochemical properties of rGO/CNTs electrode. 
CV tests for rGO/CNTs electrode are performed at differ-
ent scan rates of 25–500 mV s−1 and a potential window 
of − 0.8 to 0 V (Fig. 3a). These CV curves show a rectan-
gular shape at 25, 50, 100, and 200 mV s−1, respectively. 

And even at a high scan rate of 500 mV s−1, the shape of 
curve still keep a similar to that at 25 mV s−1, suggesting 
the good rate capability of rGO/CNTs electrode. Figure 3b 
shows the GCD curves at current densities of 1, 2, 3, 4, 
and 5 A g−1, respectively. All the GCD curves are close to 
symmetric triangle, suggesting an excellent reversible 
reaction. The specific capacitances of rGO/CNTs elec-
trode are 221, 194, 182, 174 and 170 F g−1 at 1, 2, 3, 4, and 
5 A g−1, respectively. Meanwhile, the capacitance of rGO/
CNTs electrode can keeps 71% when the current densi-
ties increase from 1 to 10 A g−1, indicating a good rate 
capability (Fig. 3c). Figure 3d reveals the capacitances 
gradually increase with the increasing cycle numbers for 
rGO/CNTs electrode, the capacitance retention of 102.9% 
could be kept after 5000 cycles at 100 mV s−1, indicating 
the excellent cycle stability. This electrochemical results 
indicate that rGO/CNTs film could be regarded as an ideal 
supercapacitors electrode material. Figure 3e gives the 
electrochemical impedance spectroscopy (EIS) plots of 
rGO/CNTs films and an equivalent circuit, indicating the 
low resistance of rGO/CNTs films.

The electrochemical properties of rGO/CNTs are also 
investigated through three-electrode measured systems 
in 1 M Et4NBF4/AN electrolyte, as depicted in Fig. 4. The 
suitable potential windows for rGO/CNTs electrode are 
chosen among − 1 to 0, − 1 to 0.5, − 1 to 1, and − 1 to 
1.5 V. It reveals that − 1 to 1.5 V could be chosen as the 
suitable potential window (Fig. 4a). So all the following of 
electrochemical tests are performed at the suitable win-
dows of − 1 to 1.5 V. Figure 4b depicts the CV curves at 
current densities of 10–50 mV s−1. These CV curves show 
a similar rectangular shape, suggesting a good capacitive 

Fig. 2   a SEM images of rGO/
CNTs samples; b, c EDS map-
ping of C and O element, 
respectively; d, e TEM images 
of rGO/CNTs samples; f the 
magnified TEM images in (e)
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property. Figure 4c depicts the GCD curves measured for 
rGO/CNTs electrode between 2 and 10 A g−1. The shape of 
GCD curves show a symmetrical triangular with slight cur-
vature at 2–10 A g−1, revealing a good capacitive property. 
The rate capability for rGO/CNTs electrode at 2–10 A g−1 
is shown in Fig. 4d. The highest specific capacitance of 
174 F g−1 is obtained at 2 A g−1. These values begin a obvi-
ous decrease from 3 to 20 A g−1. And the capacity reten-
tion could reach to 73.6% for rGO/CNTs electrode when 
the current densities vary from 2 to 20 A g−1. It reveals 
that the rGO/CNTs electrode has the good electrochemical 
behaviors in Et4NBF4/AN electrolyte. Similarly, Fig. 4e also 
shows the electrochemical impedance spectroscopy (EIS) 
plots of rGO/CNTs films in 1 M Et4NBF4/AN electrolyte and 
an equivalent circuit. It also indicate the low resistance of 
rGO/CNTs films in 1 M Et4NBF4/AN electrolyte.

Additionally, we assemble a symmetric SC (rGO/
CNTs//rGO/CNTs) using two pieces of rGO/CNTs films, 
nickel foams collector, and 1 M Et4NBF4/AN electrolyte. 
The optimal potential windows is 2.5 V based on CV tests 
at various potential windows in two-electrode systems. 
And the total loading mass of rGO/CNTs films is 1.2 mg. 
As Fig. 5a shown, CV curves of the symmetric SC are 
tested at various scan rates. We observe that the shape 
of CV curves are irregular rectangular between 10 and 
50 mV s−1, and the area of CV curves gradually increase 
with the increasing scan rates. Figure 5b exhibits the 
GCD curves of the symmetric SC, the specific capaci-
tances of 24, 22, 20, 19.2, and 19 F g−1 are obtained at 
current densities of 1, 2, 4, 6, 8 A g−1, respectively. The 
specific capacitance of symmetric SC can remain 79% 
from 1 to 8 A g−1 (Fig. 5c), revealing an excellent rate 

Fig. 3   Electrochemical behav-
iors of rGO/CNTs electrodes 
based on the three-electrode 
systems in 1 M KOH electrode. 
a CV curves at various scan 
rates; b GCD curves at various 
current densities; c specific 
capacitance versus current 
density; d cycle stability; e EIS 
plots of rGO/CNTs film in 1 M 
KOH electrolyte, the inset is 
equivalent circuit
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capability. The EIS plots of the symmetric SC is shown 
in Fig. 5d. This symmetric SC has the relative low intrin-
sic resistance due to its low charge-transfer resistance. 
Figure  5e depicts the Ragone plots of the symmet-
ric SC. The highest energy density of 20.8 Wh kg−1 is 
obtained at a high power density of 1.27 kW kg−1, and 
still remains 16.5 Wh kg−1 at 9.85 kW kg−1. The energy 
density of this symmetric SC is higher than that of the 
previous reported, such as 5.7 Wh  kg−1 of APCN-2 at 
10 kW kg−1 [43], 13.4 Wh kg−1 of Ni(OH)2/UGF//a-MEGO 
at 0.065 kW kg−1 [44], 13.55 Wh kg−1 of N-RC2//N-RC2 
symmetric supercapacitor at 0.3998  kW  kg−1 [45], 
20.3 Wh kg−1 of AC//Ni(OH)2 ASC at 0.0906 kW kg−1 [46]. 
In Fig. 5f, the symmetric SC shows a good cycle stability 
of 86.1% capacitance retention after 5000 cycles.

4 � Conclusions

In this work, we fabricate the freestanding rGO/CNTs 
hybrid films via the simple methods of vacuum filtra-
tion and thermal reduction. The electrochemical per-
formances of rGO/CNTs film in three-electrode systems 
exhibit a maximum specific capacitance of 221 F g−1, a 
71% capacitance retention, and an excellent cycle life 
in 1 M KOH electrolyte. We also investigate the electro-
chemical performances of rGO/CNTs films in Et4NBF4/
AN electrolyte under three-electrode systems. The 
results demonstrate a maximum specific capacitance of 
174 F g−1 and good rate capability. Moreover, a symmet-
ric supercapacitor of rGO/CNTs//rGO/CNTs demonstrates 

Fig. 4   Electrochemical behav-
iors of rGO/CNTs electrodes 
based on the three-electrode 
systems in 1 M Et4NBF4/AN 
electrolyte. a CV curves at 
various potential windows at 
10 mV s−1; b CV curves at vari-
ous scan rates; c GCD curves 
at various current densities; 
d specific capacitance versus 
current density; e EIS plots of 
rGO/CNTs film in 1 M Et4NBF4/
AN electrolyte, the inset is 
equivalent circuit
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a maximum specific capacitance of 24 F g−1 at 2 A g−1, a 
energy density of 20.8 Wh kg−1 at 1.27 kW kg−1 and an 
excellent cycle life of 86.1% retention after 5000 cycles. 
It suggests that the symmetric SC has a great potential 
in practical application.
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