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Abstract
The recent advances in artificial intelligence have already begun to penetrate our daily lives. Even though the development 
is still in its infancy, it has been shown that it can outperform human beings even in terms of intelligence (e.g., AlphaGo by 
DeepMind), implying a massive potential for its broader application in various industrial sectors. In particular, the grow-
ing public interest in industry 4.0, which focuses on revolutionizing the traditional manufacturing scene, has stimulated a 
deeper investigation of its possible applications in the related industries. Since it has several limitations that hinder its direct 
usage, research on the convergence of artificial intelligence with other engineering fields, including precision engineering 
and manufacturing, is ongoing. This overview looks to summarize some of the important achievements made using artificial 
intelligence in some of the most influential and lucrative manufacturing industries in hopes of transforming the manufactur-
ing sites.

Keywords  Artificial intelligence · Deep learning · Fault detection and diagnosis · Condition monitoring · Manufacturing 
process

1  Introduction

Artificial intelligence (AI) is now at the forefront in the pur-
suit of industry 4.0. Over the past several years, the accumu-
lation of big data via Internet-of-Things (IoT) technology has 
led to the rapid growth of information retrieval and analysis 
techniques such as AI. Such advancement in ways to deal 
with a large amount of data is about to revolutionize many 
manufacturing industry sectors, and it is the driving force 
behind the foundation of smart factories where everything is 
conducted intelligently and in an automated fashion during 
every cycle of the manufacturing process.

Industrial AI is a term coined to specifically refer to AI for 
the particular goals in the manufacturing industry. Industrial 
AI covers a wide range of machine learning where the keys 
to success are pattern recognition for highly nonlinear data, 
unstructured data analysis, robustness to repetitive tasks, fast 
computation speed, and high interpretability. Out of these 
industrial AI traits, recognizing a highly nonlinear pattern 
is essential, particularly because the relationship between 
input parameters and output parameters is only partially 
understood under simplified conditions. It is sometimes 
even unknown due to extremely high nonlinear correlations. 
To dispel the concerns, deep learning, a part of machine 
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learning, is beginning to replace traditional data analysis 
techniques. Recently, the power of deep learning is already 
well known to the public. It not only captures complex pat-
terns in train data, but it also can recognize various types of 
unstructured data, hence its tremendous success in object 
detection, natural language processing, speech recognition, 
and realistic image synthesis. Despite its drawbacks associ-
ated with interpretability and extrapolability, its potential is 
nearly limitless as its performance depends largely on the 
amount and quality of data and the design of its architecture. 
As such, it is widely studied worldwide with a huge amount 
of investment from both the governments and firms.

Unfortunately, it still faces much reluctance when adopt-
ing it directly at manufacturing sites. One reason behind it 
could be that there is a lack of awareness of where and how 
it should be incorporated in the manufacturing pipeline and 
a few of its unsolved issues, as mentioned before, making it 
less trustworthy. This review aims to raise the awareness of 
possible AI applications by providing an extensive overview 
of its usage in various industrial sectors but only for limited 
objectives (i.e., product enhancement and manufacturing 
process enhancement) due to overly broad applicability. We 
hope this review paper would contribute to an even wider 
expansion of AI implementation in the industries. For clar-
ity, details on machine learning [1], deep learning [2], and 
its sub-branches [3–8] should be referred to the attached 
references. The rest of this paper has the following sections 
remaining. Section 2 provides an extensive literature survey 
with four subsections that introduce various AI applied to 
improve the performance of specific products. Section 3 con-
tains an overview of literature with two subsections, each of 
which talks about AI applications in the course of the manu-
facturing process. Finally, Sect. 4 concludes this overview 
with a summary and a brief insight into the future of AI.

2 � Applications of AI for Product 
Enhancement

2.1 � Autonomous Vehicle

Autonomous driving (AD) is a thriving field of study where 
AI is actively taking part. The main objectives of AD consist 
of road detection, lane detection, vehicle detection, pedes-
trian detection, drowsiness detection, collision avoidance, 
and traffic sign detection [9]. These tasks mainly involve 
image-based object detection, localization, and segmentation 
in the context of computer science, and they are enhanced 
through the use of multiple sensors and appropriately fusing 
collected data from them. Sensor fusion is one of the vital 
aspects of self-driving cars. All of the detection schemes 
mentioned earlier could be useless and far from reality if 
there is a substantial error in the sensor signal. Despite its 

remarkable development in recent years, sensors are still 
vulnerable to noise and manufacturing defects. One practical 
solution to this issue is to merge multiple sensor readings 
to increase reliability by complementing the shortcomings 
of each sensor.

In particular, sensors in AD are used for two main pur-
poses: environmental perception and localization. While 
environmental perception refers to various object detec-
tion types (i.e., road detection and pedestrian detection) in 
a self-driving scenario, localization is meant by finding the 
absolute and relative positions of a driving vehicle. Different 
combinations of sensors are frequently used for each pur-
pose, leading to the fusing of more than one sensor as input 
to deep neural networks. For example, LiDAR, radars, ther-
mal cameras, and RGB cameras are the common choices for 
environmental perception. In contrast, for localization, iner-
tial measurement units (IMU), inertial navigation systems 
(INS), LiDAR, global navigation satellite systems (GNSS) 
are selected [10]. Moreover, multiple sensor readings are 
fused and then merged with a deep learning pipeline at dif-
ferent levels. A more detailed explanation of the possible 
routes of integration can be found in [10]. While percep-
tion and localization may be challenging issues if readings 
from multiple sensors are mixed, deep learning is adopted 
to break the barrier. Here, we first introduce road detection 
and pedestrian detection as representative examples of the 
general image-based environmental perception using deep 
learning, followed by the cases of its applications based on 
multiple sensor fusion. Likewise, cases of localization is 
explained in detail afterwards.

Road detection is the task of distinguishing the boundary 
between the road and the background. Limmer et al. [11] 
showed a CNN-based road course prediction system for 
augmented reality applications. The proposed framework 
includes a multiscale CNN that receives multiple scales of 
the same input data simultaneously. Each scale of data is fed 
to the corresponding branch of the network. The branches 
do not share any weights, and they are joined at the end by 
a fully connected layer for scene labeling. It was shown that 
the approach performed well even for various weather condi-
tions. Besides, Cheng et al. [12] presented a cascaded end-
to-end convolutional neural network (CasNet) for two tasks: 
road detection and road centerline extraction. The novelty of 
the proposed model lies in how a cascaded network is used 
to bridge two tasks together. Specifically, the first network 
has the form of an autoencoder for road detection. Feature 
maps generated at the last deconvolution layer in the first 
network are fed to the encoder network of the second net-
work for the centerline extraction. In this way, two tasks 
are solved concurrently through an end-to-end fashion. A 
few other studies that tackle the road detection task uses a 
fully convolutional Siamese network [13] and a specifically 
designed neural network (RBNet) [14], respectively.
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Pedestrian detection refers to the task of differentiating 
pedestrians on roads from other objects. Special attention 
is given to this task due to its importance for preventing 
vehicle-to-human accidents. For this specific task, Wang 
et al. [15] proposed the part and context network (PCN) that 
leverages the body part semantic information and the con-
textual information. The part branch, designed for occlusion 
handling, uses the long short-term memory (LSTM) module 
to communicate semantic information among the body parts. 
It was shown to boost the classification performance even 
for invisible parts. In the case of the context branch, contex-
tual features with different scales are handled for pedestrian 
localization. They are important because they are the source 
of information for whether an object may be classified as 
a pedestrian or others by considering its background from 
different perspectives. In other studies regarding pedestrian 
detection, Ouyang et al. [16] demonstrated that pedestrian 
detection could be enhanced by the joint handling of feature 
extraction, deformation, occlusion, and classification using 
a simple CNN. Cai et al. [17] investigated the complexity-
aware cascaded network, which leverages features of differ-
ent complexities.

As for the cases of sensor fusion in environmental per-
ception, the frequent baseline deep neural networks turned 
out to be R-CNN, Faster R-CNN, YOLO, and etc. These 
networks are specifically designed for solving tasks involv-
ing object detection, localization, and segmentation. Wagner 
et al. [18] compared the two types of sensor fusion (early 
fusion and late fusion) of RGB and thermal cameras. For an 
early fusion, the images of both cameras are concatenated 
side by side as channels and then are fed to R-CNN [19]. For 
a late fusion, two separate networks are built for each input 
and are joined by a fully connected network right before 
the classifier at the end. The addition of thermal images 
is shown to solve the issue of low prediction accuracy in 
the nighttime. On the other hand, Schlosser et al. [20] used 

LiDAR and RGB camera and performed an early fusion 
where the features representing different aspects of 3D scene 
were extracted from the LiDAR output and were used as 
additional image channels to be fed to R-CNN. Other studies 
which fuse features from LiDAR and visible images include 
[21, 22]. For these studies, YOLO [23] was used for faster 
computation, and sensor fusion with LiDAR usually boosted 
discriminative performance for detecting pedestrians and 
objects on roads. Liu et al. [24] demonstrated that RGB and 
thermal images could provide complementary information in 
detecting pedestrians by building four different fusion archi-
tectures based on faster R-CNN [25]. The author shows that 
the halfway fusion where features extracted from both types 
of images are fused in halfway through the network achieves 
the best performance. A similar flow of work was presented 
in [26] but with a few additional fusion architectures.

Localization is another important area of sensor fusion 
in which deep learning is widely adopted. However, it nor-
mally requires different sensor fusions, as mentioned earlier. 
Multiple combinations of sensors are effective for the task: 
GNSS / INS or IMU and RGB / LiDAR. Firstly, Dai et al. 
[27] recently introduced the deep learning-based integrated 
framework of GNSS and INS where the inaccurate GNSS 
signal is enhanced with the output of RNN fed with time-
varying INS signal. Kim et al. [28] also used a type of RNN, 
LSTM for the localization of a vehicle, but the work differs 
from the previous one because both GNSS and IMU are fed 
to the network simultaneously. Secondly, a sensor fusion of 
RGB images and LiDAR point clouds for improved locali-
zation by accurate depth estimation has been performed by 
Gao et al. [29]. In the study, LiDAR point clouds images 
are projected to RGB images to create sparse depth images 
given as input to AlexNet [30]. Similar works have been 
presented by Laidlow et al. [31] that fuses depth predictions 
of multi-view stereo system with CNN output, and by Lee 
et al. [32] that places RNN in addition to the existing CNN 

Fig. 1   Baseline deep learning 
models found in the literature 
where different pairs of sensors 
are fused for improved percep-
tion and localization
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model. Figure 1 summarizes the aforementioned baseline 
deep learning models used in the surveyed literature where 
different pairs of sensors are fused.

In conclusion, the applications of AI in autonomous vehi-
cle is mainly driven by image-based deep learning models 
such as CNN because autonomous vehicles generally col-
lect information through sensors that characterize retrieved 
data into a 2-dimensional form that maintains rich spatial 
information. To improve the related studies in literature, it 
is necessary to have additional functions on top of the exist-
ing models that help capture the dynamics (i.e., temporal 
information) and complex patterns. Further research needs 
to be done to incorporate multiple sensor information into 
deep learning to allow for safer and fully automated driving 
on roads. The reviewed studies in this section are summa-
rized in Table 1 with respect to some useful information 

including data type, data publicity/openness, investigated 
task and exploited algorithm or model.

2.2 � Battery

Recently, secondary battery has gained considerable inter-
est worldwide due to its rising demand for electric vehicles 
(EVs) and hybrid electric vehicles (HEVs). One of the most 
commonly adopted secondary batteries for such vehicles is 
the lithium-ion battery because of its high power density, 
long battery life, high durability, low self-discharge rate, 
and fast charge rate compared to other types of secondary 
cells. However, its application to EVs and HEVs, which 
are exposed to extremely harsh conditions (in the perspec-
tive of battery usage) such as cold weather and long driv-
ing range as well as repetitive charge and discharge situa-
tions, constantly demands better batteries that have higher 

Table 1   An overview of the surveyed literature regarding the autonomous vehicle

Reference nos. Data type Data publicity/openness Task Algorithm/model

[11] Radar signal, map database, 
vision image

No Classification (road detection) Multi-scale CNN

[12] Satellite image Yes (Google Earth) Classification (road and cen-
terline extraction)

CasNet (Cascaded Network)

[13] Vision image Yes (KITTI dataset) Classification (road detection) Siamesed FCN
[14] Vision image Yes (KITTI dataset) Classification (road and road 

boundary detection)
RBNet (Road and road Bound-

ary Network)
[15] Vision image Yes (Caltech, INRIA and 

KITTI)
Classification (pedestrian 

detection)
PCN (Part and Context Net-

work)
[16] Vision image Yes (ImageNet and Caltech) Classification (pedestrian 

detection)
Fast R-CNN variant

[17] Vision image Yes (Caltech and KITTI) Classification (pedestrian 
detection)

CompACT (Complexity Aware 
Cascade Training)

[18] Vision image Yes (KAIST dataset) Classification (pedestrian 
detection)

R-CNN variant

[20] Vision image Yes (KITTI dataset) Classification (pedestrian 
detection)

R-CNN variant

[21] Vision image Yes (KITTI dataset) Classification (vehicle detec-
tion)

YOLO variant

[22] Vision image Yes (KITTI dataset) Classification (vehicle detec-
tion)

YOLO variant

[24] Vision image Yes (KAIST dataset) Classification (pedestrian 
detection)

Faster R-CNN variant, ConvNet

[26] Vision image Yes (KAIST dataset) Classification (pedestrian 
detection)

IAF R-CNN (Illumination-
Aware Faster R-CNN)

[27] INS signal, GPS signal No Regression (aerial vehicle 
navigation)

RNN

[28] IMU signal, GPS signal, map 
database

No Regression (ground vehicle 
navigation)

LSTM-RNN

[29] Vision image Yes (KITTI dataset) Classification (object detec-
tion)

AlexNet

[31] Vision image Yes (ICL-NUIM and TUM) Regression (3D reconstruc-
tion)

DeepFusion

[32] Vision image Yes (KITTIdataset) Regression (depth estimation) R-CNN
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charge capacity, durability, cycle life, and faster charge rate 
than those of the existing batteries. These desirable traits 
are achievable not just by selecting the best type of materi-
als (i.e., lithium iron phosphate and graphite) but also by 
optimizing the internal structure of batteries (i.e., separator 
thickness) and continuously monitoring the battery state to 
manage/control the external parameters (i.e., temperature) 
accordingly so that batteries are less exposed to unwilling 
conditions (i.e., 0% state-of-charge). The former is per-
formed ex-situ by predicting in advance the battery behav-
ior under specific conditions, while the latter is conducted 
in-situ by the battery management system (BMS) contained 
in a battery pack for EVs and HEVs.

Two significant parameters in the battery must be tracked 
for battery health monitoring: state-of-charge (SOC) and 
state-of-health (SOH). SOC denotes the ratio of the cur-
rent capacity to the fully charged capacity. On the other 
hand, SOH is the ratio of the fully charged capacity to the 
nominal capacity of the battery. The main difference can 
be intuitively understood such that while SOC can always 
be from 0 (fully discharged) to 1 (fully charged), SOH is 
1 only at the time of manufacture and becomes 0.8 at its 
end-of-life (EOL). By being able to track the parameters 
correctly, one can design and control batteries much more 
effectively. Although the conventional ways of estimating 
SOC and SOH typically make use of several model-based 
and physics-based methods, a substantial amount of work is 
being made towards data-driven methods nowadays because 
of the incompleteness of the conventional methods. As for 
data-driven models, machine learning has been proven to 
demonstrate high accuracy, low computation, and the ability 
to learn from historical data, implicating its high feasibility 
to substitute the model-based and physics-based methods 
in the near future. The rest of this section describes various 
machine learning models that estimate SOC and SOH.

SOC estimation by BMS that leverages data-driven meth-
ods has been accomplished fairly well, with test errors that 
range from 0.6 to 6.5% [33]. Hu et al. [34] presented SOC 
estimation using support vector regression (SVR) with a 
Gaussian kernel for which a double-step search discovers the 
optimal parameters. Since EVs run in diverse driving condi-
tions in practice, parameters optimized using the available 
train data usually do not guarantee a good fit to unseen data 
unless the train data sufficiently reflects upon the real-world 
scenarios. The proposed methodology, however, exhibits a 
good generalization ability to test data under different oper-
ating conditions. Sahinoglu et al. [35] introduced a novel 
approach of a recurrent Gaussian process regression (GPR) 
in which SOC estimate from the previous time step is fed 
back to the model as part of the input vector. The probabil-
istic nature of GPR allows for the quantification of the confi-
dence intervals over the estimates and also for the identifica-
tion of influential variables on the output, which are practical 

advantages of GPR over other machine learning models. The 
proposed model outperforms other models such as SVR, 
relevance vector machine (RVM), and neural network (NN) 
in RMSE and MAE but falls short in terms of computation 
time. Neal et al. [36] used random forest, decision tree, and 
gradient boosted machine for SOC estimation of generated 
data using a physics-based simulation model. It is shown 
that they are generally capable of predicting the dynamics 
of the simulation model even though the computation times 
are much lower, implicating the high feasibility of machine 
learning as battery surrogate models.

Similarly, SOH estimation has been conducted using 
many machine learning approaches, and it turned out to 
be more challenging than SOC estimation. Nuhic et al. 
[37] presented SOH estimation on-board vehicles through 
SVR. The author creates an input training vector com-
posed of operation history and Load Collective, a feature 
that reflects upon the change in environment, ambient, and 
load conditions. The train and test sets are split so that the 
test data contains information under a different driving 
profile to mimic the real-life scenario as much as possi-
ble. Guo et al. [38] suggested a Bayesian formulation for 
the modeling of capacity fade where the coefficients of a 
linear regression model were formulated as probability 
distributions (e.g., normal distribution) to account for ran-
dom effects in cell-to-cell variations. As such, this study 
contributes to modeling the random effects inherent in 
between-battery variations, which were usually neglected 
in prior studies. Tseng et al. [39] stated that regression 
models that leverage fully discharge voltage and internal 
resistance as aging parameters could be more beneficial 
for SOH estimation than those with cycle numbers. The 
proposed regression model uses exponential terms with the 
aging parameters as input, and its coefficients are deter-
mined adaptively through particle swarm optimization. 
Khumprom et al. [40] demonstrated a deep neural network-
based approach and compared the performance against for-
merly used machine learning algorithms, including linear 
regression, k-nearest neighbors, SVR, and NN. Similarly, 
Ren et al. [41] showed a deep neural network framework 
but it additionally comprises of multi-dimensional feature 
extraction step through an autoencoder model. The unsu-
pervised way of feature extraction enables the exclusion 
of domain knowledge on the aging parameters. Severson 
et al. [42] used a simple neural network but with a differ-
ent optimization scheme, namely, elastic net, which places 
an additional particular regularization term. Several fea-
tures, including the variance of the voltage-to-capacity 
slope, are used as input features. This approach proved to 
be very effective, showing the state-of-the-art prognosis 
result with 9.1% test error at the first 100 cycle point on 
the provided open dataset.
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To conclude, what mainly determined an accurate 
prognosis result on SOC and SOH estimation is not the 
machine learning approaches, but rather the aging param-
eters extracted based on authors' expert knowledge about 
the battery degradation. Furthermore, there is still room for 
improvement in the related studies since most of the experi-
mental conditions are not fully representative of the real-
world scenario, and the results for SOH and RUL estima-
tion seem to be not accurate enough as of yet. It is advised 
to overcome these unsolved issues by tackling the hybrid 
approach that incorporates prior knowledge with more com-
plex models in deep learning and reduces computational 
load. The reviewed studies in this section are summarized 
in Table 2.

2.3 � Robotics

Robotics is one area that has been stimulated by the rise of 
AI to be at the core of automation and intelligent manufac-
turing process because a robot is what physically realizes 
the automation by the programmed movement of objects. A 
robot, however, can imply a different form of itself depend-
ing on the objective for which it is used. For example, a 
robot at the assembly line of the automobile industry typi-
cally reminds the general public of a dynamic multi-joint 
arm, whereas one in the military may look like a four-
legged animal that can freely run, jump, and crawl around 
on bumpy terrain. Although they may differ in their looks, 
there are characteristics that all robots should share in com-
mon. All robots should have the capabilities to overcome 

the following challenges in order to operate as semi or fully 
autonomous robots [43]:

Challenge 1 and 2: learn complex, high dimensional 
dynamics and recognize an object
Challenge 3: learn control policy in a dynamic environ-
ment

The listed challenges are generally confronted by robots 
in a scenario where they need to process and comprehend 
given signal such as image and GPS signal (Challenge 1), 
spot any objects of interest nearby (Challenge 2), and stop 
moving and find another way if faced by an obstacle (Chal-
lenge 3).

Understanding the complex meaning behind a spotted 
scene or an image requires a model to learn and find a hid-
den pattern or knowledge from a large dataset in a similar 
context. Mariolis et al. [44] demonstrated that a robot could 
recognize the category (shirt, pants, and towel) and pose of 
hung garments through deep CNN, which has previously 
been considered a very challenging problem in computer 
vision due to the intricate state space of such highly deform-
able objects. Gao et al. [45] fused two branches of CNN, a 
visual CNN and a haptic CNN, so that robots can get a bet-
ter tactile understanding of an object, stressing the fact that 
humans also benefit from a cognitive pattern where both vis-
ual and haptic experiences of the physical world are involved 
for the understanding of things. To imitate such patterns, 
the branch of visual CNN is fed with real-world images of 
an object, while the haptic CNN branch is fed with signals 
of five types of physical quantities (e.g., fluid pressure and 

Table 2   An overview of the surveyed literature regarding the battery

Reference nos. Data type Data publicity/openness Task Algorithm/model

[34] Sensor signal (current, tem-
perature, power, etc.)

Yes (ADVISOR simulator) Regression (SOC estimation) SVR

[35] Sensor signal (voltage, current, 
temperature)

No Regression (SOC estimation) Recurrent GPR

[36] Sensor signal Yes (P2D model) Regression (SOC estimation) DTs, RFs, GBMs
[37] Sensor signal (current, tem-

perature, time, cycle number)
No Regression (SOH and RUL 

estimation)
SVM

[38] Sensor signal (SOC, cycle 
number)

No Regression (SOH and RUL 
estimation)

Bayesian method

[39] Sensor signal (voltage, internal 
resistance, cycle number)

No Regression (SOH and RUL 
estimation)

Statistical method (polynomial/
exponential model + PSO 
optimization)

[40] Sensor signal 
( R

W
,R

E
,R

CT
,C

DL
)

Yes (NASA PCoE database) Regression (SOH and RUL 
estimation)

DNN

[41] Sensor signal (voltage, current, 
temperature, cycle number)

Yes (NASA PCoE database) Regression (RUL estimation) Deep Auto-encoder

[42] Sensor signal (voltage, current, 
temperature, cycle number, 
charging time)

Yes (provided by the author) Regression (RUL estimation) Elastic net
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core temperature.). The proposed model shows a high clas-
sification accuracy of objects initially labeled as 24 different 
haptic adjectives (e.g., bumpy, soft, porous, compressible, 
sticky, and textured). Polydoros et al. [46] proved the supe-
riority of deep learning models in the learning of inverse 
dynamics of a robotic manipulator. The study suggests 
replacing the conventional physics-based models that can-
not cope with the change in robot structure and dynamic 
environments with the proposed model, which is largely a 
DNN with one hidden layer modeled as an RNN. Similarly, 
Lenz et al. [47] used a deep learning-based framework called 
DeepMPC to handle robotic food-cutting, wherein a deep 
recurrent model is devised to model a time-varying non-
linear dynamics involved in the task. The study shows that 
the model which implements recursive learning of internal 
representation as a new control signal is given constantly 
improves the prediction output, implying that deep learning 
can be very efficient in learning complex and high-dimen-
sional dynamics.

In particular, reinforcement learning, a subfield of 
machine learning, is widely adopted for learning control 
policies (Challenge 3) in robotics. This is mainly because 
reinforcement learning involves a computational agent that 
makes decisions by trial and error, and it has been shown to 
be highly efficient in modeling human-like cognitive behav-
ior in the real world. Lillicrap et al. [48] presented a model-
free algorithm based on Deep Q-Network (DQN) that can 
operate over continuous action space. It is shown that even 
without getting full access to the dynamics of the domain, it 
outperforms the conventional planning algorithms with full 
access on more than 20 simulated physics tasks, including 
cart pole swing-up. This is made possible by adapting DQN 
to continuous domains by simply discretizing the action 
space. On the other hand, Levine et al. [49] developed end-
to-end learning of control policies by a novel CNN archi-
tecture trained using a guided policy search method. The 
method is evaluated by learning control policies for several 

physics tasks, such as placing a coat hanger on a rack with 
a robot. Such tasks require object localization, tracking, 
and understanding of contact dynamics. It is demonstrated 
that rather than training the perception and control systems 
separately, it is better to do it in an end-to-end fashion. The 
reviewed studies in this section are summarized in Table 3.

2.4 � Renewable energy

In this renewable energy section, wind energy and photo-
voltaic energy are thoroughly discussed. Nowadays, wind 
energy is one of the most important  renewable energy 
sources. The market is growing and maturing itself, so it is 
necessary to improve operation stability, maintenance, and 
efficiency. Forecasting and monitoring energy production, 
fault detection and diagnosis (FDD), parameter optimization 

Table 3   An overview of the surveyed literature regarding the robotics

Reference nos. Data type Data publicity/openness Task Algorithm/model

[44] Depth image Yes (RD1 dataset) Classification (category estima-
tion)

Regression
(pose estimation)

CNN

[45] Vision image, haptic signal Yes (MINC and PHAC-2 
dataset)

Classification (category estima-
tion)

CNN-LSTM, ConvNet, 
GoogleNet

[46] Sensor signal (position, 
velocity and acceleration)

Yes (Sarcos and Barret dataset) Regression (dynamics mod-
eling)

GHL (Generalized Hebbian 
Learning), RNN, Bayesian 
linear regression

[48] Vision image No Regression
(dynamics modeling)

DQN

[49] Vision image No Regression
(dynamics modeling)

CNN + policy search method

Fig. 2   Components of a wind turbine
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in wind energy systems are crucial. Here, we discuss FDD 
applied in the wind turbine (WT), which contains the fol-
lowing components: rotor, blade, gearbox, and bearing, as 
shown in Fig. 2 [50].

First, the WT component with a significant failure rate 
and downtime is the rotor blade. As the main fault, struc-
tural damage such as splitting, fatigue, wear, deterioration, 
deflection occurs [51]. Due to the prolonged maintenance 
time during a shutdown cycle, manual inspection, which 
is the most general method, accompanies tiresome human 
involvement. To avoid such an inefficient procedure, Reddy 
et al. [52]. suggested that an unmanned aerial vehicle (UAV) 
with optical cameras can monitor WT surface damage and 
noticeable visual features. By training a CNN with photos 
collected by UAVs and based on the intensity of the dam-
age with feature recognition of a picture, structural health 
monitoring of WT blades can be conducted. Liu et al. [53] 
developed a stiffness prediction method for WT blades built 
on deep learning networks. To achieve the prediction using 
historical fatigue stiffness data, three training models, CNN, 
LSTM, and CNN-LSTM, are used. The results show that the 
models can learn features straight from raw stiffness data 
and estimate residual stiffness. Combining the strength of 
different single network models such as CNN and LSTM, 
CNN-LSTM is shown to complement the weakness of a sin-
gle network. Kong et al. [54] showed that the health state 
of WTs was precisely defined by careful attention to the 
shift details on the spatial and temporal scale of the SCADA 
data. The author suggested a condition monitoring system of 
WTs based on spatiotemporal features fusion by CNN and 
the gated recurrent unit (GRU). The WT will be considered 
abnormal if the index obtained from the online SCADA data 
exceeds the established threshold for the successive time. 
For standard working environments, the index will alter in 
the range of the threshold.

As a vital component in WTs, due to its long downtimes 
and complicated maintenance procedures, the gearbox 
commonly undergoes multiple failures, such as bearing 
damage, tooth breakage, and gear crack resulting in high 
maintenance cost. Jiang et al. [55] introduced a new archi-
tecture, MSCNN, which acquires high-level, robust fault 

characteristics at various time scales directly by hierarchi-
cal learning from complex raw vibration signals in a parallel 
way. It substitutes for better robustness against noises of a 
wide range than the conventional CNN, heavily relying on 
the hand-crafted features, thus mainly reducing the demand 
for prior information and time-consuming signal processing 
steps. Therefore, due to its end-to-end feature learning capa-
bility, the proposed method can offer a valuable alternative 
as a general-purpose classification technique for intelligent 
fault diagnosis. Radford et al. [56] proposed deep convolu-
tional generative adversarial networks (DCGANs) for health 
condition monitoring (HCM) in an unsupervised manner. In 
contrast with existing unsupervised models such as autoen-
coder (AE), Chen et al. [57] also utilized DCGAN for long-
term accurate HCM of a WT bearing. In these monitoring 
frameworks, the critical obstacle is establishing a threshold 
for detecting different health conditions. Based on DCGAN, 
a self-setting threshold scheme is proposed to overcome the 
drawback. As DCGAN is adequately trained, a threshold for 
HCM can be automatically generated through its output. The 
threshold value can be automatically created by the output 
of the G network in the DCGAN model. To this end, the 
whole scheme creates a self-setting HCM threshold based 
on a DCGAN model to observe a WT bearing.

Photovoltaics (PV) can provide electric energy directly 
from solar energy, and it is one of the promising renewable 
energy technologies. By converting sunlight photons directly 
into electricity, PV cells make energy conversion. As seen 
in Fig. 3, PV cells are arranged either in series or in parallel 
to form PV modules. PV modules constitute PV panels, and 
several PV panels make up a PV array. This section primar-
ily discusses the FDD of PV systems.

Deitsch et al. [58] proposed the general training sys-
tem for SVM and CNN for the automated identification 
of defects in a single PV cell image. Simonyan et al. [59] 
used deep convolutional networks consisting of up to 19 
convolution layers (VGG-19) and stated that representation 
depth is beneficial for classification accuracy. Alcantarilla 
et al. [60] suggested a KAZE feature related to the analogy 
with nonlinear diffusion processes in the image domain. 
This method is for multiscale 2D feature detection and 

Fig. 3   PV cell, module, panel, and array



119International Journal of Precision Engineering and Manufacturing (2022) 23:111–129	

1 3

description in nonlinear scale-spaces. Deitsch et al. [58] 
suggested a fine-tuned regression CNN based on VGG-19, 
which is trained on enhanced module images. Both SVM 
and CNN classifiers fulfill equally well on monocrystal-
line and polycrystalline PV modules, with just a negligible 
advantage on average for the CNN. Cautiously built SVMs 
are trained on diverse features derived from PV cells EL 
images but can operate on random hardware. On the more 
inhomogeneous polycrystalline cells, however, the CNN 
classifier outperforms the SVM classifier by around 6% 
accuracy. Both automatic methodologies make constant, 
exceptionally accurate monitoring of PV cells feasible. 
For the diagnosis of different types of observable module 
defects, Li et al. [61] proposed an automated UAV-based 
deep-learning CNN inspection method in order to deter-
mine the operational status of PV modules. The principle 
of the technique is to obtain in-depth features from module 
images and conduct pattern recognition of defects. The 
alternating convolution and sub-sampling operations are 
first conducted at CNN, and then a generalized multi-layer 
network is eventually implemented. For the completely 
linked sheet, the output is flattened as a vector, and the 
softmax function is exploited to identify the gained fea-
tures to several classes. The result supports its usefulness 
with high precision in diagnosing numerous types of PV 
modules' general defects, including dust shading, encap-
sulant delamination, gridline corrosion, snail trails, and 
yellowing.

For faults detection in PV panels, Herraiz et al. [62] sug-
gested a novel approach that uses a UAV-embedded ther-
mographic camera to detect hot spots and set their positions 
on PV panels. To produce a stable detection structure, two 
novel region-based convolutional neural networks (R-CNNs) 
are unified. The combination of thermography and telemetry 
data to respond to panel condition monitoring is the key 
contribution. The data is collected and then converted auto-
matically, facilitating fault detection during the examination. 
To encourage the performance, durability, and protection of 
PV systems, automated FDD techniques for PV arrays are 
critical. Belaout et al. [63]. suggested a multiclass adap-
tive neuro-fuzzy classifier (MC-NFC) for automated PV 
array fault detection and classification, with more discrimi-
native capability compared to an artificial neural network 
(ANN) classifier. Adopting space dimensionality reduction 
techniques provides the classifier with a clean way to select 
their inputs, strong classification precision, and lower space 
dimensionality characteristics to speed up the classification 
process. Chen et al. [64] presented a smart FDD method 
for PV arrays based on a newly designed deep residual net-
work model trained by the algorithm of adaptive moment 
estimation. The proposed model can automatically extract 
features from raw current–voltage curves, atmospheric irra-
diance, and temperature and effectively boost efficiency with 

a deeper network. Based on the output I-V characteristic 
curves and input ambient condition details, the method can 
detect numerous types and levels of typical early PV array 
faults, including partial shading, loss, short circuit, and open 
circuit faults.

One of the major difficulties in PV solar power production 
is holding the designed PV systems running with the optimal 
operating performance. Harrou et al. [65] proposed a model-
based anomaly detection method for tracking the DC side 
of PV systems and transient shading. To replicate the moni-
tored photovoltaic array characteristics, a model based on 
the one-diode model with binary clustering algorithms for 
more accurate fault detection is set up. The residuals from 
the simulation model are then exposed to a one-class support 
vector machine (1-SVM) protocol for fault detection.

In this section, many deep learning methods for monitor-
ing the system and detecting faults are discussed. Most stud-
ies seemed to be adaptable to only a small part of the system, 
so future works are needed to focus on big data from variable 
sensors. Some novel approaches have not yet been applied 
to the practical operation environments due to the limitation 
of large-scale, high-quality data, and intensely minimized 
images, and so on. The reviewed studies in this section are 
summarized in Table 4.

3 � Applications of AI for Manufacturing 
Process Enhancement

3.1 � Steel

Steel mills, also known as steelworks, are one of the most 
fundamental industries in the modern world, which special-
ize in steel production. In this section, AI applications in 
various steelmaking such as ironmaking, casting, rolling, 
and galvanizing are introduced. To achieve more sustain-
able production and environmentally beneficial methods, 
this steel section mostly discusses FDD, and comparative 
study of several techniques, modeling, and forecasting of 
production.

In ironmaking, a blast furnace (BF) is a key unit that con-
sumes more than 70% of the energy in the whole steelmak-
ing process. The ideal operation of the ironmaking method 
of BF relies greatly on the calculation of the molten iron 
quality (MIQ) indices. Zhou et al. [66] introduced a novel 
data-driven robust modeling process for the online estima-
tion and control of multivariate MIQ indices. First, for the 
MIQ indices, a nonlinear autoregressive exogenous (NARX) 
model is built to fully capture the nonlinear dynamics of the 
BF method. A multi-task transfer learning is then suggested 
to develop a new multi-output least-squares support vector 
regression (M-LS-SVR) to learn the NARX model, given 
that the standard LS-SVR does not directly cope with the 
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multi-output issue. It has been demonstrated that the evolved 
model not only provides operators with accurate MIQ infor-
mation to make an effective decision for optimum manufac-
turing operations with good consistency, adaptability, and 
robustness but also helps to implement input management 
of the BF process.

For slag quality, tapping temperature, and hot metal qual-
ity, the silicon content of the hot metal is also a significant 
characterization parameter in ironmaking process. Han et al. 
[67] suggested a parallelization scheme to build an SVM 
solution algorithm under the Hadoop platform to enhance 
the SVM solution speed on large data sample sets. On the 
Hadoop platform, dynamic estimation of blast furnace Si 
content is achieved. The greatest benefit of this algorithm 
is that, by way of the structural risk minimization theory, 
it can prevent dimensionality disasters with kernel features 
and realize the optimum generalization efficiency of the 
algorithm. The algorithm is primarily applicable to small 
sample results.

Another important mechanism is to forecast hot metal 
temperature (HMT) in a BF to ensure that the ironmaking 
process runs smoothly. By comparing deep and shallow pre-
dictive approaches, the current period and multi-step-ahead 
HMT prognosis are given by Zhang et al. [68]. From the 
point of implementation to an industrial BF, three advanced 
deep predictive models, including DNN, LSTM, and CNN, 
and seven successful shallow predictive models including 
partial least squares (PLS), locally weighted (LW)-PLS, 
Gaussian process regression (GPR), support vector regres-
sion (SVR), random forest (RF), boosted regression trees 
(BRT), and shallow neural network (SNN) are studied. The 

results demonstrated that the shallow neural network is pre-
ferred for current time HMT prediction. Moreover, GPR and 
SVR are selected for multi-step-ahead HMT predictions. 
The findings of the experiment are that PLS is the simplest 
approach with the cheapest cost of calculation but with less 
competitive prediction precision. In comparison, it is more 
expensive to calculate LW-PLS. Other than that, SNN and 
DNN are considered to attain better prediction precision in 
forecasting current time HMT than other techniques. SNN 
is favored for current HMT prediction because DNN has an 
acute model complexity and calculation expense than SNN. 
GPR and SVR are particularly appropriate for HMT fore-
casts of one hour ahead and two hours ahead. In comparison, 

Table 4   An overview of the surveyed literature regarding the renewable energy

Reference nos. Data type Data publicity/openness Task Algorithm/model

[52] Vision image No Classification (fault detection) CNN
[53] Sensor signal (stiffness) No Classification (stiffness predic-

tion)
CNN, LSTM, CNN-LSTM

[54] Vision image,
sensor signal

No Classification (fault diagnosis) CNN, GRU​

[55] Sensor signal (vibration) No Classification (fault detection) Multi-scale CNN
[57] Sensor signal (vibration) No Regression (fault diagnosis) DCGAN
[58] Electro-luminescence images Yes (provided by the author) Classification (fault detection) CNN, SVM
[61] Vision images Yes (available upon request) Classification (fault diagnosis) CNN
[62] Thermographic images,

telemetry data
No Classification (fault diagnosis) R-CNN

[63] Sensor signal (current, voltage, 
temperature and irradiance)

No Classification (fault detection) MC-NFC (Multiclass 
Adaptive Neuro-Fuzzy 
Classifier)

[64] Sensor signal (current, voltage, 
temperature, irradiance)

No Classification (fault diagnosis) ResNet

[65] Sensor signal (current, voltage, 
temperature, irradiance)

No Classification (anomaly detec-
tion)

One-class SVM

Fig. 4   Continuous casting process
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both the current period and multi-step-ahead HMT forecasts 
have been particularly inappropriate for LSTM and CNN.

Continuous casting is the procedure where molten steel is 
allowed to solidify. Such continuity of the process can save 
the cost of the casted steel. Moreover, carefully monitored 
and controlled casting can attain a high quality of steel casts. 
Early detection and prediction of the sticker, centerline seg-
regation, mold level, mold breakout, and slab consistency are 
the main issues in continuous casting. Therefore, fault iden-
tification and prediction in continuous casting are studied as 
a second aspect of the steel industry application. For a better 
understanding of continuous casting, Fig. 4 is shown below.

The most costly and hazardous problem of continuous 
casting is the breakout, which involves the loss of process-
ing time and substantial penalties for yield. The sticker, a 
part of a stranded shell, which adheres to a mold surface, is 
the common reason for the breakout. A temperature pattern 
in a mold heat map will detect stickers. By monitoring and 
analyzing the temperature data from the fiber optical sensors 
installed on a mold, Fasizullin et al. [69] presented a cyber-
physical system that detects stickers. The author developed 
a special CNN, which identifies a sticker pattern and can 
be used as a full-fledged replacement or an assistant of the 
existing algorithm. Such an approach was implemented as 
the sticker detection system (SDS), a method when CNN 
works alone and the breakout prevention system (BPS) is 
idle. The BPS + SDS approach suggests that, after the sticker 
warning from BPS, SDS analyzes only suspicious circum-
stances. The study demonstrates that CNN decreases the 
number of false alarms of the current algorithm.

Decreasing centerline segregation of casting slabs in the 
continuous casting process is an important parameter for a 
better mechanical property. For early detection of the center-
line segregation from operation input parameters measured 
in continuous cast steel slabs, Nieto et al. [70] showed a 
novel hybrid algorithm based on SVM combined with the 
particle swarm optimization (PSO). In addition, for compar-
ative purposes, the experimental results include an MLP and 
a multivariate adaptive regression splines (MARS) approach 
in conjunction with the PSO. First, the importance of each 
physical–chemical variable on the segregation is addressed 
via the model. Second, models are obtained for forecasting 
segregation. Then, regression with optimal hyper-parameters 
is conducted. When this hybrid PSO-SVM-based model with 
RBF kernel function is tested on an experimental dataset, 
the coefficient of determination and average width are equal 
to 0.98 and 0.97, respectively. Wu et al. [71] suggested a 
novel multiscale convolutional and recurrent neural network 
MCRNN architecture for which the input is converted at 
various scales and frequencies, recording both long-term 
patterns and short-term shifts in time series. The suggested 
system outperforms traditional time series classification 
approaches with improved feature representation. The 

experimental findings and comprehensive contrast with 
state-of-the-art techniques indicate the supremacy of the 
proposed MCRNN framework, which has adequate predic-
tion efficiency and strong potential to enhance the quality 
of casting slabs.

After the casting process, steel goes through the rolling 
mills to reduce the thickness and obtain high uniformity. In 
this process, a steel slab is placed between two rolls, and 
after undergoing several rolls, the thickness can be altered. 
The key factors in the rolling part are mainly based on the 
crown of the strip, temperature, rolling power, bending force, 
and flatness. Zhang et al. [72], for the dynamic rolling pro-
cess, suggested a nonlinear full condition monitoring model. 
First, for condition recognition, a dissimilarity index (DI) is 
decided, and a support vector model is developed to check 
the idle condition. Second, for sluggish feature analysis and 
co-integration analysis, t-distributed stochastic neighbor 
embedding (t-SNE) is utilized to remove nonlinear princi-
pal components. To gain a coil with a precise thickness after 
the rolling phase, it is important to pre-determine the exact 
rolling power.

Li et al. [73] proposed precise bending force prediction, 
which can enhance the control precision and flatness of the 
strip crown and further boost the strip shape quality. The 
author suggested six machine learning models, including 
ANN, SVR, classification and regression trees (CART), 
bagging regression tree (BRT), least absolute shrinkage and 
selection operator (LASSO), and gaussian process regres-
sion (GPR), which were implemented in the HSR process to 
predict the bending force. The findings indicate that GPR, 
with the best prediction precision, better stability, and rea-
sonable computational expense, is the optimal model for 
bending force prediction.

Strip shape prediction is a crucial task for a high-quality 
product. Sun et al. [74] proposed an ensemble algorithm, 
random forest (RF), to forecast hot-rolled strip crowns. 
To develop three machine learning models, namely SVM, 
regression tree (RT), and RF, parameter tuning based on 
mean squared error is carried out. Results reveal that RF is 
the most preferred model to strip crown prediction because 
of the accurate results. For profile and flatness predictions, 
Wang et al. [75] presented three hybrid models, including 
GA-MLP, MEAMLP, and PCA-MEA-MLP. In comparison 
with the hybrid GA-MLP model, the hybrid PCA-MEA-
MLP model established after dimensionality reduction of 
input variables by PCA can improve training time without 
decreasing model prediction accuracy, which is an important 
means of model simplification.

Hot-dip galvanizing is the process of submerging steel in 
a molten zinc bath to obtain corrosion resistance to protect 
the steel from harsh environments. As the last part of the 
steel industry application, the rest of this section discusses 
prediction and monitoring of tensile stress, yield stress, 



122	 International Journal of Precision Engineering and Manufacturing (2022) 23:111–129

1 3

ultimate tensile strength, coating weight, and coating thick-
ness of hot-dip galvanizing for a cost-effective process.

By controlling the main process parameters within 
defined limits, mechanical properties, that is, yield strength 
and ultimate tensile strength, are obtained in the galvanizing 
line of the cold rolling mill. In order to predict the mechani-
cal properties of a coil, Lalam et al. [76] used an ANN. To 
prevent the consequences of redundancy and collinearity of 
input variables for the ANN, a key component analysis is 
used. To monitor the predicted mechanical properties and 
process parameters of a galvanized coil, an online quality 
management system is established. Colla et al. [77] pre-
sented a machine learning-based system to enhance the 
homogeneity of tensile properties of steel strips. Two types 
of data-driven mechanical property prediction models have 
been adopted: a first-order polynomial model and a feed-
forward neural network (FFNN). The suggested system can 
improve its performance through time and keep up-to-date 
concerning the development of the product and evolving 
consumer demands.

Pan et al. [78] suggested an advanced neural network-
based coating weight control approach for hot-dip galva-
nizing lines. The framework consisted of a feedforward 
control (FFC) and feedback control (FBC), together with 
a neural network predictive model, a bias-update module, 
and a real-time optimizer. Through this framework, nonlin-
earity, large time-variant delays, disturbances, and unsyn-
chronized regulation of two manipulated variables (MVs) 
have been addressed. Both the coating weight variance and 
the transition time were greatly reduced as well. Mao et al. 
[79] introduced a groundbreaking neural network model 
consisting of the BP algorithm and the genetic algorithm 
for the first time to model and predict the thickness of 
the hot-dip galvanized zinc sheet. In the model, the major 
influences of the coating thickness such as the stripline 
speed, air knife pressure, air knife to strip distance, and 
air knife height are used as the model input parameters. 
Furthermore, the coating thickness is the model output 
parameter of the hot-dip galvanizing system. Simulations 
demonstrate that the GA-BP algorithm, as opposed to 
standard coating thickness models, increases estimation 

Table 5   An overview of the surveyed literature regarding the renewable energy

Reference nos. Data type Data 
publicity/
openness

Task Algorithm/model

[66] Sensor signal (temperature, pressure, 
speed, etc.)

No Regression (estimation of multivari-
ate MIQ indices)

M-LS-SVR (Multi-output Least-
Squares) + NARX

[67] Sensor signal (volume, flux, tempera-
ture, etc.)

Yes (avail-
able 
upon 
request)

Regression (Si content prediction) SVM

[68] Sensor signal (temperature, humidity, 
pressure, etc.)

No Regression (hot metal temperature 
prediction)

DNN, LSTM, CNN

[69] Sensor signal (temperature) No Regression (Sticker detection) CNN
[70] Sensor signal (flow, speed, etc.) No Regression (centerline segregation) PSO-SVM, PSO-MARS, MLP
[71] Sensor signal (mold level fluctuation) No Classification (casting slab quality 

prediction)
MCRNN

[72] Sensor signal (stationary and non-
stationary variables)

No Regression (condition monitoring) NCA, NSFA, SVDD

[73] Sensor signal (temperature, thickness, 
etc.)

No Regression (bending force prediction) ANN, SVR, CART, GPR, BRT, 
LASSO

[74] Sensor signal (thickness, temperature, 
etc.)

No Regression (strip crown prediction) SVC, RT, RF

[75] Sensor signal (thickness, width, etc.) No Regression (profile and flatness 
prediction)

GA-MLP, MEA-MLP, PCA-MEA-
MLP

[76] Sensor signal (temperature, etc.) No Regression (tensile strength predic-
tion)

ANN

[77] Sensor signal (thickness, speed, etc.) No Regression (yield strength and ulti-
mate tensile strength prediction)

ANN

[78] Sensor signal (air knife gap, pressure, 
etc.)

No Regression FFC, FBC

[79] Sensor signal (speed, pressure, etc.) No Regression (zinc layer thickness 
prediction)

PB-GA-BP
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precision and converges quicker and that it can be used as 
input in a closed loop zinc layer thickness control method.

In conclusion, in each steelmaking process, newly 
adopted AI-based methodologies are discussed. It can be 
seen that they can facilitate high precision and an intense 
monitoring system, unlike conventional supervised pro-
cesses, which are not profitable and efficient. However, 
some research still needs to be conducted further with 
more complex models or combined with other algorithms 
to improve its performance and reduce computational load. 
The reviewed studies in this section are summarized in 
Table 5.

3.2 � Semiconductor

The technological advancement of fast computing chips 
from the semiconductor industry has made possible the 
current status of AI for various engineering applications. 
However, the one-sided relationship is now beginning to 
shift to a bi-directional one as the growth of both sides is 
mutually beneficial: AI is about to change the semiconductor 
industry in return.

Generally, a semiconductor is processed on top of a sili-
con wafer. The wafer undergoes several procedures in which 
an insulator is formed through oxidation, a pattern is drawn 
by photolithography, etching is done using an etchant, a 
thin film is formed through evaporation or sputtering, and 
so on. These processes demand extremely high precision 
and thus prohibit anything (e.g., tiny dust) that may be a 
source of defect. Even though most semiconductor fabs are 
controlled under a near dust-free environment, defects that 
bring a severe impact on the yield are still detected in manu-
facturing lines due to other factors, including machine error 
and human mistakes. Approaches to detecting and localizing 
defects on wafers are twofold: image-based and signal-based 
fault detection. Here, studies that use both approaches are 
discussed.

The more common way of wafer fault detection is the 
intricate image-based detection through deep learning. Not 
only do defects indicate the specific fault location, but the 
way defects tend to cluster and form a pattern can also pro-
vide information on the root causes of malfunction. Imoto 
et al. [80] automated the classification process by using a 
CNN-based transfer learning method for monitoring the 
occurrence frequency of defect types that are useful for fig-
uring out the root causes of process failures. The author sug-
gests using transfer learning in a weakly supervised sense 
as there exists a massive incoherent labeled data in storage. 
The proposed methodology involves pre-training and fine-
tuning. The former is done with massive data containing 
numerous incorrect labels. After that, the parameters of 
only the final layers are fine-tuned using few highly reliable 
labeled data. Yang [81] achieved a classification accuracy of 

99.2% and 98.1% using CNN and extreme gradient boosting 
(XGBoost), respectively. Such high accuracy is achieved by 
carefully exploring the wafer map and finding out that the 
defect signature of the wafer appears to have some spatial 
correlations in the background, thereby transforming the 
images in a way to enhance the contrast between the signal 
and the background. The images are pre-processed using sin-
gular value decomposition (SVD) that eventually removed 
much noise around the defects. In addition, data augmenta-
tion (e.g., random cropping, rotating, resizing, and flipping) 
is conducted to obtain a better model. On the other hand, 
Tello et al. [82] classified both single-defect and mixed-
defect patterns using randomized general regression network 
(RGRN) and CNN. It is stated that previously reported stud-
ies on defect classifications mainly focus on single-defect 
patterns and thus utilize simple models. Here, three stages 
are involved for the classification. In the first stage, a spatial 
filter is applied to remove noise in raw images. Then, a split-
ter based on information gain theory generates rules to iden-
tify and separate single-defect and mixed defect patterns. 
Lastly, the single-defect classified data are fed to RGRN 
while mixed-defect ones are given to CNN for training and 
testing. The separation of pattern types using the splitter 
turns out to be more effective than the traditional end-to-
end deep learning techniques that are previously reported. 
O’Leary et al. [83] presented an interesting study where the 
classification of the chemical composition of particle defects 
was carried out. Although a simple CNN model is used, an 
investigation is made to validate the merge of spectral data 
from EDX spectroscopy with fully connected layers of CNN. 
The CNN, therefore, extracts features from input raw images 
as well as the spectral data simultaneously, and the results 
show a significant rise in overall classification accuracy.

The conventional method to inspect defects visually 
through a high-resolution camera faces limitations as it 
needs to be informed of all types of defects and their pos-
sible shapes in advance. Such inspection requires the labe-
ling of numerous defects of shapes of a wide spectrum, 
which usually accompanies error and tedious human labor. 
Therefore, it is necessary to make use of the larger portion 
of unlabeled wafer maps that are available for training. Yu 
et al. [84] devised a stacked convolutional sparse denoising 
autoencoder (SCSDAE) which is a combination of CNN 
and SDAE. A sparse autoencoder (SAE) is known to learn 
relatively sparse features as it constraints the learning pro-
cess by adding a sparse penalty term, thereby optimizing the 
network weights better than the standard AEs. Coupled with 
SAE, the denoising feature of the network provides robust-
ness in feature representation even if input data has been 
stochastically corrupted. Two SDAEs are involved in feature 
extraction steps that are further enhanced by convolution and 
max-pooling for learning even more discriminant features, 
hence the name SCSDAE. Nakazawa et al. [85] not only 
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detected abnormal defect patterns but also segmented them 
using an end-to-end deep convolutional encoder-decoder 
network. The proposed network is based on a fully convo-
lutional network (FCN) that comprises mostly convolution 
layers for segmentation. Segmentation of defect patterns 
allows for the extraction of supplementary information such 
as location, size, major and minor axis length, and orien-
tation. It is shown that it surpasses base architectures like 
FCN, SegNet, and U-Net in detection performance.

Even though image-based detection is taking over much 
of the highlights, there is a substantial amount of studies 
regarding signal-based methods. Lee et al. [86] showed 
that fault diagnosis to find root causes of process failures 
could be effectively carried out even using a black box 
CNN model. This is enabled particularly by tailoring 
the CNN’s receptive field over multivariate sensor sig-
nals along the time axis that allows for the association of 
its extracted features from hidden layers with the physi-
cal meaning of raw data. This further enables to locate 
the variable and time of process failures. Lee et al. [87] 
focused on reducing the noise while maintaining valuable 
information as much as possible for reliable and robust 
fault monitoring. For reducing the noise, the author pro-
poses SDAE for which several DAEs are pre-trained with 
latent representation from the previous time step given as 
input. Once the pre-training stage is done, the final layer is 
switched for defect classification, and further fine-tuning 
is carried out. The study shows that the proposed model is 

more robust as noise severity increased than twelve other 
machine learning models used for comparison. Kim et al. 
[88] used sensor data called status variables identifica-
tion (SVID) of varying lengths, which is important for 
early fault detection. The main difference of the proposed 
method from previous studies is that it shows robustness 
for SVID of different sequence lengths. Inspired by text 
classification in which sequences of varying length are 
encoded into a fixed-size vector, the author implements 
a self-attention mechanism to distribute attention over a 
fixed-size vector so that the model can pay attention to a 
certain time when faults occur. Azamfar et al. [89] solved 
the issue of data drift; that is, data distribution is shifted 
as operating conditions and environment are changed. In 
a real-world scenario, due to various disturbances, opera-
tors often face times when the testing conditions become 
different from the normal, which leads to differently dis-
tributed train and test data. The proposed model is no dif-
ferent from a standard CNN. However, it has an additional 
loss term called maximum mean discrepancy (MMD) loss 
which is a metric that quantifies the distribution discrep-
ancy between the source and the target domains. It is 
stated that the addition of the loss term contributes to a big 
increase in classification accuracy. Unlike previous works 
that mostly utilize CNNs, Kim et al. [90] showed that RNN 
could be used as anomaly detection at an early stage. The 
effectiveness of the method is that it can pre-detect anoma-
lies even if the model is not trained with defective data in 
advance. The model, so-called DeepNAP, consists of a 

Table 6   An overview of the surveyed literature regarding the semiconductor

Reference nos. Data type Data publicity/openness Task Algorithm/model

[80] Vision image No Classification (fault detection) CNN
[81] Vision image No Classification (pattern recog-

nition)
CNN + XGBoost

[82] Vision image No Classification (pattern recog-
nition)

RGRN (Randomized General 
Regression Network), 
DSCN (Deep Structured 
Convolutional Network)

[83] Vision image No Classification (fault detection) CNN
[84] Vision image Yes (synthesized wafer maps) Classification (pattern recog-

nition)
SCSDAE (Stacked Convo-

lutional Sparse Denoising 
Auto-encoder)

[85] Vision image Yes (synthesized wafer maps) Classification (fault detection 
and segmentation)

CAE

[86] Sensor signal (temperature, 
pressure, gas flow rate, etc.)

No Classification (fault detection) FDC-CNN

[87] Sensor signal (temperature, 
volume)

No Classification (fault detection) SdA (Stacked denoising Auto-
encoder)

[88] Sensor signal (SVID) No Classification (fault detection) Self-attentive CNN
[89] Sensor signal (machine state 

variables)
No Classification (fault detection) CNN

[90] Sensor signal No Classification (fault detection) DeepNAP
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detection module and a prediction module. The latter capi-
talize on the power of LSTM to forecast the future signal 
that is then passed to the detection module for latent repre-
sentation and anomaly detection. In the detection module, 
the early part of the LSTM output is treated as the target 
signal used for optimization under partial reconstruction 
loss function. The partial reconstruction loss provides 
higher anomaly scores on the defective parts of the input 
signal, making it suitable for such application. It is shown 
that the proposed model outperforms other baseline archi-
tectures on the pre-detection of anomalies. The reviewed 
studies in this section are summarized in Table 6.

4 � Conclusion

Applications of AI in manufacturing industries have 
been particularly challenging due to the demand for near 
immaculate modeling of highly nonlinear phenomena in 
a high-dimensional space. However, the vast amount of 
recent literature investigating AI in related industrial sec-
tors (Table 7) implies that although it is still in its infancy, 
it possesses huge potential as a modeling, analysis, and 
automation technique that can change the manufacturing 
paradigm in the near future. Apart from the aforemen-
tioned industrial sectors, it is widely studied for medical 
image analysis, bioinformatics, drug discovery, recom-
mendation systems, financial fraud detection, visual art 
processing, and military. Some of the renowned com-
mercial products that leverage the power of AI include 
'Alexa' by Amazon, 'Watson' by IBM, and 'AlphaGo' by 

DeepMind, and many more products without names have 
already penetrated our daily lives. Furthermore, to over-
come a number of limitations such as lack of interpret-
ability and performance degradation under data shortage 
that hinders broader applications of AI in the industries, 
sub-branches of deep learning including physics-informed 
deep learning, explainable AI, domain adaptation, active 
learning, multi-task learning, graph neural networks are 
actively being studied. The convergence of AI with other 
engineering sectors is promising, and it should not be 
overlooked. Therefore, through this review, we truly hope 
that the community of precision engineering and manufac-
turing finds a way to utilize the upcoming AI for future-
oriented manufacturing effectively.
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Autonomous vehicle Product enhancement Road detection [11–14]
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Environmental perception
(sensor fusion)

[18–22, 24–26]

Localization
(sensor fusion)

[27–29, 31, 32]

Battery SOC monitoring [34–36]
SOH monitoring [37–42]

Robotics Challenge 1&2 [44–47]
Challenge 3 [48, 49]

Renewable energy Wind energy [50–57]
Photovoltaics [58–65]

Steel Manufacturing process 
enhancement

Ironmaking [66–68]
Continuous casting [69–71]
Rolling [72–75]
Galvanizing [76–79]

Semiconductor Image-based [80–83]
Signal-based [84–90]
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