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Lightcone Modular Bootstrap and
Tauberian Theory: A Cardy-Like Formula
for Near-Extremal Black Holes

Sridip Pal and Jiaxin Qiao

Abstract. We show that for a unitary modular invariant 2D CFT with
central charge c > 1 and having a nonzero twist gap in the spectrum of
Virasoro primaries, for sufficiently large spin J , there always exist spin-
J operators with twist falling in the interval ( c−1

12
− ε, c−1

12
+ ε) with

ε = O(J−1/2 log J). We establish that the number of Virasoro primary op-

erators in such a window has a Cardy-like, i.e.,exp

(
2π

√
(c−1)J

6

)
growth.

A similar result is proven for a family of holographic CFTs with the twist
gap growing linearly in c and a uniform boundedness condition, in the
regime J � c3 � 1. From the perspective of near-extremal rotating BTZ
black holes (without electric charge), our result is valid when the Hawking
temperature is much lower than the “gap temperature.”
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1. Introduction

Understanding universal properties is of fundamental importance in the study
of physical phenomena. In the realm of two-dimensional conformal field theo-
ries (2D CFTs), a famous example is the Cardy formula [1]. The Cardy formula
establishes an asymptotic relation between the microcanonical entropy Sδ(Δ),
which counts the number of states with scaling dimensions Δ′ in a window1

(Δ − δ,Δ + δ), and the central charge c:

Sδ(Δ) := log

⎛
⎝ ∑

|Δ′−Δ|<δ

nΔ′

⎞
⎠ = 2π

√
cΔ
3

+ O(log Δ) (Δ → ∞), (1.1)

where nΔ denotes the number of states with scaling dimension Δ. Along with
its generalizations [2–16], it provides a universal connection between the high
energy spectrum of a CFT and its central charge. It has played a significant
role in the black hole physics, such as black hole microstate counting, the study
of the Hawking–Page phase transition and checking AdS/CFT correspondence
[17–22].

It has been recently realized that the Cardy formula holds only on average
[23,24](see also Appendix C of [6]), and its precise validity requires a more
rigorous treatment using Tauberian theory [25] (as explained in [26,27]). For

1The original Cardy formula assumes that the formula holds for some window size 2δ,
without being quantitatively precise about it.
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example, the formula (1.1) is shown to be valid for any fixed δ > 1
2 [23,24]. In

this paper, we prove a Cardy-like formula

SVir
κ (J) = 2π

√
c − 1

6
J + O(log(J)) (J → ∞), (1.2)

for Virasoro primaries near a “twist accumulation point.” Here, the micro-
canonical entropy SV ir

κ (J) is the logarithm of the number of spin-J Virasoro
primaries OΔ,J in a shrinking window of twist τ :∣∣∣∣τ − c − 1

12

∣∣∣∣ < 2κJ−1/2 log J, τ := Δ − J , κ >
(c − 1)3/2

4
√

6πτgap

fixed. (1.3)

where τgap is the twist gap in the spectrum of Virasoro primaries, and the
factor of 2 is just a convention.

Our primary focus is on the unitary modular invariant 2D CFTs with
central charge c > 1 and having a twist gap τgap > 0 in the spectrum of Vira-
soro primaries. We will study the CFT torus partition function in the so-called
double lightcone limit. In our recent work [28], we conducted a rigorous anal-
ysis of the torus partition function for these 2D CFTs under this limit. The
outcome of this analysis led to the establishment of a theorem that confirm
certain well-known claims previously discussed in the modular bootstrap liter-
ature [29–33]. In particular, it was shown in [28] that the theory must include
a family of Virasoro primary operators OΔ,J with

Δ, J → ∞, τ ≡ Δ − J → 2A

(
≡ c − 1

12

)
, (1.4)

where Δ = h + h̄ is scaling dimension and J = |h − h̄| is spin.2 This rigor-
ous framework gives us a powerful tool to investigate more detailed questions
about the universality of the fixed twist, large spin spectrum of operators in
such CFTs. One natural question that arises is: How many spin-J Virasoro
primary operators have a twist near c−1

12 ? The study of this question leads us
to Eq. (1.2).

The CFTs of the aforementioned kind are also recognized as being in the
class of irrational CFTs with Virasoro symmetry only.3 They are expected
to exhibit chaos and/or some form of random-matrix-like statistics in their
spectrum of primary operators. In particular, the spectrum of primary op-
erators are expected to have dense spacing in appropriate asymptotic sense.
Some of these expectations are byproduct of holography, where we know high
energy spectrum of dual CFT capture the black hole microstates. While we

2The definition of “spin” in this paper is different from the standard 2D CFT literature
[34]. There, the spin s is defined by s := h − h̄ (see eq. (5.21) of [34]) and is related to our
definition by J = |s|.
3 Concretely, the class of CFTs discussed in this paper is unitary, modular invariant with
c > 1, a unique normalizable vacuum, a twist gap in the spectrum of Virasoro primaries.

To the best of the authors’ knowledge, there is currently no explicitly known example of

such CFTs in the literature. Nevertheless, it is expected that such CFTs exist. For instance,

one might construct them by taking several copies of minimal model CFTs and applying a

suitable relevant deformation to the theory [35].
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expect the quantum systems dual to black hole to be chaotic, for example,
SYK [36], from a CFT perspective, it is far from obvious to see the imprint
of chaos (the recent explorations in this direction include [37–39] built upon
[40], see also [5,7–10,41–44] as well as [45–48]) in the spectrum of CFT op-
erators. For instance, in the regime of fixed spin and large Δ, it is expected
that the asymptotic spacing in Δ becomes exponentially small with respect
to the entropy, scaling as

√
Δ, and ultimately approaches zero. However, the

current best bound in this direction, without assuming a twist gap, is 1 as
established in [49,50], which represents an improvement upon the results of
[23]. It should be noted that this bound is optimal in the absence of a twist
gap but is expected to be sub-optimal when a twist gap is imposed.

In this paper, with the assumption of a twist gap τgap, we prove the
existence of a “dense” spectrum, characterized by a large number of Virasoro
primary states and power law decreasing spacing of twist, in the vicinity of a
specific fixed twist value τ = c−1

12 and for very large spin J .

• We prove a refined version of twist accumulation result. We rigorously
establish two-sided bounds for NJ (ε), the number of spin-J Virasoro
primary operators OΔ,J in a window |Δ − J − c−1

12 | � 2ε, and let ε scale
as ε = κJ−1/2 log J with κ > 12A3/2

πτgap
being a fixed positive number. In

the limit J → ∞, NJ grows as

NJ(ε ≡ κJ−1/2 log J) = e4π
√

AJ+O(log J) , (1.5)

which is equivalent to (1.2) via the relation SV ir
κ (J) ≡ log(NJ (ε ≡ κ

J−1/2 log J)). A more precise form of Eq. (1.5) is stated in 2.3, a corollary
of the main theorem 2.1, that we prove in this paper.

In this paper, we further consider a family of unitary modular invari-
ant 2D CFTs, including the large central charge limit A ≡ c−1

24 → ∞, such
that (a) the lower bound of the twist gap 2T grows at least linearly in central
charge, i.e., T/A � α > 0, and (b) their partition functions satisfy a uniform
boundedness condition, inspired by the HKS sparseness condition [22]. Holo-
graphically, this family of CFTs probes the near-extremal rotating BTZ black
holes, having a nearly AdS2 ×S1 throat. One expects a Schwarzian theory [51]
to describe such limit. We have the following main result:

• For a such a class of CFTs with sufficiently high central charge, we rigor-
ously estimate the number of operators OΔ,J with sufficiently large spin
J , scaling dimension Δ such that

Δ−J −2A ∈ (−ε1, ε2) ,

(
ε1 ≡ 1

πα

√
A

J
log (AJ) , ε2 ≡ 3

κ

√
A

J
(2πA + log J)

)
.

(1.6)
Here, κ is a fixed positive constant which takes value in the interval(
0, 7πα

8

)
.

In the limit A → ∞ and J/A3 → ∞, an analogue of (1.5) reads

NJ (ε1, ε2) = e4π
√

AJ+O(A)+O(log AJ) . (1.7)
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See Theorem 3.1 and its Corollary 3.3 for the precise version.

This result has a gravitational interpretation in terms of the near-extremal
rotating BTZ black holes with angular momentum J . The entropy of the near-
extremal rotating BTZ black hole is given by the formula

SBH ≈ 2π

√
c

6
J ≈ 4π

√
AJ, c =

3	3
2GN

� 1,

where 	3 is the radius of AdS3, GN is Newton’s constant, and c = 3�3
2GN

is the
Brown–Henneaux relation [52]. This formula is known in the standard black
hole thermodynamics. Our result supports the thermodynamic description of
the near-extremal black holes when the Hawking temperature TH, given by
TH = β−1, falls within a certain regime:

const ×
√

c/J

α
� TH � 1/c. (1.8)

In particular, the Hawking temperature is much lower than the “gap temper-
ature” c−1.

We leverage existing techniques to analyze the partition function in the
lightcone limit with complex βL or βR. While the estimates related to the light-
cone bootstrap were already given in [28], they were applicable for partition
function evaluated at real βL and βR. The main technical challenge for us is
to uplift the aforementioned rigorous estimate as done in [28] so that it applies
to the partition function for complex βL or βR and we are able to learn about
the large spin, small twist spectra. We achieve this by using the Tauberian
theory techniques developed in [23,50] to analyze the partition function for
complex β albeit in the high temperature limit (not the lightcone limit). Our
main contribution in this paper lies in combining these techniques to analyze
the partition function in the lightcone limit with complex βL or βR, leading
to the main results of this paper. We view our results as a stepping stone
toward a rigorous understanding of chaotic irrational CFTs, although it has
not yet been established in a general c > 1 irrational CFT with a twist gap.
We anticipate that with further effort, by utilizing the fact that in the double
lightcone limit, the conformal blocks exhibit approximate factorization (see
[28], Appendix A), and a similar analysis can be applied to CFT four-point
functions [53,54], using the techniques explained in [27] and [28,55].

The paper is organized as follows. In Sect. 2, we present the proof of
the Cardy-like formula (1.2), and the main results of this section are sum-
marized in Theorem 2.1 and its Corollary 2.3. Appendices A and B provide
additional technical details related to this section. Moving on to Sect. 3, we
focus on holographic CFTs and investigate the limit of large central charge,
c → ∞. The main results of this section are summarized in Theorem 3.1 and
its Corollary 3.3. Then, we discuss the connection between our results and
the thermodynamics of near-extremal rotating BTZ black holes. In Sect. 4, we
make conclusions and discuss some potential future directions.
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2. Modular Bootstrap

2.1. Setup

We consider a unitary, modular invariant 2D CFT with central charge c > 1,
a (unique) normalizable vacuum and a positive twist gap τgap > 0 in the
spectrum of Virasoro primaries. The torus partition function Z(βL, βR) of
such a CFT is defined by

Z(βL, βR) ≡ TrHCFT

(
e−βL(L0− c

24 )e−βR(L̄0− c
24 )

)
. (2.1)

where βL and βR are the inverse temperatures of the left and right movers, L0

and L̄0 are the standard Virasoro algebra generators, and HCFT is the CFT
Hilbert space which is assumed to be the direct sum of Virasoro representations
characterized by conformal weights h and h̄

HCFT =
⊕
h,h̄

Vh ⊗ Vh̄. (2.2)

The twist gap assumption means that h, h̄ � τgap/2 for all representations
except the vacuum representation (h = h̄ = 0). Using Eqs. (2.1) and (2.2),
the torus partition function can be written as a sum of Virasoro characters
χh(βL)χ(βR) over primaries

Z(βL, βR) =
∑
h,h̄

nh,h̄ χh(βL)χh̄(βR), (2.3)

where nh,h̄ counts the degeneracy of the Virasoro primaries with conformal
weights h and h̄. For c > 1, the characters of Virasoro unitary representations
are given by

χh(β) ≡ TrVh

(
e−β(L0− c

24 )
)

=
e

c−1
24 β

η(β)
×

{
1 − e−β if h = 0,

e−βh if h > 0,
(2.4)

where the Dedekind eta function η(β) ≡ e−β/24
∞∏

n=1
(1−e−nβ) accounts for the

contribution of descendants. Then, we have

Z(βL, βR) =
Z̃(βL, βR)
η(βL)η(βR)

, (2.5)

where the reduced partition function Z̃ is given by

Z̃(βL, βR) = eA(βL+βR)

⎡
⎣(1 − e−βL)(1 − e−βR) +

∑
h,h̄�T

nh,h̄ e−βLh−βRh̄

⎤
⎦ .

(2.6)
Here, we have denoted A ≡ c−1

24 and T ≡ τgap/2 for convenience. nh,h̄ is the
degeneracy of the Virasoro primaries with conformal weights h and h̄. The first
term in the square bracket corresponds to the contribution from the vacuum
state, while the second term represents the total contribution from Virasoro
primaries with twists above the twist gap.
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The above formulations assumed a discrete spectrum. The argument be-
low also works for the continuum spectrum.4A more uniform way to write
Eq. (2.6), applicable to both the a) continuum and b) discrete spectrum is the
following

Z̃(βL, βR) = eA(βL+βR)
[
(1 − e−βL)(1 − e−βR)

+
∫ ∞

T

dh

∫ ∞

T

dh̄ ρ(h, h̄)e−βLh−βRh̄

]
.

(2.7)

Here, ρ is a nonnegative spectral density of Virasoro primaries. In the case of
discrete spectrum, ρ is related to nh,h̄ by

ρ(h, h̄) =
∑

h′,h̄′�T

nh′,h̄′δ(h − h′)δ(h̄ − h̄′). (2.8)

We assume that (a) the partition function Z (or equivalently Z̃) for a
given CFT is finite when βL, βR ∈ (0,∞); (b) Z is modular invariant, i.e.,
Z(βL, βR) is invariant under the transformations generated by

(βL, βR) →(βL + 2πi, βR − 2πi),

(βL, βR) →
(

4π2

βL
,
4π2

βR

)
.

(2.9)

The invariance under the first transformation implies that the spin J :=
∣∣h − h̄

∣∣
of any Virasoro primary state must be an integer. The invariance condition
under the second transformation (which is called S modular transformation),

Z(βL, βR) = Z

(
4π2

βL
,
4π2

βR

)
, (2.10)

can be formulated in terms of reduced partition function Z̃ as follows. By (a)
and the positivity of the spectral density, the convergence domain of Z(βL, βR)
(or equivalently Z̃(βL, βR)) can be extended to the complex domain of (βL, βR)
with5

Re(βL),Re(βR) ∈ (0,∞). (2.11)

Since under S modular transformation, η behaves as η(β) =
√

2π
β η( 4π2

β ),

Eqs. (2.5) and (2.10) imply that Z̃ transforms as

Z̃(βL, βR) =

√
4π2

βLβR
Z̃

(
4π2

βL
,
4π2

βR

)
. (2.12)

Notice that the complex domain (2.11) is preserved by the S modular trans-
formation. Therefore, we have two convergent expansions of Z̃(βL, βR) for
(βL, βR) in the domain (2.11):

• Direct channel: expanding l.h.s. of (2.12) in terms of (2.7).

4 By “continuum spectrum” we mean the case where h + h̄ takes continuous values, while
h − h̄ still takes integer values.
5This justifies why the first modular transformation is well defined on the partition function.
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• Dual channel: expanding r.h.s. of (2.12) in terms of (2.7) (with βL, βR

replaced by 4π2

βL
, 4π2

βR
).

2.2. Review of the Twist Accumulation Point

Under the above setup, one can show that in the theory, there is at least one
family of Virasoro primaries Oi with hi → A and h̄i → ∞ [28,29,32,33]. In
other words, (h = A, h̄ = ∞) is an accumulation point in the spectrum of
Virasoro primaries. The same is true with h and h̄ interchanged. Here, let us
briefly explain why it is true. For more technical details, see [28], section 3.

We consider the reduced partition function Z̃(βL, βR) for real and positive
(βL, βR). We take the double lightcone (DLC) limit, defined by6

DLC limit: βL → ∞, βR → 0, b(βL, βR) :=
4π2T

AβR
− βL − 3

A
log(βL) → ∞.

(2.13)
By the [. . .] factor in the r.h.s. of (2.6), the limit βL → ∞ favors the contribu-
tion from the lowest h (i.e., the vacuum term), while the limit βR → 0 favors
the accumulative contribution from high h̄. The important feature of the DLC
limit (2.13) is that βR approaches 0 much faster than βL approaches ∞ (where
the introduction of the logarithmic term in b(βL, βR) is just for technical rea-
son), so the high-h̄ contribution wins. However, if we look at same limit from
the dual-channel point of view, i.e., the expansion of the r.h.s. of (2.12) in terms

of e
− 4π2

βL and e
− 4π2

βR , the limit 4π2

βR
→ ∞ is much faster than the limit 4π2

βL
→ 0,

so the vacuum term wins in the dual channel. Based on this argument, one can
show that in the DLC limit, the partition function Z̃(βL, βR) is dominated by
the vacuum term (the first term in Eq. (2.6)) in the dual channel, i.e.,

lim
DLC

Z̃(βL, βR)
8π3

β
3/2
L β

1/2
R

e
4π2A

βR

= 1. (2.14)

Here, the denominator is the asymptotic behavior of the vacuum term in the
dual channel:√

4π2

βLβR
Z̃vac

(
4π2

βL
,
4π2

βR

)
≡
√

4π2

βLβR
e
A
(

4π2
βL

+ 4π2
βR

) (
1 − e

− 4π2
βL

)(
1 − e

− 4π2
βR

)

∼ 8π3

β
3/2
L β

1/2
R

e
4π2A

βR (βL → ∞, βR → 0).

(2.15)
Now, we consider the direct channel (i.e., the l.h.s. of Eq. (2.12)) and ask
which part of the spectrum in the direct channel contributes to the asymptotic
behavior (2.14). Let Ω denote a set of (h, h̄) pairs, subject to the condition

6The “DLC” limit defined in this context is referred to as the “M∗” limit in [28]. In that work,
two distinct lightcone bootstrap problems were discussed, and the “M∗” limit, specifically
the modular double lightcone limit, was employed to differentiate it from the DLC limit in
the other problem.
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that Ω excludes the vacuum state represented by the pair (0, 0). We define Z̃Ω

to be the partial sum of Eq. (2.6) with (h, h̄) ∈ Ω:

Z̃Ω(βL, βR) :=
∑

(h,h̄)∈Ω

nh,h̄ e−βLh−βRh̄

(2.16)

In what follows, we will only state the conditions of Ω, e.g., Z̃h�A+ε is the
same as Z̃Ω with Ω = [A + ε,∞) × (0,∞).

The claim is that in the DLC limit, the direct channel is dominated by
the sum over h ∈ (A − ε,A + ε) and h̄ � h̄∗:

lim
DLC

Z̃h∈(A−ε,A+ε),h̄�h̄∗ (βL, βR)

8π3

β
3/2
L β

1/2
R

e
4π2A

βR

= 1. (2.17)

Here, ε > 0 can be arbitrarily small and h̄∗ can be arbitrarily large. (But they
are fixed when we take the DLC limit.) To prove this claim [28], demonstrated
that in the direct channel, the total contribution from other (h, h̄) pairs is
suppressed compared to the dual-channel vacuum term. The main idea of the
proof involves decomposing the contributions into three distinct parts::

(1) h = h̄ = 0 (vacuum), (2) T � h � A − ε (lower twist),
(3) h � A + ε (higher twist).

In the DLC limit, a direct computation reveals that the contribution from
part (1) is subleading in comparison with Eq. (2.15). Similarly, the contribu-
tion from part (3) is also subleading. This is primarily due to the fact that
e(A−h)βL � e−εβL , which decays exponentially as βL → ∞. The subleading
nature of the contribution from part (2), however, is not immediately obvi-
ous. This is because e(A−h)βL � eεβL , which grows exponentially as βL → ∞.
Moreover, as βR → 0, the contribution from part (2) becomes increasingly
significant, accruing a greater high-h̄ contribution. Nonetheless, it remains
subleading due to the modular invariance condition (2.12). This condition ef-
fectively restricts the density of the high-h̄ spectrum, thereby preventing the

emergence of an e
4π2A

βR behavior.
As a consequence of (2.17), (h = A, h̄ = ∞) must be an accumulation

point in the spectrum. Otherwise one can find sufficiently small ε and suffi-
ciently large h̄∗ such that Z̃h∈(A−ε,A+ε),h̄�h̄∗ = 0, contradicting Eq. (2.17). By
interchanging the roles of βL and βR in the above argument, we can show that
(h = ∞, h̄ = A) is also an accumulation point in the spectrum.

In terms of scaling dimension Δ = h + h̄ and spin J = |h − h̄|, the above
argument implies that the theory must include a family of Virasoro primary
operators OΔ,J with

Δ, J → ∞, Δ − J → 2A

(
≡ c − 1

12

)
. (2.18)

Given that Δ − J is conventionally defined as the “twist” of the operator in
CFT literature, we refer to the point where h = A and h̄ = ∞ as a “twist
accumulation point.” For general CFTs, (2.18) is slightly weaker than the
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existence of both (h → ∞, h̄ → A) and (h → A, h̄ → ∞) families. In a CFT
with conserved parity, these two statements are the equivalent.

Before concluding this subsection, we would like to point out the roles of
the properties of the coefficients nh,h̄ (or the spectral density ρ(h, h̄)). Through-
out the above argument, the crucial requirement was the absolute convergence
of Eq. (2.6) (or Eq. (2.7)) within the range βL, βR ∈ (0,+∞). This absolute
convergence is a consequence of the positivity of the coefficients and their
convergence property in the same regime. However, it is noteworthy that our
conclusion regarding the twist accumulation point remains valid even if the co-
efficients become negative or complex, provided that absolute convergence is
maintained. Additionally, it is not necessary for the nh,h̄ values to be integers,
this is a key factor in the applicability of our argument to the continuum spec-
trum. Furthermore, the above argument does not require that nh,h̄ or ρ(h, h̄)
be supported only at points where h − h̄ ∈ Z.

In summary, any modular invariant function Z̃(βL, βR) that possesses an
absolutely convergent expansion as defined in (2.6) or (2.7) will exhibit a twist
accumulation point (h = A, h̄ = ∞).

However, for the specific results of this paper, the positivity of nh,h̄ and
the constraint of integer-spin h − h̄ ∈ Z are significant in our analysis. It is
important to note, though, that the nh,h̄ values are not necessarily required to
be integers.

2.3. Main Theorem

In the previous subsection, we reviewed that in the double lightcone limit,
the dominant contribution to the reduced partition function Z̃(βL, βR) comes
from the spectrum with high spin and twist near 2A in the direct channel,
while the vacuum state (h = h̄ = 0) dominates in the dual channel. This
observation implies a connection between the spectral density ρ(h, h̄) (as given
by Eq. (2.7)) near the accumulation point (h = A, h̄ = ∞) and the vacuum
term of the partition function in the dual channel. In fact, by conducting a
more thorough analysis of the arguments presented in [28], we can not only
establish the existence of an infinite number of operators near the accumulation
point (h = A, h̄ = ∞) but also estimate how many such operators there are.
To achieve this quantitative understanding, we will employ Tauberian theory
[25], building upon similar reasoning presented in [23,50], and integrate it with
the arguments put forth in [28]. This combined approach will be the focus of
the remaining sections in this paper.

The object we are going to study is the total number of Virasoro primaries
with h in the range (A − ε,A + ε) and h̄ = h + J where the spin J is fixed.
This quantity is denoted as NJ (ε) and can be expressed as the sum of the
degeneracies nh,h+J of Virasoro primaries over the specified range of h:

NJ (ε) :=
∑

h∈(A−ε,A+ε)

nh,h+J . (2.19)

Our goal is to derive non-trivial asymptotic two-sided bounds on NJ(ε) in the
limit J → ∞ and ε → 0, under specific constraints between ε and J . However,
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due to technical limitations, a direct estimate of NJ(ε) is not feasible.7 To
overcome this, we introduce another quantity AJ(βL, ε) by assigning a βL-
dependent weight to each degeneracy nh,h̄ of Virasoro primaries:

AJ(βL, ε) :=
∑

h∈(A−ε,A+ε)

nh,h+Je−(h−A)βL . (2.20)

Importantly, NJ(ε) and AJ(βL, ε) are related by the following inequality:

e−εβLAJ(βL, ε) � NJ(ε) � eεβLAJ(βL, ε). (2.21)

This inequality provides an upper and lower bound for NJ (ε) in terms of
AJ(βL, ε), with a dependence on the parameter ε and the inverse temperature
βL. So our approach involves two main steps. First, we will derive asymp-
totic two-sided bounds for AJ(βL, ε). Then, we will use Eq. (2.21) to obtain
corresponding bounds for NJ (ε).

To estimate AJ(βL, ε), we introduce the DLCw (double lightcone) limit
defined as follows:

DLCw limit : βL, J → ∞,
2πT (1 − w2)

A

√
J

A
− βL → ∞ ,

β−1
L log J → 0 .

(2.22)

The reason we still refer to it as the “DLC” limit, similar to (2.13), will become
clearer later. For now, a brief explanation is that by introducing the additional
identification

βR = 2π

√
A

J
,

(2.22) becomes a slightly stronger form of (2.13). We will revisit this point
later around (2.41).

With the aforementioned setup, we present our main theorem as follows:

Theorem 2.1. Take any unitary, modular invariant 2D CFT with central charge
c > 1 (i.e., A ≡ c−1

24 > 0), a unique normalizable vacuum and a twist gap
τgap ≡ 2T > 0 in the spectrum of non-trivial Virasoro primaries.

Then for any w ∈ (
1
2 , 1

)
fixed, and ε within the range

εmin(βL, J) � ε � 1 − 1
2w

,

εmin(βL, J) := max
{

A3/2

πw2T

log J√
J

,
3 log J

4βL
+

2 log βL

βL

}
,

(2.23)

the quantity AJ , defined in (2.20), satisfies the following asymptotic two-sided
bounds in the DLCw limit (2.22):

1
w

1

1 − tan(πw(1−ε))
πw(1−ε)

� AJ(βL, ε)

4π5/2β
−3/2
L J−1/2e4π

√
AJ

� 1
w

2

1 + sin(2πwε)
2πwε

, (2.24)

7While it is possible to compute NJ (ε) directly on a case-by-case basis, our primary objective
in this paper is to derive universal behaviors of NJ (ε).
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which is uniform in ε. Here and throughout this paper, by a � b we mean

lim sup
a

b
� 1 (2.25)

in the considered limit.

Let’s make some remarks in Theorem 2.1:

Remark 2.2. (a) In Eq. (2.24), both upper and lower bounds are strictly pos-
itive quantities for the assumed ranges of w and ε. The upper bound is
always greater than the lower bound. This is because the upper bound
is consistently larger than 1

w , while the lower bound monotonically de-
creases with ε in the interval ε ∈ (

0, 1 − 1
2w

)
. Notably, when ε = 0,

the lower bound is less than or equal to 1
w . This observation provides a

consistency check for the validity of the two-sided bounds.
(b) The gap between the upper and lower bounds in Eq. (2.24) decreases

as we increase w (i.e., when a stronger DLCw limit is imposed) and
decrease ε. In the limit ε → 0 and w → 1, both the upper and lower
bounds converge to 1.

(c) In the DLCw limit, the lower bound εmin(βL, J) for ε approaches zero.
We note that our choice of εmin(βL, J) is not optimal with respect to the
method that we use, in the sense that the coefficients of the logarithms
in (2.23) can be further improved. But we expect that the current form
of εmin already captures its essential behavior in the double lightcone
limit, namely εmin = O(J−1/2 log J).

Using Theorem 2.1, we can obtain an estimate for NJ (ε). Let us consider
the following constraints, which are compatible with the DLCw limit (2.22)
(when J → ∞):

βL = 3κ−1J1/2, ε = κJ−1/2 log J

(
κ−1 <

2πT (1 − w2)
3A3/2

fixed
)

. (2.26)

Substituting these values into Eq. (2.21) and Theorem 2.1, and choosing, e.g.,
w2 = 3

4 , we obtain the following result:

Corollary 2.3. Given any fixed κ ∈
(

6A3/2

πT ,∞
)
, we have

NJ(ε ≡ κJ−1/2 log J) = J−5/4e4π
√

AJ+fκ(J), (2.27)

where the error term fκ(J) satisfies the bound

|fκ(J)| � 3 log(J + 1) + C(κ), (2.28)

with C(κ) being a finite constant.

Before going to the proof, we have three remarks.

Remark 2.4. (1) Recall the twist accumulation point is given by τ = 2A ≡
c−1
12 , Corollary 2.3 tells us that at large spin J , the number of states that

are very closed to the twist accumulation point grows exponentially as

e2π
√

(c−1)
6 J , with additional slow-growth factors that are bounded by
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powers of J . This implies that the average spacing between adjacent

states in this regime is approximately given by e−2π
√

(c−1)
6 J . However,

we cannot at present rule out the possibility of having all the states
piling up near the end points of the interval. Therefore, the rigorous
upper bound on spacing is given by the size of window, i.e., J−1/2 log J .

(2) In Corollary 2.3, it is crucial to note that the lower bound of κ is propor-
tional to T−1. This dependence clearly indicates that our analysis will
not be valid if the theory does not have a twist gap. Also, our choice
of the lower bound of κ here is not optimal. It is possible to improve
it, e.g., by choosing other w or by further improving our analysis in the
paper.

(3) If we further assume that the theory has some critical spin J∗, above
which there are no Virasoro primaries with twist strictly below 2A ≡
c−1
12 , then all the Virasoro primaries have h greater than or equal to

A when h̄ � h + J∗. Consequently, considering the exponential term
e(A−h)βL � 1, we find that the number of Virasoro primaries with h
in the window

[
A,A + κJ−1/2 log J

)
cannot be smaller than AJ . This

leads to a more precise lower bound on NJ , given by:

NJ(ε ≡ κJ−1/2 log J) � const(J + 1)−5/4e4π
√

AJ , (2.29)

where the constant prefactor is strictly positive. Here, the power index
−5/4 is obtained by choosing βL ∼ J1/2 in (2.24).

The index of −5/4 in NJ (ε) can be understood by considering the con-
tribution from the vacuum character in the dual channel. This can be naively
reproduced by only taking into account this part of the contribution. To see
this, we rewrite the dual vacuum character in terms of the Laplace transform
of the modular crossing kernel:√

2π

β
e

4π2A
β

(
1 − e

− 4π2

β

)
=

∫ ∞

A

dh

√
2

h − A

[
cosh(4π

√
A(h − A))

− cosh
(
4π

√
(A − 1)(h − A)

)]
e−(h−A)β .

(2.30)

Therefore, a naive computation of the “vacuum character” contribution to
NJ(ε) is as follows:

[NJ (ε)]naive =
∫ A+ε

A

dh

∫ h+J+1

h+J−1

√
4

(h − A)(h̄ − A)

×
[
cosh(4π

√
A(h − A)) − cosh

(
4π

√
(A − 1)(h − A)

)]

×
[
cosh(4π

√
A(h̄ − A)) − cosh

(
4π

√
(A − 1)(h̄ − A)

)]

∼const ε3/2J−1/2e4π
√

AJ (ε � 1, J � 1).
(2.31)

By choosing ε = κJ−1/2 log J , we obtain the correct index of −5/4 in (2.29).
We expect that this is the optimal power index of J for the lower bound
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h

h̄

A
h

h̄

A

Figure 1. Illustration of the idea behind Eq. (2.32). The
blue lines represent the allowed positions of the spectrum,
constrained by h − h̄ ∈ Z. We aim to count the spectrum
around the pink line (h = A). We choose two windows (shown
in red) with the same width in h but different widths in h̄.
Due to the integer-spin constraint, the spectrum inside the
two windows is the same, as long as the windows intersect
with only one of the blue lines

of NJ(ε ≡ κJ−1/2 log J), in the sense that the index cannot be larger. One
possible approach to verify the optimality is to examine explicit examples of
torus partition functions, e.g., the one presented in [56].

2.4. Sketch of the Proof

To derive the two-sided asymptotic bounds (2.24) for AJ(βL, ε) in the DLCw

limit, we introduce several tricks as follows.
The first trick relies on the fact that only integer spins are allowed. (Here,

we only consider bosonic CFTs.) This implies that the spectrum is empty for
values of h − h̄ that are non-integers. Using this property, we can express AJ

in a different form as follows (see Fig. 1 for a clearer visual representation):

AJ(βL, ε) = A(βL, H̄, ε, δ) ∀δ ∈ (ε, 1 − ε), (2.32)

where

H̄ ≡ A + J (2.33)

and A(βL, H̄, ε, δ) is defined as

A(βL, H̄, ε, δ) :=
∫ A+ε

A−ε

dh

∫ H̄+δ

H̄−δ

dh̄ ρ(h, h̄)e−(h−A)βL , (2.34)

where ρ(h, h̄) represents the spectral density of Virasoro primaries in the
continuum-spectrum version of Z̃ given by the integral in Eq. (2.7).

Now, the problem is reduced to obtaining the upper and lower bounds
for A(βL, H̄, ε, δ) in the DLCw limit. To achieve this, we express the DLCw
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limit (2.22) in terms of βL and H̄, taking into account that H̄ = A + J :

DLCw limit : βL → ∞, H̄ → ∞,
2πT (1 − w2)

A

√
H̄ − A

A
− βL → ∞,

β−1
L log H̄ → 0,

(2.35)
where w is the same parameter introduced in (2.22).

To proceed, we introduce the next trick which was used in [23,50]. Let
us consider two functions φ±(x) satisfying the inequality

φ−(x) � θδ(x) � φ+(x), θδ(x) := θ(x ∈ [−δ, δ]). (2.36)

In addition, for technical reasons, we require that φ± are band-limited func-
tions, meaning that their Fourier transforms φ̂± have compact support:

φ±(x) =
∫

dt φ̂±(t)e−ixt,

supp(φ̂±) ⊂[−Λ,Λ] for some Λ < 2πw.

(2.37)

The functions satisfying these conditions exist [57]. Later, for the specific range
of w we are interested, we will give explicit expression for φ±, see (2.96) for
Λ = 2π and (B.1) for any Λ.

Here again, w corresponds to the parameter in Eq. (2.35). The choice of
Λ < 2πw will be clarified at the end of Sect. 2.5.2. By substituting Eqs. (2.34)
and (2.36) into the definition of A, we obtain an upper bound for A given by:

A(βL, H̄, ε, δ) �
∫ A+ε

A−ε

dh

∫ ∞

0

dh̄ ρ(h, h̄)e−(h−A)βL+(H̄+δ−h̄)βRθδ(h̄ − H̄)

�
∫ A+ε

A−ε

dh

∫ ∞

0

dh̄ ρ(h, h̄)e−(h−A)βL+(H̄+δ−h̄)βRφ+(h̄ − H̄)

=e(H̄+δ)βR

∫ A+ε

A−ε

dh

∫ ∞

0

dh̄ ρ(h, h̄)e−(h−A)βL−h̄βR

∫
dtφ̂+(t)e−i(h̄−H̄)t

=e(H̄+δ−A)βR

∫
dt Z̃h∈(A−ε,A+ε)(βL, βR + it)φ̂+(t)ei(H̄−A)t.

(2.38)
In the first line, we used e(H̄+δ−h̄)βR � 1 in the support of θδ(h̄ − H̄). In
the second line, we bounded θδ by φ+. In the third line, we rewrote φ+ as
the Fourier transform of φ̂+. Finally, in the last line we used the definition of
Z̃h∈(A−ε,A+ε).

Similarly, we have the following lower bound for A:

A(βL, H̄, ε, δ) � e(H̄−δ−A)βR

∫
dt Z̃h∈(A−ε,A+ε)(βL, βR + it)φ̂−(t)ei(H̄−A)t,

(2.39)
where φ̂− is the Fourier transform of φ−. It is worth noting that although the
bounds depend on βR, the quantity A itself does not. The final result, given
by Eq. (2.24), will be obtained by selecting an appropriate value for βR. Here,
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we choose βR to be8

βR = 2π

√
A

H̄ − A
. (2.40)

With this choice, the limit (2.35) can be expressed as:

DLCw limit: βL → ∞, βR → 0, bw(βL, βR) :=
4π2T (1 − w2)

AβR
− βL → ∞,

β−1
L log βR → 0.

(2.41)
We observe that (2.41) is slightly stronger than (2.13): The inclusion of the w2

term in the third equation of (2.41) is sufficient to eliminate the logarithmic
term log(βL) present in the third equation of (2.13). The last equation in (2.41)
is introduced for technical reasons.

From now on, we will always assume (2.33) and (2.40) by default. Conse-
quently, the three formulations of the DLCw limit, namely (2.22), (2.35) and
(2.41), are equivalent.

In the DLCw limit, the exponential prefactor e(H̄−A±δ)βR in the upper
bound (2.38) and the lower bound (2.39) coincide because βRδ → 0. So we
have

I−,h∈(A−ε,A+ε)(A, H̄;βL, βR)
DLCw

� A(βL, H̄, ε, δ)

e2π
√

A(H̄−A)

DLCw

� I+,h∈(A−ε,A+ε)(A, H̄;βL, βR)

(2.42)

where I± are defined in the following way:

I±,h∈(A−ε,A+ε)(A, H̄; βL, βR) :=

∫
dt Z̃h∈(A−ε,A+ε)(βL, βR + it)φ̂±(t)ei(H̄−A)t.

(2.43)
So our goal reduces to deriving asymptotic behavior of the integral (2.43) in the
DLCw limit. To do this, the main idea is to demonstrate that the asymptotic
behavior of the integral (2.43) remains unchanged in the DLCw limit if we
replace Z̃h∈(A−ε,A+ε) with the vacuum term in the dual channel of the full
reduced partition function Z̃:

lim
DLCw

∫
dt Z̃h∈(A−ε,A+ε)(βL, βR + it)φ̂±(t)ei(H̄−A)t

∫
dt

√
4π2

βL(βR+it) Z̃vac

(
4π2

βL
, 4π2

βR+it

)
φ̂±(t)ei(H̄−A)t

= 1. (2.44)

To see this, let us consider the integral

I±(A, H̄;βL, βR) :=
∫

dt Z̃(βL, βR + it)φ̂±(t)ei(H̄−A)t. (2.45)

8We will provide a technical explanation for this choice in Appendix A. Additionally, an
intuitive argument will be presented in Sect. 2.5.
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Using modular invariance, we evaluate this integral in the dual channel:

I±(A, H̄;βL, βR) =
∫

dt

√
4π2

βL(βR + it)
Z̃

(
4π2

βL
,

4π2

βR + it

)
φ̂±(t)ei(H̄−A)t.

(2.46)
Now, we split I± in different ways in the two channels. Using Eqs. (2.45) and
(2.46), we have:

I±,vac + I±,T�h�A−ε + I±,A−ε<h<A+ε + I±,h�A+ε = Idual
±,vac + Idual

±,nonvac,

(direct channel) (dual channel)
(2.47)

where the integrals are defined as follows:

I±,vac =
∫

dt Z̃vac(βL, βR + it)φ̂±(t)ei(H̄−A)t,

I±,T�h�A−ε =
∫

dt Z̃T�h�A−ε(βL, βR + it)φ̂±(t)ei(H̄−A)t,

I±,h∈(A−ε,A+ε) =
∫

dt Z̃h∈(A−ε,A+ε)(βL, βR + it)φ̂±(t)ei(H̄−A)t,

I±,h�A+ε =
∫

dt Z̃h�A+ε(βL, βR + it)φ̂±(t)ei(H̄−A)t,

Idual
±,vac =

∫
dt

√
4π2

βL(βR + it)
Z̃vac

(
4π2

βL
,

4π2

βR + it

)
φ̂±(t)ei(H̄−A)t,

Idual
±,nonvac =

∫
dt

√
4π2

βL(βR + it)
Z̃h,h̄�T

(
4π2

βL
,

4π2

βR + it

)
φ̂±(t)ei(H̄−A)t.

(2.48)
Here and below, I ...

... always refers to I ...
... (A, H̄;βL, βR) with the identification

βR = 2π
√

A
H̄−A

.
In Sect. 2.5, we will demonstrate that in the DLCw limit, the dual channel

is dominated by Idual
±,vac. This is equivalent to say that

lim
DLCw

Idual
±,nonvac

Idual±,vac

= 0. (2.49)

Moving on to Sect. 2.6, we will establish that in the DLCw limit, the direct
channel is dominated by I±,h∈(A−ε,A+ε). Since the vacuum term dominates
the dual channel in the DLCw limit, this is equivalent to say that

lim
DLCw

(I±,vac + I±,T�h�A−ε + I±,h�A+ε)
Idual±,vac

= 0. (2.50)

We will establish that each term in the numerator of (2.50) is suppressed by
the denominator Idual

±,vac.
Subsequently, Eq. (2.44) follows from Eqs. (2.47), (2.48), (2.49) and (2.50).

We can then evaluate the denominator of Eq. (2.44), which corresponds to
Idual
±,vac, using its precise expression. The result of Idual

±,vac will be given in Sect.
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2.6.1, and the technical details will be given in Appendix A. It provides
us with the desired estimate of the asymptotic upper and lower bounds on
A(βL, H̄, ε, δ) in the DLCw limit (see Sect. 2.7).

In Sect. 2.8, we will demonstrate that, while satisfying the aforemen-
tioned estimates, ε can effectively approach zero in the DLCw limit, as long
as it remains bounded from below by εmin(βL, J) (defined in Eq. (2.23)). This
justification will support the final part of theorem 2.1.

Returning to AJ(βL, ε) using Eq. (2.32), we note that the spectral density
ρ is positive, implying that A(βL, H̄, ε, δ) is monotonically increasing in δ. To
obtain optimal bounds for AJ , we choose the smallest δ for the upper bound
on A and the largest δ for the lower bound on A, yielding

lim
δ→(1−ε)−

A(βL, H̄, ε, δ) � AJ(βL, ε) � lim
δ→ε+

A(βL, H̄, ε, δ). (2.51)

These inequalities provide the two-sided bounds stated in Eq. (2.24).

2.5. Dual Channel

2.5.1. Dual Channel: Vacuum. Consider the vacuum part of I± in the dual
channel

Idual
±,vac ≡

∫
dt

√
4π2

βL(βR + it)
Z̃vac

(
4π2

βL
,

4π2

βR + it

)
φ̂±(t)ei(H̄−A)t, (2.52)

where Z̃vac is the vacuum part of the partition function, given by

Z̃vac

(
β, β̄

)
= eA(β+β̄) (1 − e−β

) (
1 − e−β̄

)
. (2.53)

By definition Idual
±,vac depends on A, H̄, βL and βR. We will choose a proper βR

to optimize the asymptotic behavior of Idual
±,vac in the limit (2.35). As mentioned

in Sect. 2.3, here we choose βR = 2π
√

A
H̄−A

. We leave the technical reason of
this choice to Appendix A. Here, we would like to give the following intuitive
explanation why this is a good choice.

For simplicity let us fix βL and take the limit βR → 0. Using modular
invariance, one can show that Z̃(βL, βR) is dominated by the vacuum term in
the dual channel:

Z̃(βL, βR) =

√
4π2

βLβR
Z̃vac

(
4π2

βL
,
4π2

βR

)[
1 + O

(
e

− 4π2T
βR

)]
∼ 8π3

β
3/2
L β

1/2
R

e
4π2A

βR ,

(2.54)
where T is the twist gap. To reproduce this asymptotic behavior, we make a
naive guess on the large-h̄ behavior of the spectral density ρ(h, h̄) by perform-

ing inverse Laplace transform on β
−1/2
R e

4π2A
βR

9

ρ(h, h̄)
guess∼ F (h)

e4π
√

A(h̄−A)√
h̄ − A

(h̄ → ∞). (2.55)

9Given that h− h̄ : must take integer values due to modular invariance, Eq. (2.55) cannot be

true in the sense for continuous functions. However, we expect that it holds in an averaged

sense and we will make the notion of averaging precise subsequently in the paper.
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h̄ − A

ρ(h, h̄)e−h̄βR

0

2δ

4π2A
β2
R

Figure 2. A typical behavior of coarse-grained ρ(h, h̄)e−h̄βR

at small βR

This statement, with a more precise formulation, can actually be proven in a
rigorous way using the argument in [23]. Then, we have

Z̃(βL, βR) ≡
∫

dhdh̄ ρ(h, h̄)e(A−h)βL+(A−h̄)βR ∼ L(F )(βL)eAβL

∫
dh̄

e4π
√

A(h̄−A)√
h̄ − A

e(A−h̄)βR (βR → 0),

where L(F ) is the Laplace transform of F . Now, let us focus on the βR-related
part:

∫
dh̄

e4π
√

A(h̄−A)√
h̄ − A

e(A−h̄)βR = 2e
4π2A

βR

∫
dx e

−βR

(
x− 2π

√
A

βR

)2

. (2.56)

Here, we introduce the variable change x =
√

h̄ − A. Observing the integrand,
we notice that it reaches its maximum value at x = 2π

√
A

βR
, which implies

βR = 2π
√

A
h̄−A

(see Fig. 2). As we aim to extract information about the

spectrum within the window h̄ ∈ (H̄ − δ, H̄ + δ), it seems natural to choose
Eq. (2.40) as the relation between βR and H̄. This completes the intuitive
explanation.

After identifying βR and H̄ using constraint (2.40), one can show that

Idual
±,vac ∼

(
4π2

βL

)3/2 √
π

H̄
e2π

√
AH̄ φ̂±(0) (2.57)

in the DLCw limit. In this paper, the notation A ∼ B is used to signify
that A

B → 1 in the considered limit. We leave the derivation of Eq. (2.57) to
Appendix A. In order to compare with the contribution from other parts in
(2.47), it is convenient to rewrite the asymptotic behavior of Idual

±,vac as

Idual
±,vac

DLCw∼ 4π5/2βR

β
3/2
L A1/2

e
4π2A

βR φ̂±(0). (2.58)
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2.5.2. Dual Channel: Non-vacuum. Consider the non-vacuum part of I± in
the dual channel, defined as follows:

Idual
±,nonvac ≡

∫
dt

√
4π2

βL(βR + it)
Z̃h,h̄�T

(
4π2

βL
,

4π2

βR + it

)
φ̂±(t)ei(H̄−A)t,

(2.59)
where Z̃h,h̄�T is defined by

Z̃h,h̄�T

(
β, β̄

)
=

∫ ∞

T

dh

∫ ∞

T

dh̄ ρ(h, h̄)e−(h−A)β−(h̄−A)β̄ . (2.60)

For technical reasons, we split Idual
±,nonvac into two parts Idual

±,nonvac = Idual
±,T�h̄<A

+
Idual
±,h̄�A

, where the subscripts denote the regimes of (h, h̄) that contribute. We
begin with the following inequality:

∣∣Idual
±,nonvac

∣∣ �
√

4π2

βLβR
max

x

∣∣∣φ̂±(x)
∣∣∣
∫ Λ

−Λ

dtZ̃h,h̄�T

(
4π2

βL
,

4π2βR

β2
R + t2

)

=

√
4π2

βLβR
max

x

∣∣∣φ̂±(x)
∣∣∣
∫ Λ

−Λ

dt

[
Z̃T�h̄<A

(
4π2

βL
,

4π2βR

β2
R + t2

)

+Z̃h̄�A

(
4π2

βL
,

4π2βR

β2
R + t2

)]

�
√

4π2

βLβR
max

x

∣∣∣φ̂±(x)
∣∣∣ 2Λ

[
Z̃T�h̄<A

(
4π2

βL
,
4π2

βR

)

+Z̃h̄�A

(
4π2

βL
,

4π2βR

β2
R + Λ2

)]
.

(2.61)

Here in the first line, we use the inequality
∣∣∣√ 1

βR+it

∣∣∣ �
√

1
βR

, the identity

|ez| = eRe(z), and the fact that supp(φ̂±) ⊂ [−Λ,Λ]. In the second line, we
split Z̃h,h̄�T into two parts. In the last line, we make use of the inequalities

e
−(h̄−A)

4π2βR
β2

R+t2 � e
−(h̄−A) 4π2

βR for h̄ < A and e
−(h̄−A)

4π2βR
β2

R+t2 � e
−(h̄−A)

4π2βR
β2

R+Λ2 for
h̄ � A and |t| � Λ. Here, we use the maximum notation maxx to indicate that
we are taking the maximum of

∣∣∣φ̂±(x)
∣∣∣ over all x.

The estimate above is for Idual
±,nonvac, but it is straightforward to obtain

the following individual inequalities for Idual
±,T�h̄<A

and Idual
±,h̄�A

:

∣∣∣Idual
±,T�h̄<A

∣∣∣ �2Λ

√
4π2

βLβR
max

x

∣∣∣φ̂±(x)
∣∣∣ Z̃T�h̄<A

(
4π2

βL
,
4π2

βR

)
,

∣∣∣Idual
±,h̄�A

∣∣∣ �2Λ

√
4π2

βLβR
max

x

∣∣∣φ̂±(x)
∣∣∣ Z̃h̄�A

(
4π2

βL
,

4π2βR

β2
R + Λ2

)
.

(2.62)
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To demonstrate that Idual
±,T�h̄<A

and Idual
±,h̄�A

are suppressed by Idual
±,vac in the

DLCw limit, we can establish some upper bounds on Z̃T�h̄<A and Z̃h̄�A. We
present a useful lemma below:

Lemma 2.5. Let β0 ∈ (0,∞) be a fixed number. The partition function satisfies
the following upper bound:

Z̃(βL, βR) �κ(β0)eA(βL+βR) (βL, βR � β0), (2.63)

where

κ(β0) ≡ 1 +
Z̃(β0, β0)

Z̃vac(β0, β0)
. (2.64)

Proof. For βL, βR � β0, we have

Z̃(βL, βR) = Z̃vac(βL, βR) + Z̃nonvac(βL, βR)

� Z̃vac(βL, βR) + e(A−T )(βL+βR−2β0)Z̃nonvac(β0, β0),

where we split the partition function into the vacuum part and the non-vacuum
part and used the fact that h, h̄ � T for each term in the non-vacuum part.

The vacuum part is bounded as follows:

Z̃vac(βL, βR) ≡ eA(βL+βR)
(
1 − e−βL

) (
1 − e−βR

)
� eA(βL+βR). (2.65)

We also have

Z̃nonvac(β0, β0) � Z̃(β0, β0)
Z̃vac(β0, β0)

Z̃vac(β0, β0) � Z̃(β0, β0)
Z̃vac(β0, β0)

e2Aβ0 , (2.66)

where we bounded Z̃nonvac by the full partition function Z̃ and used (2.65).
Putting everything together we get

Z̃(βL, βR) � eA(βL+βR)

[
1 + e−T (βL+βR−2β0)

Z̃(β0, β0)
Z̃vac(β0, β0)

]
� κ(β0)eA(βL+βR)

(2.67)
for βL, βR � β0, where κ(β0) is given by (2.64). This completes the proof. �

Consider the expression Z̃T�h̄<A

(
4π2

βL
, 4π2

βR

)
in the regime where βR �

β0 � βL. We have the following inequalities:

Z̃T�h̄<A

(
4π2

βL
,
4π2

βR

)
�e

(A−T )
(

4π2
βR

− 4π2
β0

)
Z̃T�h̄<A

(
4π2

βL
,
4π2

β0

)

�e
(A−T )

(
4π2
βR

− 4π2
β0

)√
βLβ0

4π2
Z̃(βL, β0)

�κ(β0)

√
βLβ0

4π2
e
(A−T )

(
4π2
βR

− 4π2
β0

)
+A(βL+β0),

(2.68)

In the first line, we use the fact that e
(A−h̄) 4π2

βR � e
(A−T )

(
4π2
βR

− 4π2
β0

)
e(A−h̄) 4π2

β0

for h � T and βR � β0. In the second line, we bound Z̃T�h̄<A by the full
partition function and use modular invariance. Finally, in the last line, we use
Lemma 2.5.
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Using (2.58), (2.68) and the first inequality of (2.62), we obtain the fol-
lowing asymptotic inequality in the DLCw limit:

∣∣∣∣∣
Idual
±,T�h̄<A

Idual±,vac

∣∣∣∣∣
DLCw

� C
(1)
± (β0, A, T )

(
βL

βR

)3/2

e
− 4π2T

βR
+AβL , (2.69)

where C
(1)
± (β0, A, T ) is a finite constant for fixed β0, A, and T , given by

C
(1)
± (β0, A, T ) ≡κ(β0)A1/2β

1/2
0 Λ

2π5/2
max

x

∣∣∣∣∣
φ̂±(x)

φ̂±(0)

∣∣∣∣∣ e
−A

(
(1− T

A ) 4π2
β0

−β0

)
. (2.70)

We can apply the DLCw limit (defined in (2.41)) to the remaining factor in
the r.h.s. of (2.69), obtaining:

(
βL

βR

)3/2

e
− 4π2T

βR
+AβL = e

− 4π2T
βR

(1−w2)+AβL ×
(

βL

βR

)3/2

e
− 4π2w2T

βR

�
[
e

− 4π2T
βR

(1−w2)+AβL

] [(
4π2

)3/2
β−3

R e
− 4π2w2T

βR

]

(βLβR � 4π2)

DLCw−→ 0.

(2.71)
Here, we used the fact that βLβR � 4π2 eventually holds in the DLCw limit.
As a result, we conclude that Idual

±,T�h̄<A
is suppressed by Idual

±,vac in the DLCw

limit.
Then, let us consider Z̃h̄�A

(
4π2

βL
, 4π2βR

β2
R+Λ2

)
in the regime βL, Λ2

βR
� β0 and

βR � Λ. We have the following bound:

Z̃h̄�A

(
4π2

βL
,

4π2βR

β2
R + Λ2

)
�

√
βL(β2

R + Λ2)
4π2βR

Z̃

(
βL, βR +

Λ2

βR

)

� κ(β0)

√
βLΛ2

2π2βR
e
A
(
βL+βR+ Λ2

βR

)
.

(2.72)

Here in the first step, we bounded Z̃h̄�A by the full partition function and
used modular invariance, and in the second step we applied Lemma 2.5 in the
specific regime of (βL, βR). By using the above bound and (2.58), we obtain
the following estimate:

∣∣∣∣∣
Idual
±,h̄�A

Idual±,vac

∣∣∣∣∣
DLCw

� C
(2)
± (β0, A, T )

β
3/2
L

β2
R

e
−A

(
4π2−Λ2

βR
−βL−βR

)
,

C
(2)
± (β0, A, T ) ≡

√
AΛ3

2π5
κ(β0)max

x

∣∣∣∣∣
φ̂±(x)

φ̂±(0)

∣∣∣∣∣ .
(2.73)
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We note that C
(2)
± (β0, A, T ) is a finite constant for fixed β0, A and T . Since we

have chosen φ± with Λ < 2πw (see (2.37)), in the regime βLβR � 4π2 (which
eventually holds in the DLCw limit), we can write

β
3/2
L

β2
R

e
−A

(
4π2−Λ2

βR
−βL

)
� (4π2)3/2e

−A
(

4π2

βR
(1−w2)− A

T
βL

)
×

[
β

−7/2
R e

−A 4π2

βR

(
w2− Λ2

4π2

)]
.

(2.74)
In the DLCw limit, the first exponential factor goes to zero by (2.13) and the
second factor [..] also goes to zero because of Λ < 2πw. (This is the reason why
we made such a choice of Λ in (2.37).) Therefore, we conclude that Idual

±,T�h̄<A

is suppressed by Idual
±,vac in the DLCw limit.

2.6. Direct Channel

Now, we consider I± in the direct-channel. According to the dual-channel re-
sults in the previous subsection, we know that I± has the asymptotic behavior

I± ∼ Idual
±,vac ∼ 4π5/2βR

β
3/2
L A1/2

e
4π2A

βR φ̂±(0) (2.75)

in the DLCw limit with the identification βR = 2π
√

A
H̄−A

. In this section,
we would like to show that I± is dominated by I±,h∈(A−ε,A+ε) in the direct
channel (in the same limit), i.e.,

I±,h∈(A−ε,A+ε)
DLCw∼ 4π5/2βR

β
3/2
L A1/2

e
4π2A

βR φ̂±(0). (2.76)

We will argue this by showing that

lim
DLCw

I±,vac

Idual±,vac

= lim
DLCw

I±,T�h�A−ε

Idual±,vac

= lim
DLCw

I±,h�A+ε

Idual±,vac

= 0. (2.77)

2.6.1. Direct Channel: Vacuum. Let us consider the vacuum term I±,vac in
the direct channel of I±:

I±,vac ≡
∫

dt eA(βL+βR+it)
(
1 − e−βL

) (
1 − e−βR−it

)
φ̂±(t)ei(H̄−A)t

=eA(βL+βR)
(
1 − e−βL

) [
φ±(−H̄) − e−βRφ±(1 − H̄)

]
.

(2.78)

So I±,vac has the following upper bound

I±,vac � 2max
x

|φ±(x)| eA(βL+βR). (2.79)

Compare (2.79) with (2.75), we see that the ratio I±,vac/Idual
±,vac is asymptoti-

cally bounded as follows in DLCw limit:∣∣∣∣∣
I±,vac

Idual±,vac

∣∣∣∣∣
DLCw

� C
(3)
± (A)

β
3/2
L

βR
e

−A
(

4π2
βR

−βL−βR

)

︸ ︷︷ ︸
:=W

, C
(3)
± (A) ≡ A1/2

2π5/2
max

x

∣∣∣∣∣
φ±(x)

φ̂±(0)

∣∣∣∣∣ .

(2.80)
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C
(3)
± (A) is a finite constant. The rest part of (2.80) is bounded as follows

W ≡ β
3/2
L

βR
e

− 4π2w2
βR e

−A
(

4π2(1−w2)
βR

−βL−βR

)

DLCw

� 8π3

β
5/2
R

e
− 4π2w2

βR × e
−A

(
4π2T (1−w2)

AβR
−βL−βR

)
→ 0.

Here in the second line, we used the fact that βLβR � 4π2 eventually in the
DLCw limit, and the third line follows from the definition of the DLCw limit
(recall Eq. (2.41)). Therefore, I±,vac is suppressed by Idual

±,vac in the DLCw limit.

2.6.2. Direct Channel: High Twist and Low Twist. Then, let us consider the
non-vacuum terms in the direct channel of I±: I±,T�h�A−ε and I±,h�A+ε,
given by (2.48). Integrating over t in (2.48) for I±,T�h�A−ε and I±,h�A+ε, we
get

I±,T�h�A−ε = eA(βL+βR)

∫ A−ε

T

dh

∫ ∞

T

dh̄ ρ(h, h̄)e−hβL−h̄βR φ±(h − H̄),

I±,h�A+ε = eA(βL+βR)

∫ ∞

A+ε

dh

∫ ∞

T

dh̄ ρ(h, h̄)e−hβL−h̄βR φ±(h − H̄).

(2.81)
Bounding φ±(h − H̄) by its maximal value, we get

|I±,T�h�A−ε| �max
x

|φ±(x)| Z̃T�h�A−ε(βL, βR),

|I±,h�A+ε| �max
x

|φ±(x)| Z̃h�A+ε(βL, βR).
(2.82)

Now it suffices to show that Z̃T�h�A−ε(βL, βR) and Z̃h�A+ε(βL, βR) are sup-
pressed by Idual

±,vac in the DLCw limit. This follows from the same analysis as in
[28], section 3.10

10Here, a quick way to see the suppression is to rewrite the asymptotic behavior of Idual±,vac

as

Idual
±,vac

DLCw∼
√

β3
R

4πA
φ̂±(0) ×

√
4π2

βLβR
Z̃vac

(
4π2

βL
,
4π2

βR

)
. (2.83)

The second factor is exactly the dual-channel vacuum term of the partition function Z̃. It

is known in [28]
Z̃T �h�A−ε(βL,βR)√
4π2

βLβR
Z̃vac

(
4π2
βL

, 4π2
βR

) and
Z̃h�A+ε(βL,βR)√
4π2

βLβR
Z̃vac

(
4π2
βL

, 4π2
βR

) decays exponentially fast

in the M∗ limit. The DLCw limit in this paper is a stronger version of the M∗ limit, and it

is sufficient to kill the extra slow-growing factors β
−3/2
R .
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Let us derive an upper bound on Z̃h�A+ε(βL, βR) first. We chose some
fixed β0 ∈ (0,∞) and consider the regime βR � 4π2

β0
� βL. We have

Z̃h�A+ε(βL, βR) �e
−ε

(
βL− 4π2

β0

)
Z̃h�A+ε

(
4π2

β0
, βR

)

�e
−ε

(
βL− 4π2

β0

)√
β0

βR
Z̃

(
β0,

4π2

βR

)

�e
−ε

(
βL− 4π2

β0

)√
β0

βR
κ(β0)e

A
(
β0+

4π2
βR

)
.

(2.84)

Here in the first line, we used e(A−h)βL � e
−ε

(
βL− 4π2

β0

)
e(A−h) 4π2

β0 for βL � 4π2

β0

and h � A + ε, in the second line we bounded Z̃h�A+ε by the full partition
function Z̃ and used modular invariance (2.12), and in the last line we used
Lemma 2.5 in the regime 4π2

βR
� β0.

By (2.58), (2.82) and (2.84), we get∣∣∣∣∣
I±,h�A+ε

Idual±,vac

∣∣∣∣∣
DLCw

� C
(4)
± (A, β0)

(
βL

βR

)3/2

e
−ε

(
βL− 4π2

β0

)
+Aβ0

C
(4)
± (A, β0) =κ(β0)

√
Aβ0

16π5
max

x

∣∣∣∣∣
φ±(x)

φ̂±(0)

∣∣∣∣∣
(2.85)

C
(4)
± (A, β0) is a finite constant. The rest part of (2.85) is bounded as follows
(

βL

βR

)3/2

e
−ε

(
βL− 4π2

β0

)
+Aβ0 = β

3/2
L e−εβL/2+Aβ0+

4π2ε
β0 × β

−3/2
R e−εβL/2 DLCw−→ 0.

(2.86)
Here, the first factor obviously vanishes as βL → ∞, and the second factor
vanishes because of last condition of DLCw.

Then, let us derive an upper bound on Z̃T�h�A−ε(βL, βR). We intro-
duce an auxiliary variable β′

L. Then, we have the following upper bound on
Z̃T�h�A−ε(βL, βR):

Z̃T�h�A−ε(βL, βR)

� e−ε(β′
L−βL)Z̃T�h�A−ε(β′

L, βR) (0 < βL � β′
L).

(2.87)

This bound follows from the fact that e(A−h)βL � e−ε(β′
L−βL)e(A−h)β′

L for
h � A − ε and βL � β′

L. We choose

β′
L =

4π2T (1 − w2/2)
AβR

(
=

2πT (1 − w2/2)
A

√
H̄ − A

A

)
. (2.88)

Then in the DLCw limit, we have

β′
L − βL � 4π2T (1 − w2)

AβR
− βL → ∞. (2.89)
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We see that β′
L � βL eventually in the DLCw limit so Eq. (2.87) holds, and

Z̃T�h�A−ε(β
′
L, βR) �

√
4π2

β′
LβR

Z̃

(
4π2

β′
L

,
4π2

βR

)

=

√
4π2

β′
LβR

[
Z̃vac

(
4π2

β′
L

,
4π2

βR

)
+ Z̃h,h̄�T

(
4π2

β′
L

,
4π2

βR

)]

�
√

4π2

β′
LβR

[
4π2

β′
L

e
A

(
4π2

β′
L

+ 4π2
βR

)

+κ(β0)

√
β′

Lβ0

4π2
e
(A−T )

(
4π2
βR

− 4π2
β0

)
+A(β′

L+β0)

]

=

(
4π2

β′
L

)3/2

β
−1/2
R e

A

(
4π2

β′
L

+ 4π2
βR

)

×
[
1 + κ(β0)β

1/2
0

(
β′

L

4π2

)3/2

e
A

(
β′

L− 4π2

β′
L

+β0− 4π2
β0

)
−T

(
4π2
βR

− 4π2
β0

)]

(2.90)
Here in the first line, we bounded Z̃T�h�A−ε by the full partition function
Z̃ and used modular invariance (2.12), in the second line we rewrote Z̃ as
Z̃vac + Z̃h,h̄�T , in the third line we used Z̃vac(β, β̄) � βeA(β+β̄) and Lemma
2.5, and the last line is just a rewriting of the third line. The second term in
[. . .] vanishes in the DLCw limit because(

β′
L

4π2

)3/2

e
A

(
β′

L− 4π2

β′
L

+β0− 4π2
β0

)
−T

(
4π2
βR

− 4π2
β0

)

=
(

(1 − w2/2)T
AβR

)3/2

e
− 2π2w2T

βR
− A2βR

(1−w2/2)T e
A
(
β0− 4π2

β0
+ 4π2T

Aβ0

)
DLCw−→ 0.

(2.91)
By (2.58), (2.87), (2.90) and (2.91), we get∣∣∣∣∣

I±,T�h�A−ε

Idual±,vac

∣∣∣∣∣
DLCw

� C
(5)
± (A)

(
4π2βL

β′
LβR

)3/2

e
−ε(β′

L−βL)+ 4π2A
β′

L ,

C
(5)
± (A) =

√
A

16π5
max

x

∣∣∣∣∣
φ±(x)

φ̂±(0)

∣∣∣∣∣ .
(2.92)

C
(4)
± (A, β0) is a finite constant. The rest part of (2.92) is bounded as follows
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Table 1. Estimates of the suppressed contributions in the
DLCw limit. Here, we have ignored the constant factors

I±,.../Idual±,vac Eq.

Dual channel, T � h̄ � A
(

βL
βR

)3/2
e
− 4π2T

βR
+AβL (2.69)

Dual channel, h̄ � A
β
3/2
L

β2
R

e
−A

(
4π2−Λ2

βR
−βL

)
(2.73)

Direct channel, h = 0
β
3/2
L
βR

e
−A

(
4π2
βR

−βL

)
(2.80)

Direct channel, h � A + ε
(

βL
βR

)3/2
e−εβL (2.85)

Direct channel, T � h � A − ε β
3/2
L e

−ε

(
4π2T (1−w2/2)

AβR
−βL

)
(2.92)

(
4π2βL

β′
LβR

)3/2

e
−ε(β′

L
−βL)+ 4π2A

β′
L =

(
AβL

(1 − w2/2)T

)3/2

e
− 2π2T w2ε

AβR

× e
−ε

(
4π2T (1−w2)

AβR
−βL

)
+ A2βR

(1−w2/2)T

�
(

4π2(1 − w2)

(1 − w2/2)βR

)3/2

e
− 2π2T w2ε

AβR

(eventually in DLCw)

× e
−ε

(
4π2T (1−w2)

AβR
−βL

)
+ A2βR

(1−w2/2)T

DLCw−→ 0.

(2.93)

Here, the first line is just a rewriting, in the second line we used the fact that
βL � 4π2T (1−w2)

AβR
eventually in DLCw limit, and in the last line we used fact

that both two factors vanishes in the DLCw limit.

2.7. Summary of the Estimates, Two-Sided Bounds for Fixed ε

We summarize our estimates on various terms in (2.47) in Table 1. We conclude
that in the DLCw limit, I±,h∈(A−ε,A+ε) dominates the direct channel and Idual

±,vac

dominates the dual channel. So we get I±,h∈(A−ε,A+ε)
DLCw∼ Idual

±,vac, which
justifies Eq. (2.44).

On the other hand, Eq. (2.57) gives the asymptotic behavior of Idual
vac in

the DLCw limit. Together with (2.38), (2.39) and (2.40), we conclude that

φ̂−(0) � A(βL, H̄, ε, δ)(
4π2

βL

)3/2 √
π
H̄

e4π
√

AH̄

� φ̂+(0) (2.94)

in the DLCw limit. Here, we would like to emphasize that the above equation
is valid only when φ̂+(0) �= 0. (The lower bound is trivial when φ̂−(0) = 0.)

Recall that we would like to derive the bounds on AJ(ε, βL). We use
(2.32), i.e., AJ(βL, ε) is exactly the same as A(βL, H̄, ε, δ) for δ ∈ (ε, 1 − ε).
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This fact allows us to choose different δ for the upper and lower bounds, say δ+

and δ− respectively. Therefore, we conclude from Eqs. (2.32) and (2.94) that

φ̂−,δ−(0) � AJ(βL, ε)

8π7/2β
−3/2
L J−1/2e4π

√
AJ

� φ̂+,δ+(0). (2.95)

in the DLCw limit, with δ± ∈ (ε, 1 − ε). Here, we added the extra subscript
δ± to φ±, which simply means φ± in (2.36) with δ = δ±.

Now the question is: Given fixed Λ and δ±, what are the optimal values
of φ̂±,δ±(0)? This problem was studied in [50] for Λ = 2π. In that case, when
δ+ very close to 0 and δ− very close to 1, the optimal functions φ± are given
by

φ+,δ+(x) =
16δ2

+ [x cos (πδ+) sin (πx) − δ+ sin (πδ+) cos (πx)]2(
x2 − δ2

+

)2 (2πδ+ + sin(2πδ+))2
,

φ−,δ−(x) =
δ2
− (x cos (πx) − δ− cot (πδ−) sin (πx))2

x2(δ2− − x2) (πδ− cot (πδ−) − 1)2
.

(2.96)

This choice of φ± gives11

φ̂+,δ+(0) =
1
2π

2

1 + sin(2πδ+)
2πδ+

, φ̂−,δ−(0) =
1
2π

1

1 − tan(πδ−)
πδ−

. (2.97)

The case with arbitrary Λ can easily be obtained by doing scaling:

φ±,δ±(x) (Λ = 2π) −→ φΛ
±,δ±(x) := φ±, Λ

2π δ±

(
Λx

2π

)
. (2.98)

Under scaling, φ̂±,δ±(0) is given by

φ̂Λ
±,δ±(0) =

2π

Λ
φ̂±, Λ

2π δ±(0). (2.99)

This gives us

φ̂+,δ+(0) =
1
Λ

2

1 + sin(Λδ+)
Λδ+

, φ̂−,δ−(0) =
1
Λ

1

1 − 2 tan
(

Λδ−
2

)
Λδ−

. (2.100)

Here, we neglect the superscript Λ in the expression.
Now, we insert the optimal values in (2.100) into (2.95). But we need to

be careful because the following constraints on δ±, w and Λ should be satisfied:

• According to (2.32), we need δ± ∈ (ε, 1 − ε).
• According to (2.37), we must have Λ < 2πw.
• The choice of φ+,δ+ requires that 0 < Λδ+ < π (see Eq. (86) of [50]).
• The choice of φ−,δ− requires that π < Λδ− < 2π (see Eq. (88) of [50]).

11These values are obtained from the first equation of Eqs. (86) and (88) in [50]. These
function appeared in [58] in mathematics literature.



Lightcone Modular Bootstrap and Tauberian Theory

To make the above constraints consistent, we also need that

w >
Λ
2π

>
1

2δ−
>

1
2(1 − ε)

⇒ ε < 1 − 1
2w

. (2.101)

Then, the condition ε > 0 implies w > 1/2. Under the above constraints, we
choose δ− to be arbitrarily close to 1 − ε, δ+ to be arbitrarily close to ε and Λ
to be arbitrarily close to 2πw. So AJ has the following asymptotic two-sided
bounds
1
w

1

1 − tan(πw(1−ε))
πw(1−ε)

− α− � AJ(βL, ε)

4π5/2β
−3/2
L J−1/2e4π

√
AJ

� 1
w

2

1 + sin(2πwε)
2πwε

+ α+.

(2.102)
Here, α± are defined by

α+ := 2π
(
φ̂Λ

+,δ+
(0) − φ̂2πw

+,ε (0)
)

, α− := 2π
(
φ̂2πw

−,1−ε(0) − φ̂Λ
−,δ−(0)

)
.

(2.103)
They are positive but can be arbitrarily small in the limit δ+ → ε and δ− →
1 − ε. However, AJ(βL, ε) does not depend on δ± and Λ because φ± are just
auxiliary functions for our analysis. So we arrive at (2.24) for w ∈ ( 1

2 , 1) and
ε ∈ (

0, 1 − 1
2w

)
fixed.

Remark 2.6. There are also other choices of φ̂±,δ± , which give non-optimal
but simpler expressions of upper and lower bounds than (2.24). For example,
one can choose φ±,δ at Λ = 2π to be the Beurling–Selberg functions [57,59],
denoted by φBS

±,δ.
12 The B-S functions give φ̂BS

±,δ(0) = 1
2π (2δ ± 1). Then after

the same rescaling procedure as (2.98), one gets

φ̂±,δ± =
1
2π

(
2δ± ± 2π

Λ

)
. (2.104)

By taking extremal values of δ±, the upper and lower bounds in (2.24) become
1
w + 2ε and 2 − 1

w
− 2ε. We note that in the limit ε → 0, the B-S function

already gives the optimal upper bound, while it gives the optimal lower bound
only when we also take the limit w → 1.

So far, the statement in Theorem 2.1 has been established with for fixed
ε. As a final step, we would like to let ε also go to zero in the DLCw limit.
This will be the subject of the next subsection.

2.8. Shrinking the (A − ε, A + ε) Window

In this subsection, we would like to establish the final part of Theorem 2.1,
which allows for the vanishing of ε in the DLCw limit, provided it remains
larger than εmin(βL, J) as defined in (2.23).

In our analysis, the ε-dependence arises in three key aspects:

12For the explicit constructions and technical details, see [50], Eqs. (38)–(42) and appendix
C.
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1. In Appendix A, we used the dominated convergence theorem, which re-
quires the condition that |φ±|, which depends on δ, must be bounded by
an integrable function. This condition is automatically satisfied when ε
is fixed since, in that case, we work with fixed functions φ± that are inte-
grable by themselves. However, as ε → 0, the functions φ± are no longer
fixed, and it becomes crucial to ensure that the family of φ± functions we
consider remains uniformly bounded by certain integrable functions that
are independent of δ. This will ensure the applicability of the dominated
convergence theorem in the limit as ε → 0.

2. The ratios max
x

∣∣∣ φ̂±(x)

φ̂±(0)

∣∣∣ (as seen in (2.70) and (2.73)) and max
x

∣∣∣φ±(x)

φ̂±(0)

∣∣∣ (as

seen in (2.80), (2.85), and (2.92)) depend on the choice of φ±. Ultimately,
we selected δ+ = ε → 0 for φ+ and δ− = 1 − ε → 1 for φ−. Therefore,
similarly to point 1, we need to derive some uniform bounds on the ratios.

3. The bounds on the high- and low-twist contributions in the direct channel
of I± incorporate exponential factors that rely on ε, as presented in Table
1.

To address the concerns raised in the first and second points, we establish
upper bounds on the quantities

∣∣φ±,δ±(x)
∣∣ , max

x

∣∣∣∣∣
φ±,δ±(x)

φ̂±,δ±(0)

∣∣∣∣∣ and max
x

∣∣∣∣∣
φ̂±,δ±(x)

φ̂±,δ±(0)

∣∣∣∣∣
for the chosen φ±,δ± . These bounds remain uniform in δ± within the regimes
that permit the limits δ+ → 0 and δ− → 1. The precise statements of these
bounds are presented in Lemma 1 and Lemma 2, while the detailed proofs
can be found in Appendix B. Consequently, the first and second concerns are
effectively resolved through the establishment of these uniform bounds.

To address the third point, we examine the conditions required for the
DLCw limit as ε approaches 0, as shown in Table 1. These conditions can be
expressed as follows:

β
3/2
L e

−ε
(

4π2T
AβR

(1−w2/2)−βL

)
,

(
βL

βR

)3/2

e−εβL → 0, (2.105)

i.e., the exponential factors must decay rapidly enough to render the power-law
factors negligible.

For the first term in (2.105), we use the DLCw condition (2.41) and get
the following inequality:

β
3/2
L e

−ε
(

4π2T
AβR

(1−w2/2)−βL

)
�

(
4π2T (1 − w2)

AβR

)3/2

e
−ε 2π2w2T

AβR . (2.106)

In the DLCw limit, where βR → 0, we need the r.h.s. of the above inequality
to vanish. This can be achieved if we impose the following sufficient condition:

ε
2π2w2T

AβR
�

(
3
2

+ α

)
log(1/βR), (2.107)

where α is an arbitrary fixed positive constant.
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For the second term in (2.105), we rewrite it as follows:
(

βL

βR

)3/2

e−εβL = e
−
(
ε− 3 log(1/βR)

2βL

)
βL+ 3

2 log βL . (2.108)

In order for this term to vanish in the DLCw limit, we require the following
sufficient condition:(

ε − 3 log(1/βR)
2βL

)
βL �

(
3
2

+ α

)
log βL, (2.109)

where α is an arbitrary fixed positive constant.
Now, we select the same α for both (2.107) and (2.109) for simplicity and

determine the smallest value of ε that satisfies these conditions. Specifically,
we have:

ε � max
{(

3
2

+ α

)
A

2π2w2T
βR log(1/βR),

3 log(1/βR)
2βL

+
(

3
2

+ α

)
log βL

βL

}

(2.110)
It can be verified that, in the DLCw limit, the choice of ε given by (2.110) tends
to zero. The last part of theorem 2.1 follows by choosing α = 1

2 in (2.110) and
using the identification (2.40) (which implies βR ∼ J−1/2 in the DLCw limit).
This finishes the whole proof of theorem 2.1.

3. Holographic CFTs and Large c Limit

In this section, we shift our focus to holographic CFTs in the large central
charge limit, where c → ∞. Here, rather than considering a fixed CFT, we
consider a class of 2D irrational CFTs, denoted as {Ac,σ}. The CFTs Ac,σ

of this class are characterized by the central charge c and other potential
model parameters σ. However, since the parameter σ has nothing to do with
our subsequent discussion, we will simplify the notation from Ac,σ to Ac for
brevity.

Our goal here is similar to that in Sect. 2: to count the spectrum of
Virasoro primaries of these CFTs near the twist accumulation point and get
some universal asymptotic behavior. We consider

NJ(ε1, ε2, A) :=
∑

A−ε1<h<A+ε2

nh,h+J , A ≡ c − 1
24

, (3.1)

and take the limit J,A → ∞ and ε1, ε2 → 0 with appropriate constraints
between ε1, ε2, J , and A. Unlike in Sect. 2, here we allow ε1 and ε2 to differ,
since in the large central charge limit, the lower bounds on these values will
behave differently as a function of A.

We define the CFT class {Ac} as follows. The basic defining properties of
CFTs, as discussed in Sect. 2, are still adopted. Additionally, we introduce two
extra quantities, α and C(βL, βR). The class {Ac} is thus defined by adding
the following two conditions:



S. Pal and J. Qiao Ann. Henri Poincaré

1. For any CFT in the class {Ac}, the twist gap is bounded from below by

T � αA, (3.2)

where α is strictly positive.
2. For any CFT in the class {Ac}, given that βL, βR > 2π, the ratio of the

full partition function and its vacuum part is bounded from above by

Z̃(βL, βR)
Z̃vac(βL, βR)

� C(βL, βR). (3.3)

where C(βL, βR) is finite as long as βL, βR > 2π.

It is worth noting that the first assumption is not strictly necessary, as we
expect our results to hold even if we include a sparse spectrum of operators
below the twist gap (τgap ≡ 2T ) in the partition function. The second as-
sumption takes inspiration from the HKS sparseness condition [22] and its
implications.13

Our analysis in this section closely follows that in Sect. 2. However, there
are additional subtleties that arise due to the following reason. In Sect. 2, when
we decomposed the partition function into several parts in different channels:

Z̃ = Z̃vac + Z̃T�h�A−ε1 + Z̃A−ε1<h<A+ε2 + Z̃h�A+ε2 = Z̃dual
vac + Z̃dual

nonvac,

and argued that several terms are subleading, we actually bounded them by
the partition function itself at some fixed inverse temperature, e.g., Z̃(β0, β0).
However, in the case of a class of theories, these terms may no longer be
subleading as they could all grow exponentially fast with c in the large central
charge limit. This is the reason why we introduce the two additional conditions
mentioned above: we want the dominant terms in the fixed CFT case to remain
dominant in the holographic case. Exploring the generality of our additional
assumptions, particularly the second one, in holographic CFTs would be an
intriguing avenue for future research.

3.1. Holographic Double Lightcone Limit, Main Results

To estimate NJ (ε1, ε2, A) defined in (3.1), we introduce the quantity
AJ(βL, ε1, ε2, A) defined as follows:

AJ (βL, ε1, ε2, A) :=
∑

h∈(A−ε1,A+ε2)

nh,h+Je−(h−A)βL . (3.4)

This definition is similar to the previously defined AJ(βL, ε) (as defined in
Eq. (2.20)), but now it depends on A since the theory is no longer fixed. By
definition, NJ (ε1, ε2) and AJ(βL, ε) satisfy the following inequality:

e−ε1βLAJ(βL, ε1, ε2, A) � NJ (ε1, ε2, A) � eε2βLAJ(βL, ε1, ε2, A). (3.5)

13We anticipate that (3.3) can be derived by imposing a similar, yet stronger, sparseness
condition compared to the HKS sparseness condition introduced in [22]. While the HKS
condition focuses on the sparseness of the low-energy spectrum, (3.3) specifically requires
sparseness in the low-twist spectrum.
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We consider AJ (βL, ε) in the holographic double lightcone limit (HDLC),
which is defined by the following limit procedure:

HDLCw limit : βL/A, J, A → ∞, 2πα(1 − w2)

√
J

A
− βL → ∞,

β−1
L log

(
J

A

)
→ 0 ,

(3.6)

where w ∈ (
1
2 , 1

)
is fixed.

We note that in the HDLCw limit, the first, second, and fourth conditions
imply that J/A3 → ∞. When A and T are fixed, the HDLCw limit reduces
to the DLCw limit defined in Eq. (2.22). Thus, we consider the HDLCw limit
as a natural generalization of the DLCw limit to the case of the large central
charge limit.

With the above setup, we have the following result:

Theorem 3.1. Let {Ac} be a class of CFTs satisfying the above mentioned
conditions (see Sect. 2.1 and the beginning of Sect. 3). Consider any w ∈ (

1
2 , 1

)
fixed and εi within the range

εi,min(βL, J, A) �εi � 1 − 1
2w

, (3.7)

where εi,min are defined by

ε1,min(βL, J, A) :=
3 log (AβL)

2παw2

√
A

J
.

ε2,min(βL, J, A) :=
(

βL − 4π

3

)−1
[
3πA +

3
2

log

(
βL

√
AJ

2π

)]
.

(3.8)

Then the quantity AJ(βL, ε1, ε2, A) defined in (3.4) satisfies the following as-
ymptotic two-sided bounds in the HDLCw limit (3.6):

1
w

⎛
⎝ 1

1 − tan(πw(1−ε))
πw(1−ε)

⎞
⎠ � AJ(βL, ε1, ε2, A)

4π5/2β
−3/2
L J−1/2e4π

√
AJ

� 1
w

(
2

1 + sin(2πwε)
2πwε

)
,

(3.9)
where ε ≡ max{ε1, ε2}. The above bounds are uniform in ε1 and ε2.

Theorem 3.1 serves as the large-c counterpart to Theorem 2.1. It estab-
lishes the universal behavior of the spectrum near the twist accumulation point
in the regime where

J � c3. (3.10)

Due to the similarity in the overall proof structure between Theorem 3.1 and
Theorem 2.1, we skip the proof of Theorem 3.1. Here, we only list the key
estimates in Table 2.

We would like to make some remarks on the key observations and the
main technical distinctions specific to the large central charge limit case:
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Table 2. Estimates of the suppressed contributions in the
HDLCw limit. Here, we have ignored the constant factors. β0

is an arbitrary constant satisfying β0 > 2π

I±,.../Idual±,vac

Dual channel, T � h̄ � A
(

βL
βR

)3/2
A1/2e

− 4π2T
βR

+Aβ0− 4π2(A−T )
β0

Dual channel, h̄ � A
β
3/2
L A1/2

β2
R

e
−A

(
4π2−Λ2

βR
−βL

)

Direct channel, h = 0
β
3/2
L A1/2

βR
e
−A

(
4π2
βR

−βL

)

Direct channel, h � A + ε2

(
βL
βR

)3/2
A1/2e

−ε2

(
βL− 4π2

β0

)
+Aβ0

Direct channel, T � h � A − ε1

(
A

βR

)1/2
e
−ε1

(
4π2α(1−w2/2)

βR
−βL

)

Remark 3.2. 1) The basic idea in deriving the above bounds is to estimate
the partition function by itself but evaluated at some fixed inverse tem-
perature, e.g., Z̃(β0, β0). However, in A → ∞ limit, Z̃(β0, β0) grows like
e2Aβ0 . This leads to subtle differences between Theorem 3.1 and The-
orem 2.1. For example, while Eq. (3.8) is similar to Eq. (2.23), there is
an extra 3πA factor in the expression for ε2,min(βL, J, A), which comes
about and is important because A is very large.

2) In the above discussions, we assumed that the non-vacuum spectrum of
Virasoro primaries starts from an O(c) twist gap, i.e., h, h̄ � αA with
some fixed α > 0. In fact, our conclusion does not change if we have
finitely many Virasoro primaries with h, h̄ being O(1) numbers. Using
the same analysis as in Appendices A.2 and A.3, one can show that the
contributions Idual

±,(h,h̄)
, from each of these extra operators are suppressed:

∣∣∣∣∣
Idual
±,(h,h̄)

Idual±,vac

∣∣∣∣∣
HDLCw−→ 0 , (3.11)

and hence can be neglected in our analysis.

Let us now estimate NJ(ε1, ε2) using Theorem 3.1. For this purpose, we
choose the following values of βL, ε1 and ε2:

βL = κ

√
J

A
, ε1 =

1
παw2

√
A

J
log (AJ) , ε2 =

3
κ

√
A

J
(2πA + log J) ,

(3.12)
where κ ∈ (0, 2πα(1 − w2)). It can be verified that in the limit J/A3 → ∞
(which is necessary for the HDLCw limit as mentioned after (3.6)), both the
conditions of the HDLCw limit (3.6) and the εi bounds (3.8) are satisfied.
Additionally, it is worth noting that for fixed A, both ε1 and ε2 decay as
O(J−1/2 log J) in the limit J → ∞, which is consistent with the behavior
observed in the case of fixed CFT.
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By applying Eq. (3.5), Theorem 3.1, and Eq. (3.12), we obtain two-sided
bounds for the quantity NJ (ε1, ε2). In order to simplify the statement of the
result, we sacrifice optimality by choosing w = 3

4 . Thus, we arrive at the
following estimate for NJ :

Corollary 3.3. For any fixed κ ∈ (
0, 7πα

8

)
, we have

NJ (ε1, ε2) = e4π
√

AJ+fκ(A,J) (J/A3 → ∞)(
ε1 ≡ 1

πα

√
A

J
log (AJ) , ε2 ≡ 3

κ

√
A

J
(2πA + log J)

)
,

(3.13)

where the error term fκ(A, J) is bounded by

|fκ(A, J)| � 6πA + 5 log(AJ) + C(κ), (3.14)

with C(κ) being a finite constant.

3.2. Near-Extremal Rotating BTZ Black Holes

In this subsection, we will discuss the implications of the results we have
derived in the previous subsection within the context of holography. It is worth
noting that the Cardy-like formulas are commonly used to compute the entropy
of black holes in AdS3 [17]. However, our current investigation focuses on the
rotating BTZ black holes.

The near-extremal rotating BTZ black hole has an approximate AdS2×S1

throat, as discussed in section 4.1 of [60]. Since the Schwarzian action describes
gravity in nearly AdS2 spacetime [51], it is reasonable to expect that the nearly
AdS2 × S1 throat of the near-extremal rotating BTZ black hole is described
by the Schwarzian action. From a holographic perspective, this suggests the
existence of a Schwarzian sector in 2D holographic CFT.

In the work [60], the authors made significant progress in identifying this
Schwarzian sector. They specifically highlighted that the near-extremal limit
in 3D gravity is dual to the double lightcone limit in 2D CFT. Their analysis
led to the proposal of a universal sector described by Schwarzian theory in
irrational 2D CFTs. The methodology closely follows the intuitive aspects of
the lightcone bootstrap in the large central charge regime, effectively captur-
ing the qualitative features of this limit. Furthermore, the authors extended
their analysis to correlators, providing additional evidence for the proposed
universality.

Here, we would like to focus on the torus partition function. In Sect.
3.2.1, we will briefly review the argument in [60]. Then in Sect. 3.2.2, we will
compare our results to the ones in [60] and clarify what we can justify and
what we cannot.

3.2.1. Review: Rotating BTZ Black Hole Thermodynamics in the
Near-Extremal Limit. The metric of the rotating BTZ black hole (without
electric charge), first derived in [61], is characterized by three parameters: r+

(outer horizon radius), r− (inner horizon radius) and 	3 (AdS3 radius). The
range of r± is 0 < r− � r+.
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To facilitate our discussion, we will use dimensionless parameters for the
physical quantities (such as temperature, mass, etc.) of the BTZ black hole.
The corresponding dimensionful parameters can be obtained by multiplying
dimensionless quantities by (	3)a with the appropriate power indices a.

The mass M and spin J of the black hole are given by

M =
r2
+ + r2

−
8GN 	3

, J =
r+r−

4GN 	3
, (3.15)

where GN is Newton’s constant. The requirement for r± to be real implies the
bound J � M .

The thermodynamic quantities of the BTZ black hole, including the
Hawking temperature TH, the angular momentum chemical potential Ω, and
the black hole entropy S, were derived using various semiclassical methods
[61–70]. The expressions for these quantities are as follows14

TH =
r2
+ − r2

−
2π	3r+

, Ω =
r−
r+

, S =
πr+

2GN
. (3.16)

In the regime where GN � 	3 (semiclassical) and r+ ≈ r− (near-extremal),
the entropy of the near-extremal black hole is related to its angular momentum
using (3.15), (3.16), and the Brown–Henneaux relation c = 3�3

2GN
[52]. We find

that the entropy is given by

S ≈ 2π

√
c

6
J ≈ 4π

√
AJ (c � 1). (3.17)

This result is consistent with Corollary 3.3 which provides the operator count-
ing formula in the large c limit.15 It is remarkable that from the CFT side,
we obtain the correct entropy formula for near-extremal black holes, providing
a gravitational interpretation of our results. This matching between the CFT
and gravitational descriptions not only reinforces the validity of the thermo-
dynamic description of black hole physics but also provides support for the
holographic principle.

The inverse temperatures for left and right movers, denoted as βL and
βR, respectively, are related to TH := β−1 and Ω, hence with r± as follows:

βL = (1 + Ω)β =
2π	3

r+ − r−
, βR = (1 − Ω)β =

2π	3
r+ + r−

. (3.18)

In [71], it was emphasized that the self-consistency of semiclassical methods
requires the back reaction of black hole radiation to be negligible. Specifically,
the fluctuation in Hawking temperature, denoted as ΔTH, should be much

14One can verify the black hole thermodynamics: dM = TH:dS + ΩdJ .

15Corollary 3.3 predicts S ≈ 2π
√

c−1
6

J instead of 2π
√

c
6
J . This is because in this paper we

are only counting Virasoro primaries instead of all states. This gap can be filled when we
take into account Virasoro descendants. Also, in the large central charge limit, this difference
is not important in the leading order of c−1.
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smaller than TH itself, which can be expressed using a standard thermodynamic
argument [72] as:

〈(ΔTH)2〉
T 2

H

=
1

TH

(
∂TH

∂S

)
J

� 1. (3.19)

By substituting (3.16) into (3.19), we find TH � GN

�3
. Using (3.18) and the

Brown–Henneaux relation c = 3�3
2GN

in the semiclassical regime GN � 	3, this
constraint can be written as:

βL, βR � c (c � 1). (3.20)

For this reason, in ref. [60], c−1 is referred to as the “gap temperature” of the
BTZ black hole. It was believed that the thermodynamic description of the
black hole breaks down when TH = O(c−1).

The above analysis raises a puzzle regarding the validity of black hole
thermodynamics in the near-extremal regime (r+ ≈ r− or Ω ≈ 1), where TH

could be of O(c−1) or even smaller. A resolution to this puzzle is recently
proposed in [60]. See also [73] for a recent review.

Ref. [60] investigated the near-extremal regime of black holes character-
ized by the conditions:

βL = O(c), βR = O(c−1) (c � 1). (3.21)

Based on the previous argument, it appears that black hole thermodynam-
ics breaks down in this regime due to the violation of the “gap temperature
condition” (3.20). However, [60] proposed that the thermodynamics remains
valid, but it is no longer described by semiclassical methods. Instead, a quan-
tum mode governed by Schwarzian theory [51,74] becomes dominant in the
near-extremal regime.

Furthermore, [60] argued for the appearance of the Schwarzian sector
universally in a broad class of c � 1 irrational CFTs with a twist gap and a
significantly large central charge c � 1. Here, we aim to revisit their argument
while presenting it from a slightly different perspective. Instead of focusing on
the full partition function Z(βL, βR) as examined in [60], our analysis focuses
on the reduced partition function Z̃(βL, βR), which exclusively accounts for
the Virasoro primaries. The computation below follows the same logic as in
[60]. This choice enables us to conveniently compare our results with those of
[60].

The intuitive argument goes as follows. In the grand canonical ensemble,
focusing on Z̃(βL, βR), the limit as βR → 0 favors the dominance of the vacuum
state in the dual channel, while the limit as βL → ∞ favors non-vacuum states.
The presence of a twist gap in the spectrum of Virasoro primaries ensures that
each non-vacuum term is suppressed, leading to the vacuum state’s dominance
in the dual channel. The vacuum contribution in the dual channel can then be
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identified with the contribution from the rotating BTZ black hole. Hence, we
have the approximation:

Z̃(βL, βR)
(3.21)≈

√
4π2

βLβR
e

4π2A
βL

+ 4π2A
βR

(
1 − e

− 4π2
βL

)(
1 − e

− 4π2
βR

)
≡ Z̃BTZ(βL, βR),

(3.22)
where A ≡ c−1

24 . In the large central charge limit, the left-moving part of Z̃BTZ

can be identified to the Schwarzian partition function. To see this, we introduce
the Schwarzian variable β̃ by rescaling β(≡ (βL + βR)/2)

β̃ :=
β

2A

(
≡ 12β

(c − 1)

)
. (3.23)

In the regime (3.21) with large central charge, we have β ≈ βL/2, then the
grand canonical partition function can be further approximated as

Z̃(βL, βR)
(3.21)≈

(
π

β̃

)3/2

eπ2/β̃ ×
(

π2

A

)3/2

β
−1/2
R e

4π2A
βR , (3.24)

and

ZSchw(β̃) =
(

π

β̃

)3/2

eπ2/β̃ (3.25)

is the Schwarzian partition function with a circle length β̃. So we see that the
grand canonical partition function is dominated by the Schwarzian modes in
the regime (3.21). The grand canonical entropy can be determined using the
standard thermodynamic formula:

Sgrand(βL, βR) ≡
(

1 − βL
∂

∂βL
− βR

∂

∂βR

)
log Z̃(βL, βR)

=
8π2A

βR
+ O(log βL) + O(log βR) + O(log A)

(3.26)

Here, the entropy from ZSchw is included in the error term.
The Schwarzian sector can also be seen in the canonical ensemble of

primary states with h̄ = h + J (spin-J):

Z̃J(β) ≡
∫ 2π

0

dθ

2π
eiθJ Z̃(β − iθ, β + iθ). (3.27)

In [60], it was argued that in an equivalent near-extremal regime16:

β = O(c), J = O(c3) (c � 1), (3.28)

16We modify the condition stated in ref. [60], Eq. (2.14), to J = O(c3). We believe this to be
the correct equivalent condition to βR = O(c−1). The reason will become clear shortly: We

will see that βR = 2π
√

A
J

under the saddle point approximation. This identification, along

with the condition βR = O(c−1), implies J = O(c3). This has also been noted in Appendix
B of [75] to justify the validity of saddle.
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Z̃J(β) can be evaluated by replacing Z̃ with Z̃BTZ and computing the con-

tribution around the complex saddle point θ = iβ − 2πi
√

A
J + O(J−1). This

yields:

Z̃J(β)
(3.28)≈

√
2π5/2β−3/2J−1/2e4π

√
AJ−βJ+ 2π2A

β . (3.29)

Then, the canonical partition function Z̃J(β) can be expressed as

Z̃J(β) = ZSchw(β̃) × e4π
√

AJ−βJ+O(log A)+O(log β), (3.30)

The canonical entropy is obtained using the standard thermodynamic formula:

Scanon(J, β) ≡
(

1 − β
∂

∂β

)
Z̃J(β) = 4π

√
AJ + O(log A) + O(log β). (3.31)

Here, the entropy from ZSchw is included in the O(log A)+O(log β) terms. To
match the grand canonical entropy (3.26) with the canonical entropy (3.31),

we recall βR = β + iθ = 2π
√

A
J + O(J−1) in the saddle point approximation.

This identification ensures the agreement of their leading terms: S = 4π
√

AJ+
(errors).

Let us consider the microcanonical ensemble now. In the limit (3.21),
where βL ≈ 2β = O(c), we expect the dominant contribution to the grand
canonical partition function Z̃(βL, βR) to arise from states with h − A =
O(c−1). This expectation is based on the duality between βL and h − A in
the definition of Z̃(βL, βR) (as seen in (2.6)). Additionally, in the canonical
ensemble, we identify βR with the saddle point at large spin, which leads

to βR = 2π
√

A
J . Using this relation together with (3.21), we find that J ≡

h̄ − h = O(c3). In the microcanonical ensemble, we therefore anticipate that
the relevant spectrum for the limit (3.21) consists of states characterized by

J(≡ h̄ − h) = O(c3), h − A = O(c−1). (3.32)

To determine the microcanonical entropy, we need to determine the number
of Virasoro primaries within the range (3.32). Based on the BTZ dominance
(3.22) in the limit (3.21), a plausible approach is to perform an inverse Laplace
transform of Z̃BTZ to obtain the coarse-grained spectral density of Virasoro
primaries within the specified range. The inverse Laplace transform of Z̃BTZ

yields the following expressions for the left- and right-moving vacuum charac-
ters:

1√
β

e
4π2A

β (1 − e− 4π2
β ) =

∫ ∞

A

dh̄ ρ0(A; h̄) e−(h̄−A)β , (3.33)

where the modular crossing kernel ρ0 is given by

ρ0(A; h̄) =
cosh(4π

√
A(h̄ − A))√

(h̄ − A)π
− cosh(4π

√
(A − 1)(h̄ − A))√
(h̄ − A)π

. (3.34)

Therefore, 2πρ0(A;h)ρ0(A; h̄) serves as the naive coarse-grained spectral den-
sity for Z̃. Let us use it to estimate the total number of Virasoro primaries
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within the range:

|h − A| � λc−1, |h − A − J | � 1
2
, λ = O(1). (3.35)

By integrating 2πρ0(A;h)ρ0(A; h̄) over the specified range of h and h̄, we
obtain

2π

∫ A+λc−1

A

dh ρ0(A, h) ×
∫ A+J+ 1

2

A+J− 1
2

dh̄ ρ0(A; h̄)

≈ π5/2

A3/2

∫ λ/6

0

d(k2) sinh(2πk) × 1
2
√

πJ
e4π

√
AJ (k = 2

√
A(h − A)).

(3.36)
In this expression, the integral over the left-moving part is identified as the
integral over the Schwarzian density of states (which is sinh(2πk)). By taking
the logarithm of the result, we obtain the microcanonical entropy of the states
within the range (3.35):

Smicro(A, λ, J) = 4π
√

AJ + O(log A) + O(log J), (3.37)

where the contribution from the left-moving part, which includes the Schwarzian
sector and is of O(log A), is absorbed into the error term.

The agreement between the entropy computations in different ensem-
bles for near-extremal BTZ black holes, as seen from Eqs. (3.26), (3.31), and
(3.37), is significant. Furthermore, the entropy formula S = 4π

√
AJ can be

reproduced using Eqs. (3.15), (3.16), and c = 3�3
2GN

in the near-extremal regime.
This provides strong evidence supporting the validity of the thermodynamic
description of AdS3 pure gravity in the near-extremal regime, where the Hawk-
ing temperature is of the same order as the “gap temperature.”

However, it is important to note that the above arguments have certain
caveats, and it is necessary to consider these limitations when concluding the
existence of a universal Schwarzian sector in a general class of irrational CFTs,
even without a gravitational dual. We will discuss these caveats in the next
subsection.

3.2.2. Fine-Prints and Resolution a la Tauberian. In this subsection, we would
like to compare our results from Sect. 3.1 to the ones in [60] and put some
of the intuitive arguments above on rigorous footing and clarify what can be
proven rigorously.

Let us first consider the partition function in the grand canonical en-
semble: Z̃(βL, βR). By assuming (3.2) and (3.3), we can establish the BTZ
dominance, i.e., the vacuum dominance in the dual channel, within the regime
specified by (3.21). Similar to the estimate performed in [28], we find that

Z̃BTZ(βL, βR)
Z̃(βL, βR)

= 1 + O

[
β

3/2
L e

−A
(

4π2α
βR

−βL−3π
)]

, (3.38)
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where Z̃BTZ was defined in (3.22). From this result, the BTZ dominance can
be reached under condition (3.21) and an extra technical assumption

4π2α

βR
− βL � κc, (3.39)

where κ > 0 is a fixed constant. The above extra assumption is weaker than
the one imposed in the HDLCw condition (3.6). In this limit, βL is allowed
to be of O(c), which gives an O(1) Schwarzian variable β̃ ≈ βL

4A using (3.23).
Consequently, the grand canonical partition function Z̃(βL, βR) exhibits the
following asymptotic behavior:

Z̃(βL, βR) ≈ Z̃BTZ(βL, βR) ≈ ZSchw(β̃) ×
(

π2

A

)3/2

β
−1/2
R e

4π2A
βR . (3.40)

Therefore, in our framework, we have justified that the Schwarzian partition
function appears in the left-moving sector of the grand canonical partition
function. However, it should be noted that the presence of the Schwarzian
sector in the theory is not guaranteed, as the direct channel spectrum capable
of reproducing the above asymptotic behavior is not necessarily unique.

Let us next consider the canonical ensemble. We would like to start by
establishing a relationship between the quantity AJ(βL, ε1, ε2, A) (defined in
(3.4)) which we used in Theorem 3.1 and the canonical partition function
Z̃J(β) (defined in (3.27)). By explicitly evaluating the integral in (3.27), we
find

Z̃J(β) = e−βJ
∑

h

nh,h+Je−2β(h−A). (3.41)

Comparing this expression with (3.4), we obtain the exact relation

Z̃J(β) = AJ(2β,∞,∞, A)e−βJ . (3.42)

Then, it is not surprising that setting β ≈ βL/2 � A in (3.29) yields

Z̃J(β) ≈ 4π5/2β
−3/2
L J−1/2e4π

√
AJ × e−βJ , (3.43)

which, by (3.42), implies

AJ(βL,∞,∞, A) ≈ 4π5/2β
−3/2
L J−1/2e4π

√
AJ . (3.44)

This result agrees well with Theorem 3.1 (see (3.9), the denominator below
AJ). The main distinction is that (3.44) takes into account contributions from
all spin-J states (i.e., with ε1 = ε2 = ∞), while Theorem 3.1 only counts
the contributions from spin-J states with twists near c−1

12 (i.e., with finite ε1

and ε2). This difference is actually one of the main points of Theorem 3.1: In
the HDLCw limit, both AJ(βL, ε1, ε2, A) and AJ (βL,∞,∞, A) yield the same
leading behavior.

Now, let us clarify the conditions required for our analysis in the canonical
ensemble. For Theorem 3.1 to hold true, we need the HDLCw conditions (3.6),
which imply:

βL � c, J � c3. (3.45)
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THc−1√
c/J

O
√

c
J

)
� TH � c−1 (Here) TH = O(c−1) [60] TH � c−1 [71]

Figure 3. The three regimes of TH compared to the “gap
temperature” c−1 (assuming c � 1 and βR = O(c−1) or
smaller). The results in our paper are valid in the pink regime.
The arguments of [60] (Schwarzian sector) correspond to the
green regime. The arguments of [71] (general regime of va-
lidity of black hole thermodynamics) correspond to the blue
regime

Thus, Theorem 3.1 pertains to a different regime than the one considered in
[60], where they require the condition (3.28). In [60], having βL = O(c) is
crucial as it enables the identification of the Schwarzian sector through the
rescaling (3.23). The condition (3.45) indicates that our results are valid when
the Hawking temperature is much lower than the “gap temperature”:

TH � c−1. (3.46)

In addition, according to Theorem 3.1, the HDLCw limit conditions (3.6) im-
pose a lower bound on the temperature. Specifically, we require

TH � const × α−1

√
c

J
(3.47)

in order to ensure the validity of our analysis.
Figure 3 provides a schematic illustration of the corresponding regimes

for our arguments, as well as for the arguments presented in [60] and [71]. We
would like to highlight that the arguments concerning the universal Schwarzian
sector presented in the previous subsection [60] are meaningful only if it can be
shown that the dominant contribution to Z̃J(β) arises from the BTZ partition
function, subject to the condition (3.28). However, to our knowledge, this has
not been rigorously established yet. A clean treatment of this issue would
involve proving the following equation:

lim
c→∞

Z̃J,BTZ(β)
Z̃J(β)

→ 1 (3.48)

under the condition (3.28), where Z̃J,BTZ(β) represents the contribution from
the BTZ partition function. Equation (3.48) is similar to (2.49), where the
compact support of φ̂± played a crucial role in the proof. In the case of (3.48),
the analog of φ̂± is eiθJ , which is supported over the entire real axis of θ. Due
to this technical complication, we are unable to rigorously justify (3.48). It is
possible that (3.48) is not universally true for all classes of irrational CFTs, but
may hold with certain additional assumptions that arise from the gravitational
perspective. We leave this question for future study.
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Lastly, let us consider the microcanonical ensemble. In this paper, we have
shown that in the HDLCw limit, the dominant contribution to AJ(βL, ε1 =
∞, ε2 = ∞, A) arises from the spectrum satisfying the conditions

J � c3, Δ − J − c − 1
12

∈ (−ε1, ε2), (3.49)

where

ε1 = O

(√
c

J
log(J)

)
, ε2 = O

(√
c3

J

)
+ O

(√
c

J
log(J)

)
. (3.50)

We have established that within this range, the leading term of the micro-
canonical entropy is given by Smicro = 4π

√
AJ , which coincides with (3.37)

as well as the standard black hole thermodynamic prediction (3.17). It is im-
portant to note that our argument is purely based on CFT considerations and
applies to a general class of irrational CFTs, without necessarily relying on a
gravitational interpretation.

While the microcanonical entropy formulas are the same, the regime of
validity of our result differs from that of [60], as mentioned earlier. In our case,
the first condition (3.49), which also appeared in the canonical ensemble (see
(3.45)), is more restrictive than the corresponding condition in (3.28).

In [60], it is crucial for the spectrum with 0 � Δ − J − c−1
12 � O(c−1) to

dominate Z̃(βL, βR) in the limit (3.21) (i.e., the second condition of (3.32)) in
order to identify Δ − J − c−1

12 with the positive Schwarzian energy of O(1):

k2 ∝ c

(
Δ − J − c − 1

12

)
= O(1). (3.51)

In contrast, in the second condition of our case (3.49), we do not exclude the
spectrum with twists lower than c−1

12 (i.e., Δ−J− c−1
12 ∈ (−ε1, 0)). Additionally,

the width of the window depends on J and is not necessarily of O(c−1).
In our case, it is unclear which modes within the range Δ − J − c−1

12 ∈
(−ε1, ε2) are more important for the partition function Z̃(βL, βR) in the HDLCw

limit. It would be interesting to investigate the general conditions under which
we can access the “Schwarzian regime” (3.32) and rigorously perform the mi-
crostate counting. We leave this for future study. It is conceivable to generalize
the rigorous discussion to the supersymmetric case along the lines of [76–78].

4. Conclusion and Brief Discussion

In this paper, we present a refined twist accumulation result for two-dimensional
unitary conformal field theories with central charge c > 1 and a twist gap in
the spectrum of Virasoro primaries. Using the lightcone bootstrap argument
and Tauberian theory, we rigorously estimate the number of Virasoro primary
operators with twist near c−1

12 and large spin, leading to the derivation of a
Cardy-like formula (1.2) which counts the states around the twist accumula-
tion point with twist spacing going to 0 in the large spin limit. While this
paper is grounded in the context of 2D CFT, it is crucial to underscore that
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our results concerning the asymptotic behavior of the spectral density have a
broader relevance. They are applicable to a class of functions defined by key
properties: (a) modular invariance, (b) positivity of expansion coefficients, (c)
the inclusion of a “vacuum term,” and (d) the presence of a “twist gap.” The
CFT torus partition function serves as an example of such functions. We antic-
ipate that the techniques developed here could be applicable for other aspects
of functions of such types.

One can conjecture potential generalizations of our result for CFTs with
conserved currents, which we will report in near future. It would be interesting
to consider irrational CFTs symmetric under a larger chiral algebra and with
a twist gap in the spectrum of primaries of the larger chiral algebra. The twist
accumulation point in the spectrum of such primaries is expected to shift, and
it is conceivable to establish analogous rigorous findings for irrational CFTs
with the larger chiral algebra.

Additionally, we study a class of CFTs with a twist gap growing linearly
in the central charge and a uniform boundedness condition on the torus par-
tition function. We establish a similar Cardy-like formula for microcanonical
entropy in the limit of large central charge. From a holographic perspective,
our result can be interpreted as the entropy formula for near-extremal rotating
BTZ black holes in the regime where the Hawking temperature is much lower
than the “gap temperature.” It would be interesting to investigate a general
CFT condition, inspired by the gravity side, under which we can rigorously
perform the microstate counting in the “Schwarzian regime.” In that regime,
the Hawking temperature is comparable to the “gap temperature.”

Another avenue to consider is the investigation of CFTs with a global
symmetry G and the study of the symmetry-resolved version of asymptotic
CFT data. For instance, it is possible to derive the density of states restricted
to an irreducible representation of G in the in large Δ limit [11] (see also
[79,80]). This analysis has been extended to higher-dimensional CFTs and
holographic CFTs in subsequent works such as [12] followed by [81]. Universal
results for CFTs with non-invertible symmetry are discussed in [15] and in [82].
By building upon the techniques elucidated in this paper, one can aspire to
derive the universality of the CFT spectrum when restricted to an irreducible
representation of G in the regime of fixed twist and large spin. Furthermore,
Tauberian theory can be potentially useful for extracting detailed structure of
asymptotic CFT data, unveiled in a beautiful recent paper [16].

One might hope to use the techniques in this paper in the context of
generic irrational CFTs with Virasoro symmetry only to shed light on (1) the
claimed twist gap [32] of c−1

16 and/or (2) shifting of BTZ threshold c−1
24 by a

spin dependent quantity [83].
Finally, it is crucial to highlight the significance of the identity block ap-

proximation in elucidating the origin of universal results in CFTs under appro-
priate limits. The Tauberian formalism serves as a valuable tool for rigorously
understanding such approximations and their regime of validity. Notably, re-
cent investigations have shed light on subtle effects related to identity block
dominance in [84] and [85]. The identity block approximation appears in the
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context of Virasoro mean field theory [30,31] as well. We believe that tech-
niques developed in this paper will be useful to investigate such effects and
more.
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A. Estimating the Dual-Vacuum Term

In this section, we compute the asymptotic behavior of the integral

Idual
±,vac ≡

∫ +∞

−∞
dt

√
4π2

βL(βR + it)
Z̃vac

(
4π2

βL
,

4π2

βR + it

)
φ̂±(t)ei(H̄−A)t (A.1)

in the modular double lightcone limit, where

Z̃vac

(
β, β̄

) ≡ eA(β+β̄) (1 − e−β
) (

1 − e−β̄
)

. (A.2)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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By definition, Idual
±,vac is factorized into two parts

Idual
±,vac(A, H̄;βL, βR) =Idual,L

±,vac (A;βL)Idual,R
±,vac (A, H̄;βR),

Idual,L
±,vac (A;βL) =

√
4π2

βL
e

4π2A
βL

(
1 − e

− 4π2
βL

)
,

Idual,R
±,vac (A, H̄;βR) =

∫ +∞

−∞
dt

1√
βR + it

e
4π2A

βR+it

(
1 − e

− 4π2
βR+it

)
φ̂±(t)ei(H̄−A)t.

(A.3)
When βL → ∞, the asymptotic behavior of Idual,L

±,vac is given by

Idual,L
±,vac (A;βL) ∼

(
4π2

βL

)3/2

e
4π2A

βL . (A.4)

For Idual,R
±,vac , we introduce the identity

1√
β

e
4π2A

β (1 − e− 4π2
β ) =

∫ ∞

A

dh̄ ρ0(A; h̄) e−(h̄−A)β , (A.5)

where the kernel ρ0 is given by

ρ0(A; h̄) =
cosh(4π

√
A(h̄ − A))√

(h̄ − A)π
− cosh(4π

√
(A − 1)(h̄ − A))√
(h̄ − A)π

. (A.6)

Then, by Eqs. (A.3) and (A.5) we get

Idual,R
±,vac (A, H̄;βR) =

∫ ∞

A−H̄

dx ρ0(A;x + H̄)e−βR(x+H̄−A)φ±(x). (A.7)

We choose φ± which satisfy the following properties

(a) |φ±(x)| � C±
1 + x2

, C± < ∞ , (b) φ̂±(0) �= 0 (A.8)

Below we will study Idual,R
±,vac (A, H̄;βR) with βR = 2π

√
A

H̄−A
in the limit

A � A0 > 0, H̄,
H̄

A
→ ∞; , (A.9)

We split the kernel ρ0 in (A.6) into four parts

ρ0(A; h̄) =ρ
(1)
0 (A; h̄) − ρ

(2)
0 (A; h̄) + ρ

(3)
0 (A; h̄) − ρ

(4)
0 (A; h̄),

ρ
(1)
0 (A; h̄) =

e4π
√

A(h̄−A)

2
√

(h̄ − A)π
, ρ

(2)
0 (A; h̄) =

e4π
√

(A−1)(h̄−A)

2
√

(h̄ − A)π
,

ρ
(3)
0 (A; h̄) =

e−4π
√

A(h̄−A)

2
√

(h̄ − A)π
, ρ

(4)
0 (A; h̄) =

e−4π
√

(A−1)(h̄−A)

2
√

(h̄ − A)π
.

(A.10)

Correspondingly, Idual,R
±,vac is split into four parts

Idual,R
±,vac = I

R(1)
±,vac − I

R(2)
±,vac + I

R(3)
±,vac − I

R(4)
±,vac. (A.11)
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We would like to show that for φ̂±(0) �= 017:
In the limit (A.9), the dominant contribution to Idual,R

±,vac comes from I
R(1)
±,vac.

Consequently, Idual
±,vac has the following asymptotic behavior:

Idual
±,vac

(A.9)∼
(

4π2

βL

)3/2 √
π

H̄
e2π

√
AH̄ φ̂±(0). (A.12)

where the r.h.s. corresponds to the contribution from I
R(1)
±,vac, which will

be derived in the next subsection.

A.1. Estimating I
R(1)
±,vac (the Dominant Term)

By definition, I
R(1)
±,vac is given by

I
R(1)
±,vac :=

∫ ∞

A−H̄

dx ρ
(1)
0

(
A; x̄ + H̄

)
e−βR(x+H̄−A)φ±(x) , (A.13)

We rewrite I
R(1)
±,vac as

I
R(1)
±,vac(A, H̄, βR) =

e
4π2A

βR

2
√

π(H̄ − A)

∫ ∞

A−H̄

dx

√
H̄ − A

x + H̄ − A
e

−βR

(√
x+H̄−A− 2π

√
A

βR

)2

φ±(x).

(A.14)

We split the domain of integration into two parts∫ ∞

A−H̄

=
∫ −H̄τ

A−H̄

+
∫ ∞

−H̄τ

, (A.15)

where τ ∈ ( 1
2 , 1) is some fixed constant. The first integral is bounded by∣∣∣∣∣∣

∫ −H̄τ

A−H̄

dx

√
H̄ − A

x + H̄ − A
e

−βR

(√
x+H̄−A− 2π

√
A

βR

)2

φ±(x)

∣∣∣∣∣∣

�
(

max
A−H̄�x�−H̄τ

{|φ±(x)|}
)⎛
⎝∫ −H̄τ

A−H̄

dx

√
H̄

x + H̄ − A

⎞
⎠

=
(

max
A−H̄�x�−H̄τ

{|φ±(x)|}
)(

2
√

H̄(H̄ − H̄τ − A)
)

(A.16)

Here, we bounded the exponential factor by 1 and bounded φ± by its maximal
value. Since φ± has the upper bound (A.8), we get∣∣∣∣∣∣

∫ −H̄τ

A−H̄

dx

√
H̄ − A

x + H̄ − A
e

−βR

(√
x+H̄−A− 2π

√
A

βR

)2

φ±(x)

∣∣∣∣∣∣ � 2C±H̄

1 + H̄2τ
→ 0

(A.17)

17By definition, we have φ̂+(0) > 0, whereas it is not always the case that φ̂−(0) �= 0 (see

the defining properties of φ± in (2.36)) and (2.37). In this paper, we will explicitly choose a

specific form of φ± that ensures φ̂±(0) �= 0.
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in the limit (A.9).
The second integral is controlled as follows. We rewrite the integral as∫ ∞

−∞
dx YH̄(x), where

YH̄(x) :=

√
H̄ − A

x + H̄ − A
e

−βR

(√
x+H̄−A− 2π

√
A

βR

)2

φ±(x)θ(x + H̄τ ).

(A.18)

We have √
H̄ − A

x + H̄ − A
θ(x + H̄τ ) �

√
H̄

H̄ − H̄τ − A
�

√
2 (A.19)

for H̄ � max
{
4A, 41/(1−τ)

}
. Let us explain the above bound. Since H̄ �

max
{
4A, 41/(1−τ)

}
, we have H̄ � 4A and H̄ � 4H̄τ , leading to H̄ −A− H̄τ �

H̄/2. Plugging this in, we obtain
√

H̄
H̄−H̄τ −A

�
√

2.
Now, the exponential factor in YH̄(x) is obviously bounded by 1. So we

get |YH̄(x)| �
√

2|φ±(x)| for sufficiently large H̄ and the r.h.s. is an integrable
function on R. Now, we consider the point-wise limit of YH̄(x) as H̄ goes to
∞. First, using τ > 0 we have√

H̄ − A

x + H̄ − A
θ(x + H̄τ )

(A.9)−→ 1 (A.20)

for fixed x. With the choice βR = 2π
√

A
H̄−A

, which gives

βR

(√
x + H̄ − A − 2π

√
A

βR

)2

=2π

√
A

H̄ − A

x2(√
x + H̄ − A +

√
H̄ − A

)2

� 2π√
s − 1

x2(√
x + H̄ − A +

√
H̄ − A

)2 → 0

(A.21)

for fixed x in the limit (A.9). Thus, we get YH̄(x)
(A.9)−→ φ±(x) for fixed x.

Then, using the dominated convergence theorem we conclude that∫ ∞

−∞
dx YH̄(x)

(A.9)−→
∫ ∞

−∞
dx φ±(x) = 2πφ̂±(0). (A.22)

Putting everything together, we get

I
R(1)
±,vac

(
A, H̄, βR ≡ 2π

√
A

H̄ − A

)
(A.9)∼

√
π

H̄ − A
e2π

√
A(H̄−A)φ̂±(0). (A.23)

A.2. Estimating I
R(2)
±,vac

By definition, I
R(2)
±,vac is given by

I
R(2)
±,vac :=

∫ ∞

A−H̄

dx ρ
(2)
0

(
A; x̄ + H̄

)
e−βR(x+H̄−A)φ±(x), (A.24)
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Similarly to the analysis for I
R(1)
±,vac, we rewrite I

R(2)
±,vac as

I
R(2)
±,vac(A, H̄, βR) =

e
4π2(A−1)

βR

2
√

π(H̄ − A)

∫ ∞

A−H̄

dx

√
H̄ − A

x + H̄ − A
e

−βR

(√
x+H̄−A− 2π

√
A−1

βR

)2

φ±(x).

(A.25)

We see that its structure is very similar to (A.14), except that A is replaced
by A − 1 in two places. Then, we do the same analysis as I

R(1)
±,vac. We split

the domain of integration into two parts as we have done in (A.15). Here,
the analysis is simpler than I

R(1)
±,vac: In the integrand, we always bound the

exponential factor by 1. In the limit (A.9), the main difference here is the

exponential factor e
4π2(A−1)

βR which grows slower than e
4π2A

βR (which is the one

in I
R(1)
±,vac) as βR → 0. Then in limit (A.9) (with βR = 2π

√
A

H̄−A
) we have

∣∣∣∣∣
I

R(2)
±,vac(A, H̄, βR)

I
R(1)
±,vac(A, H̄, βR)

∣∣∣∣∣
βR=2π

√
A

H̄−A

� const(φ±)e− 4π2
βR → 0 (A.26)

because of the exponential suppression. Here, the notation “const(φ±)” means
some finite constant which depends on the choice of φ±.

A.3. Estimating I
R(3)
±,vac and I

R(4)
±,vac

By definition, I
R(3)
±,vac is given by

I
R(3)
±,vac :=

∫ ∞

A−H̄

dx ρ
(3)
0

(
A; x̄ + H̄

)
e−βR(x+H̄−A)φ±(x), (A.27)

Similarly to the analysis for I
R(1)
±,vac, we rewrite I

R(3)
±,vac as

I
R(3)
±,vac(A, H̄, βR) =

e
4π2A

βR

2
√

π(H̄ − A)
∫ ∞

A−H̄

dx

√
H̄ − A

x + H̄ − A
e

−βR

(√
x+H̄−A+ 2π

√
A

βR

)2

φ±(x).

(A.28)
We see that I

R(3)
±,vac only differs from I

R(1)
±,vac by a change of the “±” sign in the

exponential factor. Then, the analysis is similar to I
R(1)
±,vac. We split the integral

into two parts as we have done in (A.15). In the limit (A.9), the first part goes
to zero for the same reason, and the second part is controlled by the dominated
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convergence theorem. But for I
R(3)
±,vac we have

βR(
√

x + h̄ − A +
2π

√
A

βR
) =2π

√
A

H̄ − A

(√
x + H̄ − A +

√
H̄ − A

)2

�2π
√

A(H̄ − A)
(A.9)−→ ∞.

(A.29)

Here in the first line, we used βR = 2π
√

A
H̄−A

, in the second line we dropped
the first term in the bracket, and in the last line used (A.9). This estimate
implies that the second part of the integral also goes to zero. Therefore, we
get

I
R(3)
±,vac(A, H̄, βR)

I
R(1)
±,vac(A, H̄, βR)

∣∣∣∣
βR=2π

√
A

H̄−A

(A.9)−→ 0 (φ̂±(0) �= 0). (A.30)

By the same analysis, we can also get

I
R(4)
±,vac(A, H̄, βR)

I
R(1)
±,vac(A, H̄, βR)

∣∣∣∣
βR=2π

√
A

H̄−A

(A.9)−→ 0 (φ̂±(0) �= 0). (A.31)

So we conclude that I
R(3)
±,vac and I

R(4)
±,vac are subleading in the limit (A.9).

B. Some Uniform Bounds on φ±,δ

In this appendix, we address the subtleties that arise when we take the limit
δ → 0 or δ → 1 for the selected functions φ±,δ (as discussed in Sect. 2.8,
specifically points 1 and 2). Throughout our analysis, we consistently choose
the following expressions for φ±,δ, which are (2.96) rescaled under (2.98):

φ+,δ(x) =
16δ2

(
x cos

(
δΛ
2

)
sin

(
Λx
2

) − δ sin
(

δΛ
2

)
cos

(
Λx
2

))2

(x2 − δ2)2 (δΛ + sin(δΛ))2
,

φ−,δ(x) =
4δ2

(
x cos

(
Λx
2

) − δ cot
(

δΛ
2

)
sin

(
Λx
2

))2

x2(δ2 − x2)
(
δΛ cot

(
δΛ
2

) − 2
)2 .

(B.1)

Recall that the range of allowed values for δ is given by ε < δ < 1 − ε. As we
approach the limit ε → 0, it eventually leads us to consider δ → 0 for φ+,δ and
δ → 1 for φ−,δ. In these limits, the values of the corresponding functions φ±,δ

are obtained point-wise as follows:

φ+,0(x) =
4 sin2

(
Λx
2

)
Λ2x2

, φ−,1(x) =
4
[
x cos

(
Λx
2

) − cot
(

Λ
2

)
sin

(
Λx
2

)]2
x2(1 − x2)

[
Λ cot

(
Λ
2

) − 2
]2 .

(B.2)
These limits are well-defined functions and are L1-integrable over the real axis.
This observation provides strong evidence that φ±,δ satisfy certain uniform
bounds that are essential for our analysis.

We aim to establish the following properties of φ±,δ:
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Lemma 1. For a fixed Λ ∈ (0, 2π], the function φ+,δ satisfies the following
bounds for δ ∈ [

0, 1
2

]
:

φ+,δ(x) �
{

4 |x| � 1,
64

Λ2x2 |x| � 1,
,

∣∣∣∣∣
φ+,δ(x)

φ̂+,δ(0)

∣∣∣∣∣ � max
{

64
Λ

, 4Λ
}

,

∣∣∣∣∣
φ̂+,δ(x)

φ̂+,δ(0)

∣∣∣∣∣ � 1.

(B.3)

Lemma 2. Let w ∈ (
1
2 , 1

)
and Λ ∈

[
(2w+1)π

2 , 2πw
]
be fixed. For δ ∈

[
(2w+1)π

2Λ , 1
]
,

the function φ−,δ satisfies the following bounds:

φ−,δ(x) �
{

π2 |x| � 2,
4π2

Λ2(|x|−1)2 |x| � 2.

∣∣∣∣∣
φ−,δ(x)

φ̂−,δ(0)

∣∣∣∣∣ �Λ

⎛
⎝1 +

4 cot
(

(2w−1)π
4

)
(2w + 1)π

⎞
⎠max

{
π2,

4π2

Λ2

}
,

∣∣∣∣∣
φ̂−,δ(x)

φ̂−,δ(0)

∣∣∣∣∣ �2πΛ

⎛
⎝1 +

4 cot
(

(2w−1)π
4

)
(2w + 1)π

⎞
⎠

(
1 +

2
Λ2

)
.

(B.4)

B.1. Proof of Lemma 1

When |x| � 1, we have

|φ+,δ(x)| ≡ 16

⎡
⎣ x

Λ
cos

(
δΛ
2

)
sin

(
Λx
x

) − δ
Λ

sin
(

δΛ
2

)
cos

(
Λx
2

)
(x2 − δ2)

(
1 + sin(δΛ)

δΛ

)
⎤
⎦

2

� 16

[ |x|+δ
Λ

x2 − δ2

]2

� 64

Λ2x2
.

(B.5)
In the first step, we rewrite φ+,δ(x). In the second step, we bound sin and cos
by 1 and use the fact that sin(δΛ)

δΛ � 0 for δ ∈ [
0, 1

2

]
and Λ ∈ (0, 2π]. In the

last step, we use the fact that |x| − δ � |x|
2 for |x| � 1 and δ ∈ [

0, 1
2

]
.

When 0 � x � 1, we have

|φ+,δ| (x) ≡ 4

⎡
⎢⎣

2δ sin(Λ(x−δ)
2 )

Λ(x−δ)
+

2 cos( δΛ
2 ) sin(Λx

2 )
Λ

(δ + x)
(
1 + sin(δΛ)

δΛ

)
⎤
⎥⎦

2

� 4

⎡
⎣ δ + x

(δ + x)
(
1 + sin(δΛ)

δΛ

)
⎤
⎦ = 4.

(B.6)
In the first step, we rewrite φ+,δ(x). In the second step, we use the inequality
| sin x

x | � 1 for any x ∈ R and sin x � x for x � 0. In the last step, we use the
fact that sin(δΛ)

δΛ � 0 for δ ∈ [
0, 1

2

]
and Λ ∈ (0, 2π]. The same bound on φ+,δ(x)

holds for −1 � x � 0 because it is an even function of x. This completes the
proof of the first inequality in (B.3). Next, we derive a uniform upper bound
on the ratio

∣∣∣φ+,δ(x)

φ̂+,δ(0)

∣∣∣. Using (2.100), we have φ̂+,δ(0) � 1
Λ for Λ ∈ (0, 2π] and
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δ ∈ [
0, 1

2

]
. Together with the first inequality in (B.3), we obtain∣∣∣∣∣

φ+,δ(x)

φ̂+,δ(0)

∣∣∣∣∣ � max
{

64
Λ

, 4Λ
} (

0 � δ � 1
2
, 0 < Λ � 2π

)
. (B.7)

The bound on | φ̂+,δ(x)

φ̂+,δ(0)
| follows trivially from the fact that φ+, δ(x) � 0 for all

x. Hence, we have
∣∣∣ φ̂+,δ(x)

φ̂+,δ(0)

∣∣∣ � 1. This completes the proof of Lemma 1.

B.2. Proof of Lemma 2

We note that φ−,δ(x) is an even function of x, so it is sufficient to prove the
first inequality in (B.4) for x � 0. We rewrite φ−,δ(x) as follows:

φ−,δ(x) =
δ − x

δ + x

[
2δ

δΛ cos
(

δΛ
2

) − 2 sin
(

δΛ
2

)
]2

︸ ︷︷ ︸
G1

⎡
⎣ sin

(
Λ(δ−x)

2

)
δ − x

− sin
(

Λx
2

)
cos

(
δΛ
2

)
x

⎤
⎦

2

︸ ︷︷ ︸
G2

.

(B.8)
When x � 0, the first factor in (B.8) is bounded by 1. For the second factor,
we use the condition on the range of δ and Λ, which implies that δΛ

2 ∈ [
π
2 , π

]
.

Thus, the second factor is bounded as follows G1 � π2

Λ2 where we used the fact
that the function f(x) ≡ (cos x − sin x

x )−2 is maximized at x = π
2 with the

maximum value of π2

4 for π
2 � x � π. The last factor in (B.8) is bounded as

follows G2 � (Λ
2 + Λ

2 )2 = Λ2. This bound is obtained by using the inequalities∣∣ sin x
x

∣∣ � 1, |sin x| � |x|, and |cos x| � 1. Combining the inequalities derived
above, we obtain |φ−,δ(x)| � π2 (∀ x ∈ R). In particular, this bound holds
for |x| � 2.

When x � 2, we use the condition δ � 1 and further refine the bound by
noting that the last factor in (B.8) satisfies: B � ((x − 1)−1 + x−1)2 � 4(x −
1)−2. Thus, we obtain the improved bound |φ−,δ(x)| � 4π2

Λ2(|x|−1)2 (|x| � 2).
This completes the proof of the first inequality in (B.4).

For the second and third inequalities in (B.4), we make use of the explicit
expression of φ̂−,δ given in (2.100):

φ̂−,δ(0) =
1
Λ

1

1 − 2 tan(Λδ
2 )

Λδ

� 1
Λ

1

1 +
4 cot( (2w−1)π

4 )
(2w+1)π

. (B.9)

Here, we used the condition (2w+1)π
4 � δΛ

2 � π, where 1
2 < w < 1, and the fact

that 1
1− tan x

x

is monotonically increasing for π
2 � x � π. Consequently, φ̂−,δ(0)

possesses a strictly positive lower bound that remains uniform in δ within the
specified range.

The second inequality of (B.4) follows from (B.9) and the first inequality
of (B.4). Similarly, the third inequality of (B.4) is obtained by combining (B.9)
and the first inequality of (B.9) with the additional estimate:∣∣∣φ̂−,δ(x)

∣∣∣ �
∫

dy

2π
|φ−,δ(y)| � 2π +

4π

Λ2
. (B.10)
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Therefore, we have established the validity of the second and third inequalities
in (B.4), completing the proof of Lemma 2.
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