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Abstract
The Covid-19 pandemic poses a significant threat to human health and life. Timely and
accurate prediction of the epidemic’s trajectory is crucial for devising effective pre-
vention and control strategies. Traditional infectious disease models may not capture
the complexity ofmodern epidemics, especially when governments implement diverse
policies. Drawing fromChina’s epidemic prevention strategies andCovid-19 transmis-
sion characteristics, this study introduces two distinct categories quarantined cases and
asymptomatic cases to enhance the traditional SEIRmodel in depicting disease dynam-
ics. To address the intricate nature of prevention and control efforts, the quarantined
cases are further segmented into three subgroups: exposed quarantined, asymptomatic
quarantined, and infected quarantined cases. Consequently, a novel SQEAIR model is
proposed to model the dynamics of Covid-19. Evaluation metrics such as the Akaike
information criterion (AIC) and Absolute Percentage Error (MAE) are employed to
assess the efficacy and accuracy of both the newly proposed and traditional models. By
fitting the models to the number of infected cases in Shanghai (March to May 2022)
and Guangzhou (November 2022), it was observed that the SQEAIR model exhibited
a lower AIC value compared to the SEIR model, indicating superior fitting accuracy
for Covid-19 infections. Moreover, the high accuracy of the SQEAIR model enabled
precise predictions of confirmed cases in Guangzhou. Leveraging the SQEAIRmodel,
various parameters were tested to simulate the impact of different influencing factors,
enabling the evaluation of defense strategies. These findings underscore the effec-
tiveness of key epidemic control measures, such as quarantining exposed cases, in
enhancing public health and promoting awareness of personal protection.
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1 Introduction

The novel Coronavirus is a highly contagious viral strain found in late 2019, and the
pneumonia caused by this virus was named novel Coronavirus disease 2019 (Covid-
19) [1]. Typical symptoms of cases infected by Covid-19 include fever, fatigue, dry
cough, etc. [2], and severe cases may result in respiratory distress syndrome or even
death [3]. The main transmission routes of the Covid-19 are droplet transmission,
contact transmission, and aerosol transmission [4]. The virus is characterized by rapid
transmission, wide infection range, random mutation in its RNA, and other charac-
teristics, and the prevention and control of its transmission is extremely difficult. The
epidemic has been lingering around the world for more than three years, and fast-
transmitting variants have been still affecting different regions. These showed that the
Covid-19, no matter what kinds of new virus lines evolve or prevail, will continue to
pose a critical threat to human life and health in near future.

Currently, conducting quantitative research and theoretical analysis on the spread
of Covid-19 is essential for predicting its trends and implementing appropriate con-
trol measures. When it comes to epidemic forecasting, mathematical models play a
crucial role in simulating the transmission dynamics of the outbreak. A well-designed
mathematical model not only allows for the analysis of the transmission patterns of
the epidemic and prediction of its trajectory but also offers valuable insights for epi-
demic prevention and control efforts. By leveraging mathematical models, informed
recommendations can be made for future prevention and control strategies.

The traditional SEIR model considers the impact of factors such as contact rate,
incidence rate, and latent cases on the epidemic. Hethcote discussed involving the
basic reproduction number R0, the contact number σ , and the replacement number R
are reviewed for the classic SIR epidemic and endemic models [5]. Rock et al. focused
on three critical aspects : heterogeneously structured populations, stochasticity, and
spatial structure [6]. In the case of the Covid-19, different nations have implemented
prevention and control measures, which to certain extent have contributed to hindering
the Covid-19 transmission. However, these prevention and control measures have not
been fully considered by traditional infectious diseasemodels. It is not weird that using
the traditional SEIR model could result in a large deviation between the prediction
results and the number of infected cases.

Actually, many models were developed to describe the transmission of the
Covid-19. Kuhl brought together modern concepts in mathematical epidemiology,
computational modeling, physics-based simulation, data science, and machine learn-
ing to understand the outbreak dynamics and outbreak control of COVID-19 [7]. Frank
[8] analyzed COVID-19 outbreaks in various countries around the globe, made use
of mathematical models of epidemiology such as the SIR and SEIR models, and dis-
cussed the impacts of measures implemented to stop the spread of COVID-19 disease.
Gatto [9] accounted for uncertainty in epidemiological reporting, and time dependence
of humanmobilitymatrices and awareness-dependent exposure probabilities and draw
scenarios of different containment measures and their impact. Ngonghala et al. [10]
developed a new mathematical model to assess the population-level impact of control
and mitigation strategies, and emphasized the important role social-distancing plays
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in curtailing the burden of COVID-19. Yang Z et al. [11] proposed a M-SEIR model
based on the improved SEIR model. Based on the M-SEIR model, Wang J et al. [12]
proposed a CSPE model with the community as the basic forecasting unit. Martcheva
[13] proposed quarantine and isolation were typically modeled by introducing sepa-
rate classes into the model. Wei Y et al. [14] established a SEIR+CAQ transmission
dynamics model, considering the transmission mechanism, infection spectrum, and
isolation measures. According to the actual situation in China, Zhao X et al. [15]
added the transmission process of latent tracking admission and morbidity tracking
admission on the basis of the traditional SEIR model to depict the development trend
of the epidemic and created a CSEIRmodel. By assuming that infected but undetected
individuals are sent for quarantine during the incubation period, Pal. D [16] proposed
a SEQIR model to assess and manage the outbreak of the infectious disease Covid-
19. Daniele P et al. [17] developed a SPQEIR model to link intervention categories
against epidemic spread to epidemiological model compartments. Giulia G et al. [18]
developed SIDARTHE model discriminates between infected individuals depending
onwhether they have been diagnosed and on the severity of their symptoms, this delin-
eation also helps to explain misperceptions of the case fatality rate and of the epidemic
spread. Luca G et al. [19] introduced a framework to quantify how the uncertainty in
the data affects the determination of the parameters and the evolution of the unmea-
sured variables of a givenmodel. Francoise K et al. [20] extended the SEIRmodel, and
considered how the interplay between vaccinations and social measures could shape
infections and hospitalizations.

While mathematical models serve as valuable tools for understanding epidemics
and guiding response strategies, they are not without their limitations. Firstly, the
spread of Covid-19 is influenced by a multitude of factors such as policy adjust-
ments, levels of isolation, quality ofmedical care, and adherence to personal protective
measures. These factors can introduce significant deviations in the fitting and predic-
tion of confirmed cases. Secondly, the parameters within these models play a critical
role in determining prediction outcomes. Setting default parameters based on existing
knowledge and subjective judgment can lead to discrepancies in results, especially in
scenarios with limited data.Furthermore, many models overlook the classification and
analysis of different types of quarantined cases, which may not align with effective
epidemic control policies and the unique transmission characteristics of Covid-19.
This oversight can result in suboptimal prediction accuracy and other challenges.

To address these limitations, we developed a novel SQEAIR model that considers
both quarantine policies and the presence of asymptomatic cases. This model cate-
gorizes quarantined individuals into exposed, asymptomatic, and infected groups. By
incorporating these compartments and simulating contact tracing, isolation protocols,
and the release of asymptomatic cases based on medical observation, the SQEAIR
model offers a more comprehensive approach to epidemic prevention and control.
The model also accounts for isolating exposed and asymptomatic cases, leading
to improved predictive accuracy compared to the traditional SEIR model.Through
parameter optimization and fitting the model to the number of infected cases, we
demonstrated the superior performance of the SQEAIR model. Finally, by testing var-
ious parameterizations, we evaluated the effectiveness of epidemic control measures
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implemented by governments, health authorities, and individuals in curbing the spread
of Covid-19.

2 Model Introduction

The most widely used infectious disease dynamics modeling methods are grouped
as compartment model, and a prominent one, namely the SEIR model. It was estab-
lished by Kermack WO and McKendrick AG [21] in 1927 when studying the Black
Death in London and the plague in Mumbai, which was developed into a specialized
theory: infectious disease dynamics. These models describe the transmission process
of infectious diseases, analyze the change rule of the number of infected individu-
als, and reveal the development pattern of infectious diseases through the quantitative
relationship according to the general infectious disease transmission mechanism [22].

2.1 SEIR Model

In the SEIR model, the following assumptions are made:

1. The total population of the region remained unchanged during the disease obser-
vation period;

2. Each individual is equally likely to be infected, and only person-to-person trans-
mission is considered;

3. After treatment and recovery, cases will not be transformed into susceptible cases
in a short time.

SEIR model divides the total population into the following categories:
Susceptible (S): those who are not infected but have a chance of contracting the

disease;
Exposed (E): refers to individuals who are in the incubation period andwill become

infected after the incubation period;
Infected (I ): refers to individuals who are infectious and are showing symptoms;
Removed (R): refers to individuals who have either recovered or died among the

infected individuals;
The model flow chart is as follows:
β is the effective contact rate of cases per unit time,ω is the probability of converting

a exposed person into an infected person, and γ is the probability of recovery or death
of cases (Fig. 1).

Fig. 1 Flow chart of SEIR infectious disease dynamics model
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Based on the SEIR infectious disease dynamics model and the above assumptions,
differential equations can be constructed:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS

dt
= −βSI

N
dE

dt
= βSI

N
− ωE

d I

dt
= ωE − γ I

d R

dt
= γ I

(1)

2.2 Improved SQEAIRModel

On the basis of the traditional SEIRmodel, we propose the SQEAIR infectious disease
dynamics model by considering the characteristics of the transmission of the novel
coronavirus pneumonia and China’s epidemic prevention policies.

In SQEAIR model, the following assumptions are added:

1. The quarantined cases include some of the close contacts of exposed cases, asymp-
tomatic cases and infected cases, and the quarantined cases will not infect others;

2. Latent cases are tested to have been affected (confirmed) or asymptomatic cases
after the incubation period;

3. Latent, asymptomatic, and confirmed cases are all infectious, and the infection
rate is the same;

4. Confirmed cases and asymptomatic cases were treated and eventually cured or
died.

SQEAIR model is proposed on the basis of the traditional SEIR model, and the
following four compartments are added for research:

Asymptomatic cases (A): cases who are infected but not showing symptoms;
Quarantined exposed cases (QE ): caseswhoare exposedbut not capable of infecting

susceptible cases;
Quarantined asymptomatic cases (QA): caseswhoare asymptomatic but not capable

of infecting susceptible cases;
Quarantined infected cases (QI ): caseswho are infected andnot capable of infecting

susceptible cases;
The model flow chart is as follows:
The effective contact rate per unit of time of a patient is β. When a susceptible

individual is infected, they initially enter the incubation period or a latent state, with
the rate of conversion from a latent individual to an infected individual denoted as
ω. Infected individuals encompass both asymptomatic cases and diagnosed patients.
The proportion of infected individuals who exhibit symptoms and progress to con-
firmed patients is p, while the proportion of asymptomatic infected individuals who
remain symptom-free is 1− p. The rate at which an asymptomatic infected individual
transitions to a confirmed patient is δ.
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Individuals have a likelihood of entering the isolation category during the latent,
asymptomatic infected, and confirmed patient phases, with the respective proportions
denoted as q, λ , μ.

Individuals admitted to the isolation category remain there until they recover or
pass away, becoming emigrants. γ1 represents the rate that the confirmed but not
quarantined patients recover or pass away, γ2 represents the rate that asymptomatic
infected but not quarantined ones recover or pass away, γ3 represents the rate that the
quarantined and treated ones recover or pass away, and γ4 represents the rate that the
quarantined asymptomatic infected ones recover or pass away (Fig. 2).

Based on the SQEAIRmodel and the above assumptions, differential equations can
be constructed:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS

dt
= −βS(E + A + I )

N
dE

dt
= βS(E + A + I )

N
− [(1 − q)ω + q]E

dQE

dt
= qE − ωQE

d A

dt
= (1 − q)(1 − p)ωE − (λ + δ + γ2)A

dQA

dt
= (1 − p)ωQE + λA − (δ + γ4)QA

d I

dt
= (1 − q)pωE + δA − (μ + γ1)I

dQI

dt
= pωQE + δQA + μI − γ3QI

dR

dt
= γ1 I + γ2A + γ3QI + γ4QA

(2)

Since the effective contact rate of patients per unit time β will continue to decrease
with the increase and decrease of prevention and control measures and monitoring

Fig. 2 Flow chart of dynamic model of SQEIAR infectious disease
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efforts, this paper describes the change of effective contact rate of patients per unit
time β over time by introducing inhibitory factors:

β(t) = β0e
−α (3)

Where α denotes the exponential decreasing rate of effective contact rate β, which
is used to indicate the inhibiting effect of epidemic prevention work on the spread
of the epidemic, and β0 denotes the initial value of the effective contact rate, and the
effective contact rate on the first day of the experimental data is used as the initial value
of the effective contact rate, which can be introduced according to the first differential
equation above:

β0 = (S0 − S1)N

S0(E0 + A0 + I0)
(4)

Therefore, both β in the system of Eq. 2 are: (S0−S1)N
S0(E0+A0+I0)

2.3 Model Solving

Runge-Kutta Method is an important iterative method for solving nonlinear ordinary
differential equations, it can be used to solve the SEIR model and SQEAIR model.
This method is mainly used when the derivative and initial value information of the
equation are known and computer simulation is used, which can save the complicated
process of solving the differential equation. In the following, the SEIR model is taken
as an example to introduce the solution process of Runge-Kutta Method.

First, the time interval [0, t] is discretized into n step, each of which is h = t
n .

Second, initialize initial conditions: S0, E0, I0, R0 (the meaning of the arguments
are shown in Table 1).

Third, for each time step, calculate the k1 of the current time step:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

k1S = −βSn IN
N

k1E = βSn IN
N

− ωEn

k1I = ωEn − γ In
k1R = γ In

(5)

Table 1 The situation in Shanghai, Mar. 28, 2022

Arguments Meaning Initial value Source

N Total population of Shanghai 24894000 Official data

E0 Exposed at the beginning 28937 Estimated data

A0 Asymptomatic at the beginning 18531 Official data

I0 Infected at the beginning 363 Official data

R0 Removed at the beginning 535 Official data
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calculate the k2 of the current time step:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

k2S = −β(Sn + h
2 k1S)(IN + h

2 k1I )

N

k2E = β(Sn + h
2 k1S)(IN + h

2 k1I )

N
− ω(En + h

2
k1E )

k2I = ω(En + h

2
k1E ) − γ (In + h

2
k1I )

k2R = γ (In + h

2
k1I )

(6)

calculate the k3 of the current time step:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

k3S = −β(Sn + h
2 k2S)(In + h

2 k2I )

N

k3E = β(Sn + h
2 k2S)(In + h

2 k2I )

N
− ω(En + h

2
k2E )

k3I = ω(En + h

2
k2E ) − γ (In + h

2
k2I )

k3R = γ (In + h

2
k2I )

(7)

calculate the k4 of the current time step:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

k4S = −β(Sn + hk3S)(In + hk3I )

N

k4E = β(Sn + hk3S)(In + hk3I )

N
− ω(En + hk3E )

k4I = ω(En + hk3E ) − γ (In + hk3I )

k4R = γ (In + hk3I )

(8)

Thus, the next value is determined by the product of the present values, the time
interval (h), and a slope estimated by the weighted average of the slopes of k1, k2, k3,
and k4, where k1 is the slope at the beginning of the time period; k2 is the slope of
the midpoint of the time period, and the slope k1 is used to determine the value of y.
k3 is also the slope of the midpoint, and the slope k2 is used to determine y. k4 is the
slope of the end point of the time period, whose y is determined by k3. When the four
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slopes are averaged, the slope of the midpoint has a greater weight. The Runge-Kutta
method for SEIR model is given by the following equation:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Sn+1 = Sn + h

6
(k1S + 2k2S + 2k3S + k4S)

En+1 = En + h

6
(k1E + 2k2E + 2k3E + k4E )

In+1 = In + h

6
(k1I + 2k2I + 2k3I + k4I )

Rn+1 = Rn + h

6
(k1R + 2k2R + 2k3R + k4R)

(9)

Through several iterations, the approximate values of each time step S, E , I , R,
can be obtained to solve the SEIR model. Using the same method, arguments in the
SQEAIR model can also be solved.

In this paper, the 4-order Runge-Kutta Method is used to solve the differential
equation. The 5-order method controls the error, and the overall truncation error is
◦(h5).

2.4 Basic Reproduction Number

Basic reproduction number, usually denoted by R0, it is an important indicator in
epidemiology of the ability of an infectious disease to spread in a given population.
The basic regeneration number indicates the average number of susceptible individuals
in a population who develop the disease per infected individual during the infectious
period. When R0 > 1, it indicates that an infected person transmits the virus to more
than one newly infected individual during their illness. Consequently, the number of
people afflicted with the disease increases, and the disease persists. Conversely, when
R0 < 1, the infected person transmits the virus to fewer than one newly infected
individual throughout the course of the disease. As a result, the number of people
suffering from the disease decreases, and the disease is gradually eradicated. When
R0 = 1, the number of people suffering from the disease will be constant.

Van den Driessche P [23] gave an exact procedure for the computation of the
fundamental regeneration number R0 based on the propagation of a system of ordinary
differential equations for hamster models, which has been widely used, as follows:

Let x = (x1, x2, · · · , xn)T , where xi ≥ 0(i = 1, 2, · · · , n), denotes the number of
individuals in the i , compartment. Let Fi (x) be the probability of a new infection in
the i compartment, V+

i (x) be the rate of movement of individuals into the i compart-
ment, and V−

i (x) be the rate of movement of individuals out of the i compartment.
Assuming that each function is continuously differentiable at least twice in each vari-
able, the disease transmission model consists of non-negative initial conditions and
the following equations:

dS

dt
= Fi (x) − Vi (x), i = 1, 2, · · · , n (10)
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where Vi (x) = V+
i (x) − V−

i (x)? V−
i (x) denotes the rate of individuals moving

out of the i compartment, V+
i (x) denotes the rate of individuals moving into the i

compartment, and Fi (x) denotes the rate of new infections.
Calculate thefullderivativesof Fi (x) andVi (x)with respect to x = (x1, x2, · · · , xn)T

respectively, the full derivative of Fi (x) is F = [ ∂Fi
∂xi

(x0)] and the full derivative of

Vi (x) is V = [ ∂Vi
∂xi

(x0)], where x0 denotes the disease-free equilibrium point.
The formula for the basic regeneration number R0 is obtained:

R0 = ρ(FV−1) (11)

Here, V−1 denotes the inverse matrix of matrix V , and ρ(FV−1) denotes the
spectral radius of matrix FV−1, i.e.,the upper definitive bound on the absolute value
of the eigenvalues of the matrix.

Since in the SQEAIR model, only three bins, E, A, and I, are infected, only the
following new system consisting of the second, fourth, and sixth equations needs to
be utilized to calculate the basic regeneration number:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dE

dt
= βS(E + A + I )

N
− [(1 − q)ω + q]E

dA

dt
= (1 − q)(1 − p)ωE − (λ + δ + γ2)A

d I

dt
= (1 − q)pωE + δA − (μ + γ1)I

(12)

Let x = (E, A, I )T , then the above system of ordinary differential equations can
be written as dx

dt = F(x) − V (x), where:

F(x) =
⎡

⎣

βS(E+A+I )
N
0
0

⎤

⎦ .

V (x) =
⎡

⎣
[(1 − q)ω + q]E

−(1 − q)(1 − p)ωE + (λ + δ + γ2)

−(1 − q)pωE − δA + (μ + γ1)I

⎤

⎦ .

Calculating the full derivatives of F(x) and V (x) with respect to x = (E, A, I )T ,
respectively, yields:

F =
⎡

⎣

βS
N

βS
N

βS
N

0 0 0
0 0 0

⎤

⎦ .

V =
⎡

⎣
[(1 − q)ω + q] 0 0

−(1 − q)(1 − p)ω λ + δ + γ2 0
−(1 − q)pω δ μ + γ1

⎤

⎦ .
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from Eq. 11:

R0 = β

(1 − q)ω + q
[1 + (1 − q)(1 − p)ω

λ + δ + γ2
+ (1 − q)pω

μ + γ1
+ (1 − q)(1 − p)ωδ

(λ + δ + γ2)(μ + γ1)
]

(13)
Since β = β0e−αt , the expression for the fundamental regeneration number R0 is

R0 = β0e−αt

(1 − q)ω + q
[1 + (1 − q)(1 − p)ω

λ + δ + γ2
+ (1 − q)pω

μ + γ1
+ (1 − q)(1 − p)ωδ

(λ + δ + γ2)(μ + γ1)
]

(14)

2.5 Evaluating Indicators

For the prediction of the number of existing infected cases andmodel selection, Akaike
information criterion (AIC) is adopted to test the accuracy of the two models. AIC
was proposed by Akaike H [24] in 1974. It measures the quality of relative statistical
models, based on reducing information dissipation. In addition, it can help determine
the best model, thereby reducing model overfitting and improving model accuracy.
Its prominet advantage is that it can obtain more accurate results through the gain of
parameters or the reduction of information dissipation in the selection of models.

The specific formula are as follows:

AIC = 2p + n ln
RSS

n
(15)

RSS =
n∑

i=1

(yi − ŷi )
2 (16)

where n is the observed number, RSS is residual sum of squares, p is the number of
parameters, yi is the actual number of infected cases, and ŷi is the observed number
of infected cases.

To further assess the prediction effectiveness of the number of existing infected
cases, Mean Absolute Percentage Error (MAE), Mean Squared Error (MSE), Root
Mean Squared Error (RMSE), and Mean Absolute Percentage Error (MAPE) are also
used to test the accuracy of the two models. The specific formula are as follows:

MAE(y, ŷ) = 1

n

n∑

i=1

|yi − ŷi | (17)

MSE(y, ŷ) = 1

n

n∑

i=1

(yi − ŷi )
2 (18)
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RMSE(y, ŷ) =
√
√
√
√1

n

n∑

i=1

(yi − ŷi )2 (19)

MAPE(y, ŷ) = 1

n

n∑

i=1

| yi − ŷi
yi

| (20)

3 Numerical Simulation and Prediction

3.1 Numerical Simulation andModel Comparison

Since the outbreak of the epidemic, the National Health Commission of the People’s
Republic of China (NHC) has reported data on a daily basis, including the number of
new confirmed cases, the number of new asymptomatic cases, the number of asymp-
tomatic cases converted to confirmed cases, the number of newly cured asymptomatic
cases removed from medical observation, the number of existing confirmed cases, the
number of asymptomatic cases, and the number of cases quarantined. We retrieved
epidemic-related data from Shanghai, China for 65 days from March 28 to May 31,
2022, as well as data related to the model such as population of shanghai. The pre-
liminary values of cases groups are shown in Table 1, with official data from NHC,
exposed at the beginning is on the basis of the rate of exposed cases transforming into
infected cases to estimate, the actual data of infected cases and asymptomatic cases
are shown in Fig. 3.

Fig. 3 Infected and asymptomatic cases in Shanghai
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After obtaining the data, we first conducted stationarity test on the original data.
Augmented Dickey-Fuller (ADF) test is also called the unit root test. The ADF test is
to determine whether the sequence has a unit root: if the sequence is stationary, there
is no unit root; Otherwise, there will be a unit root. Therefore, the null hypothesis
of ADF test is the existence of unit root. If the obtained significance test statistic is
less than 0.05, there is no unit root, and the sequence is stable. The ADF test values
of both the existing confirmed cases and the existing asymptomatic cases were less
than 0.05, negating the null hypothesis and believing that the original sequence was
stable. Secondly,white noise test was carried out on the original data. The p value of the
existing confirmed cases was 9.992×10−6 and the value of the existing asymptomatic
cases was 1.221 × 10−15, indicating that neither of the two groups of original data
was white noise and could reflect the real trend and rule of the time series.

As to the data collected above, MATLAB software was used to conduct numerical
simulation for the number of existing infections (number of existing infections are
equal to the cumulative number of confirmed minus cumulative number of removed),
and the values of parameters in the model (Table 2), the values of evaluating indicators
(Table 3), and the fitting curve (Figs. 4 and 5) were obtained.

As to the fitting results (Figs. 4 and 5) and the AIC evaluation indexes (Table 3),
although the improved SQEAIRmodel has four more chambers and added parameters
than the original SEIR model, the fitting value is closer to the real data, the error is
relatively low, and the fitting accuracy has improved, with better fitting effect. Notably,
the fitting effect of SEIR model is accurate in the early stage, the estimated value in
the middle stage is slightly lower than the real value, while the estimated value in the

Table 2 Model parameters for Shanghai

Arguments Meaning Initial value Source

β0 Effective patient contact rate at the beginning 1.1788 Calculate

α Exponential decreasing rate of the effective con-
tact rate

0.053 Fitting of parameters

q The quarantined rate of exposed cases 0.5996 Fitting of parameters

λ The quarantined rate of asymptomatic cases 0.6638 Fitting of parameters

μ The quarantined rate of infected cases 0.7594 Fitting of parameters

ω The rate of exposed becoming Infected cases 1
5.2 Reference [25]

p The percentage of infected cases showing symp-
toms

0.64 Fitting of parameters

δ The probability of asymptomatic cases transform-
ing into infected cases

0.1077 Fitting of parameters

γ1 The recovery rate of infected cases 1
8 Reference [26]

γ2 The recovery rate of asymptomatic cases 1
12 Reference [26]

γ3 The recovery or death rate of quarantined infected
cases

0.4791 Fitting of parameters

γ4 The recovery or death rate of quarantined asymp-
tomatic cases

0.4504 Fitting of parameters
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Table 3 Evaluating indicators of the models

Model RSS AIC MAE MSE RMSE MAPE

SE I R 2.03 × 108 978.18 1.34 × 103 3.13 × 106 1.77 × 103 28.11%

SQE AI R 1.19 × 108 953.35 1.01 × 103 1.83 × 106 1.35 × 103 20.18%

later stage is higher than the real value. Thus, the SQEAIR model is more suitable for
the prediction of the number of cases infected by the Covid-19 epidemic in Shanghai.

In order to test the accuracy of the model, we also collected 32 days of epidemic
data in Guangzhou, China, from November 1 to December 2, 2022 on the official
website of Guangzhou Health Commission (Table 4). The actual data of the exist-
ing asymptomatic number, the existing confirmed number, the cumulative confirmed
number, and the cumulative cured number are shown in Fig. 6.

The accuracy of SQEAIR model is verified again by comparing the fitting effect
diagram and the error evaluation index (Figs. 7 and 8).

In addition, SQEAIR model can also fit and predict the number of asymptomatic
cases because of the addition of asymptomatic cases compartment. Figure 9 shows the
fitting results of SQEAIRmodel on the number of asymptomatic cases in the epidemic
in Shanghai. It can be seen that the overall fitting effect is good, and the specific error
indicators are shown in Tables 3, 5 and 6.

3.2 Prediction

Based on theSQEAIRmodelwith high accuracy and the estimated values of the param-
eters obtained above, the future development trend of the epidemic in Guangzhou was
predicted, and the prediction results were obtained onDecember 3 and in the following
five days (Table 7) and the prediction effect diagram (Fig. 10). As shown in Table 7

Fig. 4 The fitting results of SQEAIR model
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Fig. 5 The fitting results of SEIR model

and Fig. 10, the predicted number of cases is not much different from the real number
of cases, average error rate is 2.93%, the overall prediction effect is relatively good,
indicating that the parameter estimation is relatively accurate, and the SQEAIRmodel
can simulate the development law of the epidemic situation well. Besides the number
of confirmed cases in Guangzhou will gradually rise in the next five days, but has been
actually kept within a manageable range.

The basic regeneration number R0 is a key indicator for portraying whether there
is an outbreak of an infectious disease, so it is necessary to utilize the calculations of
the epidemic data from Guangzhou City to determine whether there is a possibility of
a large-scale outbreak.

The SQEAIR model was utilized to fit the number of existing infections in
Guangzhou City, and the values of each parameter were obtained as shown in the
Table 8.

According to the formula and the values of the parameters in the above table, the
transformed graph of the basic regeneration number can be obtained (Fig. 11).

Since the beginning of the Guangzhou epidemic on November 1, the value of the
basic regeneration number is 2.06, and then it gradually decreases. In fact, the basic
regeneration number R0 = 1 on the 17th day, and then the values become smaller

Table 4 The situation in Guangzhou, Nov. 1, 2022

Arguments Meaning Initial value Source

N Total population of Guangzhou 18811000 Official data

E0 Exposed at the beginning 5277 Estimated data

A0 Asymptomatic at the beginning 1492 Official data

I0 Infected at the beginning 811 Official data

R0 Removed at the beginning 1637 Official data
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Fig. 6 Infected and asymptomatic cases in Guangzhou

than 1, which means that from the 17th day onwards, on average, each infected person
causes fewer than 1 person to be infected of the disease during, meaning that the
disease’s infectious capacity has begun to decline. Due to the incubation period and
the time required for asymptomatic infected persons to turn into confirmed patients,
the epidemicwill eventually be brought under control, although the number of infected
persons is still gradually increasing.

Fig. 7 The fitting results of SQEAIR model

123



Journal of Nonlinear Mathematical Physics            (2024) 31:28 Page 17 of 25    28 

Fig. 8 The fitting results of SEIR model

4 Influencing Factors

Based on the SQEAIR model proposed above, respectively considering the impact of
tracking isolation measures, medical treatment level and personal protection measures
on the number of infected cases, and the effect of prevention and control was evaluated
by changing parameters. The effectiveness of prevention and control strategies was
evaluated mainly by the number of cases and the peak of the epidemic. The following
prediction assumes a local population of 100,000.

Fig. 9 SQEAIR model was used to fit the number of asymptomatic cases in the Shanghai
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Table 5 Evaluating indicators of the models

Model RSS AIC MAE MSE RMSE MAPE

SE I R 5.73 × 107 466.74 1.07 × 103 1.79 × 106 1.34 × 103 15.68%

SQE AI R 3.43 × 106 394.58 189.8317 1.0702 × 105 327.1407 2.72%

4.1 Tracking Quarantine Measures

Local epidemic prevention authorities implemented control measures for close con-
tacts and sub-close contacts, reflecting the effectiveness of the government?s tracking
and quarantine measures. Scientific tracking quarantine measures can reduce the rate
of infection effectively. Here, we depict the impact of different quarantined rate of
exposed cases on the number of cases who got sick in an outbreak (Fig. 12). When
the quarantined rate of exposed cases is 0, the number of asymptomatic cases and
confirmed cases would greatly increase, and the peak of the epidemic would come
in advance, which would have a great impact on local medical supplies and produc-
tion and life. When the quarantined rate of exposed cases increases, the number of
asymptomatic cases and confirmed cases would be significantly reduced, the peak of
the epidemic would come later, and the impact on local medical institutions would be
greatly reduced (Table 9).

4.2 Medical and Health Level

Local cure rates of infected cases reflecting the effectiveness of theMedical and health
level. Figures 13 and 14 depicts the impact of the recovery rate of different infected
cases on the number of sick cases in the epidemic. When medical and health level is
inferior, the number of asymptomatic cases and confirmed cases will increase greatly,
and the peak of the epidemic will come in advance, which will have a great impact
on local medical supplies and production and life. When the medical level is high, the
number of asymptomatic cases and confirmed cases will be significantly reduced, the
peak of the epidemic will come later, and the impact on local medical institutions will
be greatly reduced. And with the improvement of medical level, the peak number of
infected cases decreased significantly (Tables 10 and 11).

Table 6 Evaluating indicators of the models

Indicators MAE MSE RMSE MAPE

5.83 × 103 5.74 × 107 7.58 × 103 6.5%
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Table 7 Evaluating indicators of the models

Data Dec3 Dec4 Dec5 Dec6 Dec7 Dec8

Predicted number of cases 15116 15640 16163 16684 17204 17723

Real number of cases 15427 15456 16462 17059 17524 17865

Error rate 2.01% 1.13% 1.82% 2.20% 1.83% 0.79%

Average error rate 1.63%

4.3 Personal ProtectionMeasures

Individual epidemic prevention behaviors, such as wearing masks when going out,
washing hands frequently at home, and using public spoons and chopsticks, reflect
citizens’ attention to the Covid-19 epidemic, and scientific protective measures can
effectively reduce the rate of infection. The figure below depicts the effect of different
effective exposure rates on the number of cases in an outbreak. As can be seen from
the Fig. 15, the lower the effective contact rate of cases, the smaller the number of
asymptomatic infected and confirmed cases, and the later the peak of the epidemic, the
more conducive to the control of the epidemic. And with the reduction of the effective
contact rate of cases, the peak number of infected cases has been significantly reduced
(Table 12)

5 Conclusion

This study focuses on fitting, predicting, and scientifically managing the number of
infected individuals using an enhanced infectious disease dynamics model tailored to
the specific circumstances of the epidemic in China. Initially, an improved SQEAIR

Fig. 10 Prediction results of SQEAIR model
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Table 8 Model parameters for Guangzhou

Arguments Meaning Initial value Source

β0 Effective patient contact rate at the beginning 1.2088 Calculate

α Exponential decreasing rate of the effective
contact rate

0.042 Fitting of parameters

q The quarantined rate of exposed cases 0.7237 Fitting of parameters

λ The quarantined rate of asymptomatic cases 0.8799 Fitting of parameters

μ The quarantined rate of infected cases 0.9629 Fitting of parameters

ω The rate of exposed becoming Infected cases 1
5.2 Reference [25]

p The percentage of infected cases showing
symptoms

0.0126 Fitting of parameters

δ The probability of asymptomatic cases trans-
forming into infected cases

0.775 Fitting of parameters

γ1 The recovery rate of infected cases 1
8 Reference [26]

γ2 The recovery rate of asymptomatic cases 1
12 Reference [26]

γ3 The recovery or death rate of quarantined
infected cases

0.6124 Fitting of parameters

γ4 The recovery or death rate of quarantined
asymptomatic cases

0.4221 Fitting of parameters

infectious disease dynamics model was developed by augmenting the traditional SEIR
modelwith three isolation compartments and one asymptomatic infected compartment
to create a more realistic representation.

Subsequently, data pertaining to the number of infected individuals in Shanghai,
China, between March and May 2022 were gathered and fitted using both the SEIR
and SQEAIR models. The estimates of crucial parameters in the models and the
associated error values were then calculated. The results indicated that the SQEAIR

Fig. 11 Basic regeneration number change curve
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Fig. 12 The impact of quarantine measures on the number of cases infected in the outbreak

model exhibited a lower fitting error and a reduced AIC value, suggesting its superior
fit compared to the traditional infectious disease dynamics model in capturing the
epidemic trend in Shanghai. Moreover, when the SQEAIR model was applied to fit
data on asymptomatic infected individuals in Shanghai, the error rate was notably
lower at 6.5%.

To further validate the model’s accuracy, data on infected individuals in Guangzhou
City in November 2022 were collected, with results consistently favoring the SQEAIR
model over the SEIR model. Subsequent predictions using the improved model for
confirmed cases in Guangzhou over the next five days yielded a low prediction error
of only 2.53%. Calculations of the basic reproduction number of the epidemic in
Guangzhou indicated that it had already reached 1 and was gradually decreasing,
suggesting that while confirmed cases might rise, they would remain manageable.

Finally, leveraging the enhanced SQEAIR infectious disease dynamics model, the
study explored the impact of varying latent isolation rates, infected person recovery
rates, and effective patient contact rates on the number of infected individuals. Simu-
lation results highlighted that higher isolation rates, lower recovery rates, and reduced

Table 9 Table of epidemic peaks corresponding to different quarantined rate of exposed cases

Quarantined rate of exposed cases 0 0.3 0.6 0.9 0.95

Peak days for asymptomatic cases 25 31 39 53 56

Maximum number of asymptomatic cases 10805 8141 6169 5066 4954

Peak days for infected cases 28 34 43 58 60

Maximum number of infected cases 20081 16098 13038 11215 11011
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Fig. 13 Influence of cure rates of infected cases on the numbers of infected cases in the outbreak

patient contact rates led to fewer infections and delayed epidemic peaks, underscoring
the importance of effective public management in outbreak prevention and control
efforts.

Fig. 14 Influence of cure rates of asymptomatic cases on the numbers of infected cases in the outbreak
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Table 10 Epidemic peaks corresponding to the cure rates of different infected cases

Cure rate of infected cases 0.2 0.4 0.6 0.8

Peak days for asymptomatic cases 53 62 68 72

Maximum number of asymptomatic cases 5045 4556 4193 3933

Peak days for infected cases 59 63 69 73

Maximum number of infected cases 11206 5415 3377 2377

Table 11 Epidemic peaks corresponding to the cure rates of different asymptomatic cases

Cure rate of asymptomatic cases 0.2 0.4 0.6 0.8

Peak days for asymptomatic cases 53 60 65 70

Maximum number of asymptomatic cases 5045 3466 2556 1977

Peak days for infected cases 58 64 70 76

Maximum number of infected cases 11215 8562 6973 5887

Fig. 15 Impact of personal protection measures on the numbers of cases infected in an outbreak

Table 12 Table of epidemic peaks corresponding to different effective contact rates

Effective contact rate 0.00001 0.00002 0.00005 0.0001 0.001

Peak days for asymptomatic cases 87 54 33 24 13

Maximum number of asymptomatic cases 3639 5066 6154 6543 6904

Peak days for infected cases 89 58 38 29 17

Maximum number of infected cases 8412 11215 12983 13535 14027
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