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Abstract

the R1234yf AC system was recommended.

The development of electric vehicles (EVs) exhibits rapid and remarkable progress nowadays, serving as a crucial

route to accomplish the target of mitigating greenhouse gas emissions. As an integral part of the thermal manage-
ment system oriented toward electric vehicles, the heat pump air conditioning system for electric vehicles is the result
of a comprehensive choice that trades off the cooling and heating performance, environmental performance

and economic cost. Particularly, different regions around the world suffer varying cooling and heating challenges

due to the complicated climatic characteristics. Thus the most suitable refrigerant and system cycle structure may
differ. This paper focuses on evaluating both the refrigerants and cycle structures to screen the most suitable choice.
According to the climate conditions of different cities, the annual energy consumption, life cycle climate perfor-
mance, and economic cost of the basic system (Base), two-stage compression system (TSC,IC), and vapor injection

(V1) system with CO,, R134a, and R1234yf refrigerants respectively, are quantitatively analyzed and evaluated. Subse-
quently, through comparative analysis, a comprehensive selection map for heat pump systems in electric vehicles
worldwide is developed and the most suitable heat pump air conditioning system for each cites is determined. The
results can provide a selection reference and decision-making for the air conditioning system of electric vehicles

from regional considerations. It was found that the CO, HPAC,, was recommended for cold regions to meet both envi-
ronmental and economic requirements. In warm region, the R1234yf HPAG;, ... system was recommended to be

used. For regions transitioning from cold to warm climates, the R1234yf HPAC,, system was suggested. In hot region,
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1 Introduction

With the increasing strictness of environmental aware-
ness and greenhouse gas emission policies [1, 2], thepure
battery electric vehicles (PBEVs) have rapidly developed
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as a promising solution to replace conventional inter-
nal combustion engine vehicles (ICEVs). Compared to
ICEVs, PBEVs have an obvious advantage in terms of
environmental friendliness, as they emit no harmful
gases, including nitrogen oxides (NOx) and carbon mon-
oxide (CO), as well as greenhouse gases, such as carbon
dioxide (CO,), during operation [3]. Therefore, promot-
ing the development of PBEVs is crucial and has far-
reaching implications.

The battery energy consumption in PBEVs is primar-
ily determined by several factors, including the motor
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for propulsion, the air conditioning system for passenger
comfort, and other electronic components. In particular,
in winter, the driving range is significantly reduced due
to the massive energy for cabin heating from the bat-
tery, leading to a phenomenon known as ‘range anxiety,
which is considered a major obstacle to the development
of PBEVs in cold regions. Currently, the most commonly
used heating method in PBEVs is the Positive Tempera-
ture Coefficient (PTC) heater, which is convenient and
inexpensive but less efficient. Researchers have dem-
onstrated that the use of a PTC heater in cold climates
can result in a reduction of more than 50% in the driving
range of PBEVs [4-6].

Researchers have shown interest in using heat pumps
to address the problem of range anxiety in PBEVs dur-
ing winter [7-10]. Unlike PTC heater, heat pump sys-
tems offer better heating efficiency, which significantly
depends on weather conditions, and have a Coefficient
Of Performance (COP) typically greater than 1. How-
ever, the choice of refrigerant is a crucial factor in the
performance of heat pump systems, as it can significantly
impact system efficiency and lead to environmental and
cost-related issues. Therefore, the selection of an appro-
priate refrigerant requires careful consideration, espe-
cially given the worldwide and collective nature of PBEV
development.

Currently, the mainstream refrigerant used in PBEV air
conditioning systems is still R134a. The R134a air condi-
tioning system offers a cooling performance advantage
but less efficient for heating at cold weather and cannot
meet the heating load under extreme cold weather condi-
tions. Peng et al. [11] designed a R134a heat pump sys-
tem for electric vehicles and tested its heating capacity
at different temperatures. Their results indicated that the
R134a heat pump air conditioning (HPAC) system could
meet cabin heating demand with a high efficiency at
-5 °C, as reflected by a COP of 4.55. However, the experi-
ment did not involve lower temperatures. To investigate
the heating performance of the R134a heat pump system
at lower temperatures, Lee et al. [12]conducted experi-
mental studies and found that the system could meet
heating demand above -10 °C, but the PTC needed to
be turned on below -10 °C due to a decrease in heating
capacity and COP caused by the ambient temperature
decline. However the Global Warming Potential (GWP)
of R134a is 1300, indicating that excessive emissions of
R134a could significantly intensify the greenhouse effect,
contributing to global warming [13]. As a result, R134a is
being phased out worldwide due to its high GWP of 1300.
Alternatives such as R1234yf and CO, are being consid-
ered for future use. As these replacement refrigerants
exhibit significant differences in terms of their heating/
cooling performance, economy cost and environmental
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friendliness. Therefore, careful evaluation of these alter-
natives is necessary to ensure the optimal selection of
refrigerants for PBEVs.

In contrast to R134a, the potential replacement refrig-
erant R1234yf exhibits similar thermodynamic properties
but with slightly reduced heating/cooling performance.
Most notably, it has a significantly improved environ-
mental profile due to its low GWP of 4 [14]. Li et al. [15]
conducted experiments to compare the performance of
R134a and R1234yf and found that at a condenser tem-
perature of 40 °C and an evaporation temperature of 0 °C,
the COP of R1234yf was 20% lower than that of R134a.
Similarly, Zou et al. [16] built an electric vehicle heat
pump air conditioning system to investigate the perfor-
mance of R1234yf and R134a under different working
conditions and found that the heating capacity and COP
of R1234yf were approximately 10% lower than those
of R134a. Additionally, Lee et al. [17] built R1234yf and
R134a heat pump systems and tested them under cooling
and heating conditions in a heat pump bench tester. The
results showed that the COP of R1234yf was 0.8 ~2.7%
lower than that of R134a.

Another natural refrigerant CO, with a GWP of 1
and Ozone Depletion Potential (ODP) of 0, has been
proposed as a potential replacement, demonstrating
superior environmental friendliness. Additionally, this
refrigerant boasts advantages such as low cost, non-
toxicity, non-flammability, and high latent heat [18, 19],
making it an attractive option. Although CO, has unique
thermophysical properties that make it advantageous for
heating, its cooling performance is slightly inferior. Dong
et al. [20] conducted a comparative analysis of the heat-
ing performance of a R134a heat pump system and a CO,
heat pump system, demonstrating that at an ambient
temperature of -10 °C, the COP of the CO, system was
80% higher than that of R134a at the same speed of 6000,
with a heating capacity of 7378 W (R134a, 3994W). Chen
et al. [21] investigated the effects of outdoor temperature,
outdoor air speed, indoor air volume, compressor speed,
and EXV opening on the performance of a CO, heat
pump, concluding that when the indoor and outdoor
temperatures are -20 °C, the COP and heating capacity
can reach 3.1 and 3.6 kW, respectively. Moreover, under
outdoor, indoor, and outlet temperatures of -20 °C, 20 °C,
and 40 °C, the COP was 1.7, demonstrating good heat-
ing performance in cold climates. Steven et al. [22] used
a semi-theoretical cycle model to study the performance
advantages of CO, and R134a automotive air condition-
ing systems, revealing that R134a has a better COP than
CO,, with the COP difference depending on compressor
speed and ambient temperature. Ciro et al. [23] experi-
mentally investigated the operating parameters and per-
formance of R134a air conditioning systems and CO,
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systems, demonstrating that the overall performance
of R134a air conditioning systems consistently outper-
formed CO, (from 20 to 44% higher performance).

In general, the CO, refrigerant is better suited for cold
regions due to its superior heating performance, while
R134a and R1234yf refrigerants are more appropriate for
hot regions [23-29]. However, determining the demarca-
tion line for the most suitable refrigerant based on region
presents a challenge. The weather conditions of each
region differ due to variations in dimension and altitude.
These differences result in varying heating and cooling
hours and ranges, which significantly affect the annual
energy consumption of HPAC in PBEVs. Considering the
characteristics of those refrigerants, it becomes clear that
each region has its own best-suited option. To determine
the most appropriate refrigerant, it is essential to conduct
comprehensive quantitative analyses, taking into account
factors such as annual energy consumption, life cycle cli-
mate performance and economy cost.

In previous studies, Song et al. [30] and Liu et al. [31]
conducted quantitative analyses on the regional applica-
bility of CO, and R134a refrigerants. These studies were
based on calculations of annual energy consumption, life-
cycle carbon emissions, climate performance, and cost.
However, their evaluations did not take into account the
potential impact of improved system structures on heat-
ing and cooling performance and environmental perfor-
mance. Therefore, to offer a more comprehensive and
comparative assessment, this paper evaluates the global
regional applicability of refrigerants and system cycle
structures by conducting quantitative analysis of annual
energy consumption, life cycle climate performance and
cost. By considering both refrigerant and system cycle
structure, this study aims to develop a selection map for
air conditioning system used in PBEVs.
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The paper is organized as follows: Sect. 2 introduces
the heat pump air conditioning systems for each refrig-
erant, including both basic and improved systems. Addi-
tionally, theheating and cooling modes for each system
are introduced and explained. The most commonly used
system in PBEVs nowadays is also introduced as a com-
parison object. Section 3 presents the relevant calcula-
tion methods and formulas, including the simulation
models for each system, the selected objective cities, the
annual heating and cooling hours of each cities, and the
calculation formulas for energy consumption, life cycle
climate performance, and cost. Section 4 presents the
heating and cooling performance of each system, the cal-
culation results for energy consumption, carbon emis-
sions, and cost for the objective cities, and provides the
refrigerant suitability map. Finally, the major conclusions
are presented in Sect. 5. This paper can serve as a refer-
ence for the selection of appropriate heat pump air con-
ditioning systems for PBEVs all around the world.

2 System description

To provide a comprehensive comparison of various
HPAC systems, this paper focuses on the system cycle
structures and refrigerants that are currently being stud-
ied by researchers. These system cycle structures and
refrigerants are chosen to cover a wide range of technol-
ogies and solutions, as shown in Table 1. Table 1 quali-
tatively summarizes the advantages and disadvantage
of these combinations of refrigerants and system cycle
structures and specific quantitative analysis is presented
in the following content. By comparing and evaluating
these systems and refrigerants, this paper aims to iden-
tify the most suitable HPAC system and refrigerant for
PBEVs in each region. The detailed description of each
system is as follows.

Table 1 The refrigerant and system cycle structure are discussed in this paper [32-36]

System Brief description Advantage Disadvantage
CO, HPACg 50 Base cycle Good in heating; Green Poor in cooling
CO, HPAG ¢ Two-Stage Compression Excellent in heating; Green expensive
with intercooling
CO, HPAC, Vapor injection Superb in heating; Green Very expensive
R134a AC PTC heating cheap Extremely poor in heating; Extremely Non-eco-friendly
R134a HPACg .. Base cycle Very Good in cooling Poor in heating; Non-eco-friendly
R134a HPAC, Vapor injection Good in heating Expensive; Non-eco-friendly
R1234yf AC PTC heating cheap Extremely Poor in heating Non-eco-friendly
R1234yf HPACg, .0 Base cycle Good in cooling Poor in heating

R1234yf HPAC,,

Vapor injection

Moderately eco-friendly

Good in heating; Moderately eco-
friendly

expensive
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Fig. 1 The schematic diagram of systems discussed in this paper

2.1 R134a/R1234yf refrigeration air condition system
Figure 1(a) presents the schematic of the R134a and
R1234yf refrigeration air condition system (R134a/
R1234yf AC). The system of R134a and R1234yf is com-
patible due to their close thermodynamic properties, and
can be used interchangeably with the same components
and lube oil. Therefore, they are introduced together in
this study. The system comprises a compressor, an out-
door heat exchanger (OHX), an indoor evaporator (EVA),
an electronic expansion valve (EEV), and an accumulator.
During the heating mode, the PTC heater is activated to
heat the cold air, which is then delivered to the cabin. On
the other hand, the air conditioning system remains inac-
tive. During summer, the R134a/R1234yf air condition-
ing system cools the air, and hence the system is referred
to as R134a/R1234yf AC+PTC system. The system is
characterized by its simple structure, low cost, and wide
application, but suffers from inefficiency.

2.2 R134a/R1234yf base heat pump air conditioning
system

Figure 1(b) show the schematic of R134a/R1234yf base heat

pump air conditioning system (R134a/R1234yf HPAC ,_.).
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This system mainly includes a compressor, an indoor heat
exchanger (IHX), an evaporator (EVA) and an accumulator
(ACCU), two electronic expansion valves (EEV), outdoor
heat exchanger (OHX). The abbreviation HPAC stands
for a system can heat the air in heat pump and cool the
air in air conditioning.

Based on the valve’s switching, the system can alternate
between cooling and heating functions. It’'s important
to note that when in cooling mode, the damper on the
indoor side is closed, preventing the IHX from exchang-
ing heat with the air. However, in heating mode, the
damper opens, allowing the air to be heated. The refrig-
erant entering the compressor has a superheat of 0 K,
thanks to separation in the ACCU, necessitating system
control by managing the refrigerant’s subcooling as it
exits the OHX /IHX. The target subcooling is set at 10 K.

2.3 R134a/R1234yf vapor injection heat pump air
conditioning system

Figure 1(c) display the configuration diagrams of R134a/

R1234yf vapor injection heat pump air conditioning

system (R134a/R1234yf HPAC,,) designed for improv-

ing heating performance at extremely low temperatures.
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This system comprises a vapor injection compressor,
an indoor heat exchanger (IHX1), an intermediate heat
exchanger (IHX2), an outdoor heat exchanger (OHX), an
accumulator (ACCU), three electronic expansion valves
(EEV), and an evaporator (EVA). Specifically, EEV2 in
the vapor injection path is used to control the timing and
occurrence of refrigerant injection into the compressor.

In heating mode, the refrigerant, which is at high tem-
perature and pressure, is initially directed to IHX1 to
exchange heat with and warm the fresh air. After exiting
the IHX1, the refrigerant flow is divided into two parts:
the main path and the injection path. Specifically, the
refrigerant in the injection path is expanded by EEV2
into a two-phase flow, then it is heated back to saturated
vapor in IHX2 before being rerouted to the compressor.
Meanwhile, the refrigerant in the main path undergoes
supercooling in IHX2, then is expanded and depressur-
ized by EEV1 into a two-phase flow. This refrigerant then
passes through the OHX to absorb heat from the outdoor
air before entering the ACCU, where the liquid is sepa-
rated before the mixture returns to the compressor.

In cooling mode, the branch electronic expansion valve is
closed due to no significant improvement in performance
and to reduce the system’s complexity; the system loop
configuration remains the same as that of the base system.

2.4 CO, single-stage compression heat pump air
conditioning system

Figure 1(d) illustrates the configuration diagrams of CO,
single-stage compression heat pump air-conditioning
system (CO, HPACg), which consists of a CO, com-
pressor, a three-way valve, an indoor gas cooler (IGC),
an evaporator (EVA), an outdoor heat exchanger (OHX),
two electronic expansion valves (EEV), and an interme-
diate heat exchanger (IHX). The system is designed to
achieve the switching of cooling and heating functions
through the three-way valve.

To enhance the system performance, An IHX is used
to supercool the CO, before it enters the EEV and super-
heat the CO, before enters compressor preventing the
liquid shock. But this may increase the compressor dis-
charge temperature. The discharge pressure is controlled
by adjusting the opening of the EEV, which allows the
system to operate at an optimal pressure and achieve effi-
cient operation.

2.5 CO, two-stage compression with intercooling heat
pump air conditioning system

The schematic and enthalpy diagram of a CO, two-stage

compression with intercooling heat pump air-condition-

ing system (CO, HPAC 15c;c) are presented in Fig. 1(e).

The system consists of two CO, compressors, an indoor

gas cooler (IGS), an evaporator (EVA), four three-way
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valves, an inter heat exchanger (IHX), an outdoor heat
exchanger (OHX), two electronic expansion valves (EEV),
and an accumulator (ACCU).

In heating mode, CO, is compressed to the middle-
pressure at the low-stage compressor and then enters
the EVA to heat the fresh cold air. And then the CO, is
compressed into high-pressure and high temperature by
the high-stage compressor and enters the IGC to pro-
vide additional heating to the air. After being throttled
by EEV1, the CO, two-phase flow moves to the OHX to
absorb heat from the outdoor cold air, and then passes
through the ACCU to separate the liquid before return-
ing to the low-stage compressor. In cooling mode, the
system operates similarly, but the intermediate heat
exchange occurs in the IHX outside the vehicle.

2.6 CO, vapor injection heat pump air conditioning
system

In Fig. 1(f), the schematic diagram of a CO, vapor injec-
tion heat pump air-conditioning system (CO, HPAC,,)
are presented. The system consists of a vapor injection
CO, compressor, an indoor gas cooler (IGS), an evapo-
rator (EVA), an inter heat exchanger (IHX), an outdoor
heat exchanger (OHX), three electronic expansion valves
(EEV), and an accumulator (ACCU). The system operates
similarly to an R134a/R1234yf HPy, as illustrated in the
figure, with the only difference being the specific compo-
nents used in the CO, system.

3 Methodology

This section provides a detailed introduction to the over-
all ideas and calculation method, along with a logical flow
chart of the calculations depicted in Fig. 2, to facilitate a
better understanding of the topic at hand.

3.1 Simulation model of each system

The objective of constructing simulation models is to
determine the energy consumption of each HVAC sys-
tem at different heating and cooling temperatures to
facilitate subsequent calculations of carbon emissions
and economic cost. The heating and cooling load of the
cabin is influenced by various factors, including ambient
temperature, car speed, and solar radiation, with ambient
temperature being the most critical. Accurately calculat-
ing the heating and cooling load and power consumption
of the HVAC system under such diverse factors are chal-
lenging and error-prone task. Therefore, in this study, the
models of each heat pump air conditioning system are
developed using the AMESIM platform.

The simulation model incorporates the structure and
performance parameters of each component from actual
systems, and the simulation model, which includes the
structural parameters of each component as shown in
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Table 2 The key parameters of the component structure of each system

Component

CO, system

R134a/R1234yf system

Compressor

Indoor gas cooler

Indoor evaporator

Outdoor heat exchanger

Electronic expansion valve

Intermediate heat exchanger
Accumulator

Displacement:8cm3

Rorate speed:600 ~ 7000r/min
Aluminum

Microchannel heat exchanger
Size:350mm X 403mm X 25mm
Aluminum

Microchannel heat exchanger
Size:200mm X 232mm X 30mm
Aluminum

Microchannel heat exchanger
Size:550mm X 403mm X 16mm
Diameter for Refrigeration:5.5mm
Diameter for Heating: 9.2mm

Copper coaxial tubular type length:1.5m
Volume:800cm3

Displacement:34cm3

Rorate speed:600 ~ 7000r/min
Aluminum

Microchannel heat exchanger
Size:225mm X 125mm X 27mm
Aluminum

Plate and fin heat exchanger
Size:200mm X 232mm X 30mm
Aluminum

Microchannel heat exchanger
Size:550mm X 403mm X 16mm
Diameter for Refrigeration:5.5mm
Diameter for Heating: 9.2mm

Copyper coaxial tubular type length:1 m

Volume:800cm3

Heat exchanger cost
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Table 2. The model can accurately calculate the cabin
heating and cooling load and HPAC’s power consump-
tion under different driving road conditions. To obtain
more accurate and persuasive results, the model consid-
ers boundary conditions such as ambient temperature
and cabin geometry parameters. Furthermore, the model
incorporates control methods for the efficient operation
of HPAC systems. For instance, a proportional-integral-
derivative (PID) controller is employed to regulate the
compressor speed and maintain the cabin temperature at
the setpoint.

To simplify the theoretical calculation of the system,
the following assumptions are made:

(1) All components in the system are assumed to be
steady state.

(2) The irreversibility of the compression process in
the compressor is considered, taking into account the
isentropic efficiency and volumetric efficiency which
are both dependent on the compressor’s pressure
ratio.

(3) All the refrigerant pressure drops and heat losses
to the environment are neglected.

(4) The throttling processes in EEV are isenthalpic.
(5) The refrigerant flow in the system is characterized
as continuous.

The compressor is the core component of the heat
pump air conditioning system, which is responsible for
the compression and transportation of refrigerant. In the
compressor compression process, the low temperature
and pressure refrigerant is compressed into high tem-
perature and pressure, and the mechanical work con-
sumed by itself is converted into the enthalpy energy of
the refrigerant. In the compression process, the pressure
ratio, the mass flow rate, power consumption, isentropic
efficiency and are used to describe the working perfor-
mance and state of the compressor.

The equation for the compressor pressure ratio and
theoretical flow rate [37] in the simulation system is as
follows (1) and (2):

P
tauy = —95 )
psuc
my = 1y PsucNdisp (2)
where:

tau: the pressure ratio;

Py discharge pressure, pa;

Psuc: suction pressure, pa;

my: the mass flow rate of refrigerant, kg-s™h;
ny: volumetric efficiency;
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Osuc: suction density, kg-m~3;

N: rotary speed of the compressor, rev-s™’;

disp: compressor displacement, m>.

ny is the volumetric efficiencies of CO, [37]and the
volumetric efficiencies of R134a/R1234yf [38, 39]

The isentropic efficiency is used to compute the
enthalpy increase through the compressor. The isen-
tropic efficiency can be expressed as follow (3):

_ hais — hsuc

= 3
hdis - hsuc ( )

Nis

where:

nis: isentropic efficiency.

hgis: isentropic discharge specific enthalpy, J-kg™;

hgis: discharge specific enthalpy, J-kg™;

hgye: suction specific enthalpy ]-kg_l;

nis is the isentropic efficiencies of CO, [37]and the
volumetric efficiencies of R134a/R1234yf [38, 39].

The compression process is power-consuming, and
the power consumption of compressor is calculated as
follows (4):

W = mg (hdis — Nsuc) (4)

where:

W' the power consumption of compressor, W.

The heating and cooling load of the system are calcu-
lated as follow (5):

Qheating = my (href,in - href,uut)

Qcooling = my (h/ref,out - h’ref,in) )
where:

Qpeating: the heating load, W/

hyef in: enthalpy of refrigerant at the inlet of the indoor
heat exchanger, ]-kg’l;

Hyef ous: enthalpy of refrigerant at the outlet of the
indoor heat exchanger, ]~kg_1;

Qcooling: the cooling load, W;

htyef our: enthalpy of refrigerant at the outlet of the
indoor evaporator, ]‘kg’l;

htyefin: enthalpy of refrigerant at the inlet of the
indoor evaporator, ]‘kg_l;

The COP [40, 41] is a numerical index that indicates
the performance of the heat pump air conditioning sys-
tem, and its calculation formula is as follows (6):

Q
copr = W (6)
where:

COP: Coefficient Of Performance;

Q: the heating load or the cooling load, W;

W the compressor power consumption, W;
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Corresponding to the system schematic diagram in
Sect. 2, the calculation principle of COP for each sys-
tem is the same as(6), but there are slight differences in
parameter values. The performance calculation meth-
ods for each system are detailed in Table 3.

The modeling of the heat transfer process of the sys-
tem’s heat exchanger is also important. The main heat
exchange process of the heat exchanger is mainly com-
posed of two: the heat exchange of the refrigerant and
the inner tube of the heat exchanger microchannel, and
the heat exchange of the air and the heat exchanger fins.

Heat transfer between the refrigerant and the inner
tube of the microchannel of the heat exchanger is cal-
culation as follows (7):

Qref = hrefAin(Tref - Twall) (7)

where:

Table 3 The calculation equations of COP for each system [37]

System Equation

R134a/R1234yf
HPAC,,.

Qheating = M * (h2 — h3)

Qcooling = M * (M — ha)

W = Ms % (hy — hy)

COPheating = Cheating/ W

COPcooling = Qcooling/W

Qneating = M * (ha — hs)

Wheating = (Mf — Myy) * (ha — h1) + Mg * (hg — h3)

R134a/R1234yf
HPAC,,
COPhearmg = Qhearing/Whear/ng

Qcooling = Mr * (h1 — ha)

Weooling = Mg * (ha — h1)

COPCoo/ing = QCoo//‘ng/WCoo//‘ng

Qheating = Mr * (h3 — ha)

Qcooling = Mg * (h3 — ha)

W = My  (hs — h)

COPhean'ng = Qheanng/W

COPcooling = Qcooling/ W

Qheating = M * (hg — hs)

Qcooling = M * (ha — hs)

W = Ms * ((hy — hy) 4 (hs — h3))

COPheating = Qheating/W

COPCoo/r’ng = QCoo//‘ng/W

Qneating = M * (ha — hs)

Wheating = (Mf — Myy) * (hy — h1) + Mg * (hg — h3)

CO, HPAC,,,

CO, HPAGsc ¢

CO, HPAC,,

COpheating = Qheating/ Wheating
OCoo//'ng = My * (M — ha)
WCoo/mg = Mg * (ha — h)

COPCoolr’ng = QCoo//‘ng/WCoo//'ng
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Qyer: Heat exchange between the refrigerant and heat
exchanger, W;

hyer: Coeflicient of internal convection heat transfer
of refrigerant, Jm~2KL

Ayt heat exchange area between the refrigerant and
heat exchanger, m?%;

T)er: temperature of refrigerant, K;

T\qy: inner tube of the microchannel, K.

Heat transfer between air and heat exchanger fins is
calculated as follow:

Quir = NairAout (Twau — Tair) (8)

where:

Quir: Heat transfer between air and heat exchanger
fins, W;

hgir: Air convection heat transfer coefficient, J-m™2K™b

Aous: Air convection heat transfer area, m?;

T,ir: temperature of air, K.

The convective heat transfer coefficient of refrigerant
and air is referred to the Gnielinski [42] and shah [43]
correlation formula, as follows (9, 10 and 11):

For single-phase heat transfer:

(Re — 1000) * Pr+4

2
Nityy = 141275/ L s @rs —1)

4.36 (Re < 2300)

(2300 < Re < 10°%,0.5 < Pr < 2000)

)
For phase change heat transfer:
08 %4
Nutyer = 0.023Re”® Pr (10)
For air side surface heat transfer:
0 033
Nitgir = 0.023Re%$ Pr (11)
atr
where:

Nu: Nussel number;
Re: Reynolds number;
Pr: The Planck number.

During the simulation process, external condition
parameters, such as ambient temperature, air mass flow
rate, pressure, and humidity, are specified and input into
the air side of the out/indoor heat exchanger, while inter-
nal parameters such as vehicle speed and solar radiation
intensity are input into the cabin integration module. The
simulation models developed using the AMESIM plat-
form exhibit high precision and accuracy. To validate the
models, simulated results are compared with experimen-
tal results obtained from the CO, single-stage compres-
sion system [44], as shown in Fig. 3. The average error is
less than 3%, indicating the high accuracy of the simula-
tion model. Based on the similarity in the methodology, it
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Fig. 3 The relative error of the simulation and experiment

is reasonable to infer that the simulation model of R134a/
R1234yf is equally accurate.

3.2 Selection of electric vehicle cabin model

The cabin structural parameters are crucial factors that
mainly determine the annual energy consumption. In the
paper, a BYD Qin EV is employed to evaluate the heating/

Compressor speed (RPM)

cooling loads under different conditions. The structural
parameters of the vehicle are presented in Table 4.

3.3 Selection of objective cities

This paper considers 140 cities worldwide as the refer-
ence city. Those chosen cities equally distributed aiming
to more comprehensive results. Cities in different regions

Table 4 The detailed structure parameters of the BYD Qin electric vehicle

Items Parameters Items Parameters
Vehicle length (mm) 4765 External exchange surface (m?) 12
Vehicle width (mm) 1837 Solar flux (W-m™) 300
Vehicle high (mm) 1495 Solo flux absorption coefficient 045
Wall thermal capacity(J-k") 7000 Internal aerodynamic coefficient 20
Internal exchange surface (m?) 10
. )
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Fig. 4 Location distributions of objective cities
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have huge differences in annual heating and cooling
energy consumption of HPAC due to different climate
conditions such as ambient temperature, and energy
consumption differences become the basis for carbon
emissions and economic analysis. The objective cities
are marked on the map in Fig. 4 by red and blue flags.
To provide a comprehensive analysis, results for five cit-
ies, namely, Beijing, Moscow, Brasilia, Washington, and
Cairo, are presented as examples, while the results for
other cities are shown on the map.

3.4 Annual statistics of the heating and cooling time

in objective cities
The annual energy consumption of HPAC system is
strongly dependent on its operating hours and the cor-
responding ambient temperature. The longer the vehicle
runs under harsher ambient temperatures, the higher the
energy consumption of the HPAC system throughout the
year. Therefore, it is crucial to date the annual operating
hours of the HPAC system under different ambient tem-
peratures accurately.

This paper selected the taxis as research object, given
their extensive usage and comparatively longer driv-
ing duration, which makes them more representative.
However, considering the large temperature difference
between day and night and considering that the majority
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of taxis operate primarily during the day with signifi-
cantly less activity at night, it would be inaccurate and
unreasonable to count all 24 h as heating/cooling times.
Such a method would likely result in overestimating the
annual power consumption, as vehicles do not operate
around the clock.

Considering that China has the largest number of
electric taxis, choosing them as reference object aligns
with the statistical principle of a large sample size.
Therefore, this study uses the travel characteristics of
China’s electric taxis as the reference for vehicle run-
ning models. The 2021 Chinese electric taxi running
characteristics is shown as the Fig. 5. The average run
time of electric taxis is 8.17 h, mainly concentrated
between 6 and 19 o'clock. Based on this, the study
selects an 8.17-h window with the highest travel fre-
quency as the key operating time characteristic for the
vehicle model. So, this paper selected 7-9, 10-14 and
16-18 o’clock as the research period. The average run
mileage is 201.88 km, and the driving speed of vehi-
cle model is maintained at 24.7 km/h. Considering the
global time differences, the research period selected in
this paper might align with nighttime in other regions.
To address this, the study ensures that the selected
research period corresponds to local time by applying
time difference adjustments.

Proportion of vehicles(%)
O AN W A OO N

«=O== Running proportion
8- The choose time

2 3 45 6 7 8 9 10 11 12 13 14 15 16 17 18 19 2
Time

21 22 2

(a) Running timetable

100

average value: 8.17h

®
=]
T

59%

@
i

Proportion of vehicles(%)
8
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Fig. 5 Daily driving characteristics of electric vehicles
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Fig. 6 The heating/cooling times of sample cities

To capture the ambient temperature corresponding
to the operating times, this paper used the professional
meteorological data APP, Wheat. Wheat is a professional
scientific data system that integrates agricultural produc-
tion, meteorology, environmental monitoring, and other
multi-plate content. This paper queries and invokes the
hourly temperature data of each city throughout the year
in Wheat.

In this paper, the heating function of the HPAC is
turned on when the ambient temperature is lower than
10 °C, and the cooling function is turned on when the
ambient temperature is higher than 28 °C. The HPAC is
not turned on in other temperature ranges. The statistical
results of the annual heating/cooling hours in sample cit-
ies are presented in Fig. 6.

Figure 6 demonstrates that the annual heating/cool-
ing hours differ significantly among different cities due
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to variations in latitude. Therefore, the choice of refrig-
erant and HPAC system should be based on the region
to achieve lower energy consumption, carbon emis-
sions and cost. For instance, in Cairo, the heating hours
are much less than the cooling hours, and the heating
temperature is concentrated at 8 °C, while the cooling
temperature is concentrated below 40 °C. Therefore,
using R134a/R1234yf refrigerant as the working fluid in
the HPAC system is more suitable. In contrast, in Mos-
cow, the heating time is considerably longer than the
cooling time, and the heating temperature distribution
is more even. Therefore, refrigerant CO, is more suit-
able for use in this city. The heating/cooling hours and
range are the primary factors to consider when select-
ing the refrigerant and system. However, defining these
boundaries presents a difficult task.

3.5 Annual energy consumption calculation method

After collecting statistics on the cooling and heat-
ing times of each province and simulating the power
consumption of each heat pump system under differ-
ent ambient temperatures, it is possible to calculate the
annual air conditioning energy consumption of the vehi-
cle in each city. The calculation formula is as follow (12):

T=10 T=45
Wiotal = Z WHeating X THeating + Z WCooling X TCooling
T=-30 T=28

(12)
where:

Theating: the Duration at each heating temperature, h;
Teooling: the Duration at each cooling temperature, h;

3.6 Environmental performance calculation method
The life Cycle Climate Performance (LCCP) [45] is an
index that shows the carbon emission discharged over
the life cycle of both refrigerant and system. It includes
two sources of carbon emission: direct and indirect.
The former refers the equivalent carbon emissions form
refrigerant leaks and the latter represents the equivalent
carbon emissions form the power consumption.

The Life Cycle Climate Performance of each HPAC sys-
tem can be calculated as follows:

LCCPyytqy = LCCPyirect + LCCPipgirect (13)

LCCPjyect = [Lxn+Rx (1 —a)] x (GWP + adp.GWP) (14.)

LCCPindirect =LxE, xp (15)

where:
L: Average lifetime of equipment, year;
n: annual leakage rate
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Table 5 The main environmental parameters of CO,, R134a and

R1234yf

Items co, R134a R1234yf
Average lifetime (year) 15 15 15
Leakage rate 10% 10% 10%
Recovery rate 0 0 0
Carbon production rate (kg<kV\/h") 0.997

GWP 1 1300 4

Adp. GWP 0 1.6 33

Table 6 Equations of initial investment cost for each system

system Equation

R134a/R1234yf AC NC=Ceom+CovatCeond + Cadg

R134a/R1234yf HPAG,.e  IC=Ciom+Ceva1 + Coong T Cevar + Cand
R134a/R1234yf HPAC,, IC=Ceom +Ceomz +Cavat + Ceond + Covar + Cogg
CO, HPAC s IC=Com+Covat + Ceong + Cevaz + Cirix + Cadg

CO, HPAC ¢ IC=C o + Ceoma+ Cevat + Ceona + Cirix + e
a2+Cadd

com. eva con

CO, HPAC, IC=Ceomt *Ceoma + Cevat + Ceond + Cevar T Caad

R: the residual amount of refrigeration in retired equip-
ment, kg;

«a: the refrigeration recovery rate

GWP: global warming potential

adp.GWP: GWP of atmospheric degradation product
of the refrigerant

E,: the energy consumption per year, kWh-year™

B: the amount of CO, emissions for 1 kWh energy gen-
eration, kg-kWh™!

Those parameters [46, 47] of CO,, R134a and R1234yf
systems could be found in Table 5.

1

3.7 The life cycle cost calculation method

In this paper, the economic analysis comprises two
components: the initial investment cost (IIC) and the
life energy cost (LEC). The IIC represents the total cost
of all system components, including the Compressor, gas
cooler, evaporator, and additional equipment (such as
throttle valve, pipe lines, etc.). The IIC for each system
is presented in Table 6. The additional equipment cost is
considered as 15% of the major equipment cost [48]. And
the components cost is closely related to factors such as
industry maturity, region and time.CO, HPAC systems
are currently in the early stages of development, with
limited large-scale production of CO, compressors and
minimal literature on the economic analysis of CO, heat
pump systems used in PBEV. Therefore, the IIC of CO,
systems is evaluated in a manner similar to Song et al. [30].
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Table 7 Equations for cost of compressors and heat exchangers [31]
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Equipment Correlation

Description

R134a/R1234yf compressor
Finned tube heat exchanger

Ceompizea=758.18W0872
CHE,FT:33] .7AO‘9390

Double-tube heat exchanger CHE,DT=1874.4A0983>

W and A are the rated power of compressor and the area of heat exchanger

In this paper, the cost of each component of the CO,
heat pump system is obtained through consulting the
manufacturer and online survey. However, the electric
vehicle R134a and R1234yf heat pump industry is mature,
and the component cost is stable. Therefore, the capi-
tal costs for compressors and heat exchangers in R134a/
R1234yf systems are determined using the formulas
specified in Table 7. In addition, all heat exchangers in
this study utilize finned tube heat exchangers, with the
component structures presented in Table 2. The LEC
corresponds to the annual power consumption cost.
The calculation formula of economic analysis is as fol-
lows (16) and (17):

Cratar = ICC + LEC (16)

LEC = Wmml X Cele x L (17)

where:
Ctara: Total life cycle investment, CNY;
ICC: the initial investment cost, CNY;
LEC: life energy cost, CNY;
Cele: the unit electricity cost factor, CNY-k\X/h_l;
L: lifetime of equipment, year.

3.8 The comprehensive evaluation criteria

After performing rigorous quantization calculations on
the annual power consumption, life cycle climate per-
formance, and life total cost, a comprehensive criterion
is required to holistically evaluate these three parameters

holistically. The criterion here is based on the idea that
the carbon emission is transformed into economy index,
allowing them to be compared with the cost on the same
dimensional basis. The gain coefficient plays a crucial
role in this transformation process, as it determines the
rationality and accuracy of the evaluation. Specifically,
the gain coefficient represents the economic impact asso-
ciated with the reduction of per mass CO, emissions
(CNY/Kg- CO,). The calculation formula of the gain
coeflicient is as the follows:

C
Gain = ;’e (18)
C = LCCP x Gguin + Crotal (19)

where:

Gain: The economic impact associated with the reduc-
tion of per mass CO, emissions, CNY-kg ™"

C: Compare index, CNY.

4 Results and discussion
Based on the calculations and summarizations pre-
sented in the above section, this paper discusses the fol-
lowing four results: the heating/cooling performance of
the HPAC system at different temperatures, the annual
power consumption of each HPAC system in each objec-
tive city, the life carbon emission and life total cost.

And the recommended maps for HPAC system based
four angles: annual power consumption, life carbon

4000
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= [l co, HPACggc
E I cO, HPACqsc ¢
E g 3000 I co, HPACy,
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- 32000 K [ R1234yf HPACG,.
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Fig. 7 The heating load and power consumption of each system at heating temperatures
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emissions, life total cost and comprehensive are showed
in the section.

4.1 Heating/cooling performance of HPAC in each
temperature

4.1.1 Heating performance

According to the above operating strategy, the heat-

ing load and power consumption of each system at each

heating temperature are shown as Fig. 7.

During winter, the HVAC system is operated to deliver
heat to the cabin maintaining the thermal comfort,
resulting in the consumption of battery power. Figure 7
illustrates the power consumption and heating load of the
HVAC systems under different heating temperatures and
the dashed line indicates PTC heater heating energy con-
sumption. Both the heating load and power consumption
exhibit a gradient with respect to ambient temperature,
indicating an increasing trend with decreasing tempera-
ture. Specifically, the highest heating load reaches 3550W
at -30 °C.

When the ambient temperature ranges from -15 to
10°C, the heating power consumption of the R134a sys-
tems is the lowest. However, due to the low thermal load
demand in the cabin, there is no significant difference in
the heating energy consumption among all HVAC sys-
tems within this temperature range; the maximum dif-
ference is only 41W. However, the heating capacity of
R134a/R1234yf systems is inadequate for maintaining
cabin temperature within the temperature range of -15 °C
to -30 °C, necessitating the utilization of a PTC heater for
additional heat. As the ambient temperature decreases,
the reliance on the PTC heater increases, accounting for
approximately 67.8% of the heating load at -30 °C. In con-
trast, the CO, systems can independently provide suffi-
cient heating to meet the cabin heating requirements at
all heating temperatures. The CO, systems demonstrated
superior heating performance at -30~-15C, reducing
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heating energy consumption by 100 to 1188 W compared
to the R134a and R1234yf systems.

In addition, the use of vapor injection and two-stage
compression technology can significantly enhance the
heating performance compared to the base system at
lower ambient temperatures. The heating performance of
the CO, HPACrgc 1 and CO, HPAC,; systems showed a
remarkable improvement of 34% and 43% at a tempera-
ture of -30 °C. However, the benefit of these enhanced
systems diminishes as the ambient temperature increases,
with the improvement becoming less significant.

The COP serves as a performance index that
incorporates both power consumption and heating
load. A higher numerical value indicates superior
performance. According to the results presented in Fig. 8,
the COP of each HPAC system exhibited a decline as
the ambient temperature decreased. This observation is
consistent with the trend observed in Fig. 8. When the
ambient temperature decreases, all systems experience a
decline in performance due to the decreased evaporation
pressure necessary for heat absorption from the
surrounding environment and the Carnot cycle is less
efficient.

Despite a decrease in COP across all systems, the
extent of the decline varies, leading to superior perfor-
mance within certain temperature ranges. Specifically,
at temperatures ranging from -15 °C to -30 °C, the COP
of CO, HPAC,, is approximately 0.5 to 0.9 higher than
that of R134a HPAC;, . The impact of ambient tempera-
ture on the performance of each HPAC system can vary,
resulting in differences in the magnitude of the decline in
COP. Figure 8 provides a comparison of the COP of each
system relative to the R134a HPAC ;, . system. Within
the temperature range of -10 °C to -15 °C, the COP of
CO, systems outperforms that of the R134a HPAC;,,,
system by approximately O to 1, indicating the suitability
of CO, refrigerant for cold regions. However, in other

10
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1.0
~——CO, HPAC g
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Fig. 8 The COP of each HPAC system at each heating temperature



Li et al. Carbon Neutrality (2024) 3:16

4000

[l Cooling Load
I co, HPACssC

[ coz HPACTSC IC
| I R134a HPACRB 3¢

3000 [ R1234yf HPACBase

2000

1000

Cooling Load(W)
Power consumption(W)

28 30 32 34 36 38 40 42 44
Ambient temperature (°C)

Fig.9 The cooling load and energy consumption at each cooling
temperature

heating temperature ranges, the R134a system exhibits
superior performance. Additionally, the COP difference
of the R1234yf refrigerant is minimal in the -30 °C to
-5 °C temperature range, but it demonstrates lower per-
formance at other temperatures.

In addition, the vapor injection and two-stage compres-
sion systems exhibit remarkable performance improve-
ment and demonstrate a substantial boosting effect at
low temperatures, resulting in an enhancement in COP
of up to 0.2 ~0.6.

4.1.2 Cooling performance

Based on the above, the vapor injection branch was
turned off in summer, resulting in a comparison of only
four systems: namely CO, HPACgsc, CO, HPAC s o)

—=—CO, HPAC
—e—CO, HPAC 5 ¢
—v—R134a HPACg,
S5 —<—R1234yf HPACg,,

1 1 1 1 1 1 1
30 33 36 39 42 45

Ambient temperature (°C)

(a) COP
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R134a HPAC 3,, and R1234yf HPAC g,... The cooling
load and energy consumption of each system at different
cooling temperatures are presented in Fig. 9. As shown
in Fig. 9, as the ambient temperature increases, the cool-
ing load and power consumption of each system also
increase and the maximum cooling load reaches 3750W
at 45 °C. Additionally, at refrigeration temperatures, the
power consumption of the CO, systems is approximately
5% to 40% higher than that of the R134a and R1234yf sys-
tems, suggesting that the cooling performance of CO, is
inferior to that of the R134a and R1234yf systems. The
two-stage compression technology demonstrates a power
saving of approximately 4% to 13% compared to the base
system.

In Fig. 10, the relationship between the ambient
temperature and cooling COP variation of each HPAC
system is presented. As the ambient temperature rises,
the COP of each system decreases. Specifically, for
R134a and R1234yf systems, an increase in ambient
temperature leads to an increase in system condensing
pressure and condensing temperature, resulting in
a significant increase in pressure ratio, discharge
temperature, and energy consumption, while the COP
decreases. In contrast, for CO, systems, an rises in
ambient temperature leads to an increase in the outlet
temperature of the outdoor heat exchanger. This chain
reaction triggers an increase in the optimal exhaust
pressure, pressure ratio, discharge pressure, and energy
consumption, while the COP similarly decreases.

Similar to heating, the rise in ambient temperature
leads to a decline in the performance of the HPAC system,
their decline trend is not the same. Figure 10 presents a
comparison of the cooling performance of each system

12
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o8l —8—CO, HPAC s ¢
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—¥—R1234yf HPACg,,,
04}
& 00
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04}
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Ambient temperature (°C)
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Fig. 10 Cooling COP difference of each HPAC systems at cooling temperatures
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based on the R134a HPAC ... The results indicate that
the refrigeration performance of CO, systems is lower
than that of R134a systems, which can be attributed to
the inherent characteristics of CO,. Furthermore, the
COP of the CO, systems is approximately 0.5 to 1 lower
than that of the R134a HPAC,, system. In contrast, for
the R1234yf system, its cooling performance is better
than that of the R134a system in the temperature range
of 35 °C to 42 °C, while its cooling performance is lower
than that of R134a at other temperatures.

4.2 The annual energy consumption in objective cities
4.2.1 The annual energy consumption in sample cities

As mentioned above, each HPAC system has its own
advantage over different temperature intervals, and the
climatic conditions of different cities vary due on their
geographic dimensions. This variation leads to differ-
ing annual heating and cooling timeframes across cit-
ies. Therefore, identifying the most suitable system for
each city requires a quantitative analysis of power con-
sumption, environmental protection, and economic
considerations.

The annual energy consumption of the HPAC sys-
tems serves as the comparative measure, and the find-
ings are illustrated in Fig. 11 this study found that heat
pump technology can significantly save energy, up to
1500 ~2000 kWh/year, in cold cities, such as Beijing,
Moscow, and Washington. Conversely, the heat pump
technology shows no significant impact in warm cities,
such as Brasilia and Cairo. Although the differences in
annual energy consumption among each heat pump sys-
tem are relatively small, typically within a range of 10%.
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And this study has identified the presence of an opti-
mal system for each city. For example, while the R134a
HPAC,; system exhibits the lowest annual power con-
sumption among the systems, determining the most
suitable system for each city and region based solely on
annual energy consumption. Other factors such as annual
carbon emissions and life cycle energy costs must also be
considered.

4.2.2 The annual energy consumption in some objective
cities

In order to further evaluate the annual energy consump-
tion pattern of each HPAC system, this paper calculated
the annual energy consumptions of each HPAC system
across objective cities worldwide using the same method.
Due to space limitations in this paper, the results of this
analysis for elected cities are presented in Table 8.

Table 8 presents three typical scenarios, namely hot,
warm and cold region, each with its own distinct char-
acteristic. In hot regions like Port Moresby and Abuja,
the difference in annual power consumption between the
systems utilizing heat pump technology and those rely-
ing on PTC heaters during winter is negligible, typically
around 50 kWh/year, rendering the heat pump technol-
ogy ineffective in such regions.

In warm regions such as Washington and London,
both heating and cooling demands need to be
considered. Heat pump technology offers notable
energy savings of up to 80% compared to PTC heaters.
It is observed that the annual power consumption of
CO, systems is higher compared to R134a and R1234yf
systems. This disparity can be attributed to the fact that

4000

3000

2000

1000

Annual Power consumption (KW-H/Year)

I co, HPACs.
I co, HPACtsc,ic
I co, HPAC,,

I R134a HPACG,,
I R134a HPAC,,
[ rR1234yf HPAC,,
I R1234yf HPAC,,

Il R134a AC + PTC
Il R1234yf AC + PTC

Beijing Moscow BrasiliaWashington Cairo
Fig. 11 Annual energy consumption of each system in sample cities
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heating temperature in these regions does not reach
extremely cold levels, thereby limiting the efficiency of
CO, systems.

In cold regions like Tura-Khansk and Yaroslavl, the
annual power consumption of those systems is significantly
higher compared to the previous two regions. The CO,
HPAV,y; system exhibits significant potential for energy
savings, ranging from 500 to 2000 kWh/year. This is
attributed to its superior heating capabilities, particularly
in extreme cold temperatures. The potential application
of R1234yf HPAC, systems appears unpromising for two
reasons. First, in warm regions, it provides limited energy
savings compared to the base system, as the heating
temperature does not reach extreme cold levels. Second,
in cold regions, the heating performance of the R1234yf
HPAC,; system is significantly inferior to the CO, HPAC,,
system.

A visualization map for the recommended system
based on the annual power consumption is showed in the
Fig. 12(a).

Each system exhibits distinct annual power consump-
tion, and there exists a system with the minimum annual
power consumption among them. After rigorous calcu-
lations and statistical analysis, the system demonstrating
the lowest annual power consumption for each region
is illustrated in Fig. 12(a). It is important to emphasize
that the findings presented in Fig. 12(a) solely focus on

CO, HPAC ,

R134a HPAC,,

(a) the recommend system based on the power consumption

R134a HPAC,,
R134a HPAC ,,

R1234yf AC

R134a HPAC,,

(c) the recommend system based on life total cost
Fig. 12 The recommend system map
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the annual power consumption, and the advanced sys-
tem consistently outperforms the base system, resulting
in lower power consumption for the former. The CO,
HPAC,; system, it is deemed more suitable for applica-
tion in high latitude regions, as depicted by the green
region in Fig. 12(a), for its superior heating performance.
Conversely, the R134a HPAC,; system is found to be
more suitable for the remaining regions, represented by
the light grey region, given its performance characteris-
tics. Therefore, it is not enough to consider the best suitable
system only based on the annual power consumption.

| CO, HPACssc
[ CO, HPAC ¢
[ co, HPAC,,

[ R134a HPAC,,
[ R134a HPAC,,
[ R1234yf HPAC,,,
[ R1234yf HPAC,,
Il R134a AC + PTC
Il R1234yf AC + PTC

40000

30000

20000

LCCP( KG-CO,)

10000

Beijing Moscow BrasiliaWashington Cairo
Fig. 13 The LCCP of each system in sample cities

CO, HPAC y,

R1234yf HPACy,

(b) the recommend system based on the LCCP

CO, HPAC y,

|

RI1234yf AC

(d) the recommend system based on the comprehensive analysis
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4.3 The life carbon emission of each system in objective
cities
4.3.1 The life carbon emission in sample cities
The source of LCCP associated with electric vehicle
HPAC system can be divided into two categories: (1)
LCCP caused by the refrigerant’s own GWP and (2)
LCCP caused by power consumption during operation.
To assess the LCCP of HPAC system in the sample cities,
This paper quantified the LCCP of both categories using
established methods. Figure 13 shows the results of our
analysis in sample, and it should be noted that the total
amount of LCCP reported here represents the carbon
emissions over the life cycle.

Figure 13 presents the LCCP of each system in sample
cities. The results indicate that in regions such as Beijing,
Moscow, and Washington, the R134a AC system gener-
ates significantly high carbon emissions about 23,174,
38,238 and 12,767 kg-CO,, approximately 2 to 3 times
higher than that of other systems, due to the large energy
consumption required for PTC heating and the high
GWP of R134a. Therefore, to reduce carbon emissions in
such regions, adopting heat pump technology represents
a highly promising approach. In warm regions, such as
Brasilia and Cairo, the R134a systems are characterized
by poor environmental performance due to GWP associ-
ated with R134a. Conversely, the R1234yf systems exhibit
the best environmental performance in such regions.

4.3.2 The carbon emission in some objective cities

In order to further evaluate the LCCP of each system this
study calculated these values for all targeted cities world-
wide using the same method. Due to space limitations
in the paper, the results for select cities are presented in
Table 9.

The results presented in Table 9 indicate that R134a
systems exhibit poor environmental performance in all
regions due to its high GWP, which is a primary factor
driving their eventual elimination. Specifically, in hot
regions, the use of heat pump technology did not lead
to a significant reduction in carbon emissions over tra-
ditional air-conditioning systems. However, in warm
regions, heat pump technology demonstrated its advan-
tage in reducing life cycle carbon emissions through
decreased energy consumption and the HPAC system
would releases more carbon emissions for the leakage
of refrigerant. Finally, in cold regions, the CO, HPACy;
system exhibited the highest potential for promoting
environmentally friendly performance, leading to carbon
emission savings ranging from 20 to 60%. A visualization
map for the recommended system based on the LCCP is
showed in the Fig. 12(b).

From an environmental standpoint, Fig. 12(b) illus-
trates the system with the lowest LCCP. Despite not
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exhibiting superior performance, the R1234yf HPAC,,
system is deemed more suitable for the low-middle lati-
tude region, as indicated by the blue region in Fig. 12(b),
owing to its low GWP. Conversely, the CO, HPAC,; sys-
tem is found to be more suitable for high latitude regions.

4.4 The economic analysis of each system in objective
cities
4.4.1 The initial investment cost of each system
The initial investment cost encompasses the expenses
associated with all system components, and it should
be noted that the component costs may vary for differ-
ent refrigerants based on their operating parameters.
Figure 14 illustrates the initial investment costs of each
system. It is evident that the IIC of all CO, HPAC systems
surpasses that of R134a systems by approximately 4000—
10000 CNY, primarily due to the elevated cost of CO,
compressors. At present, the CO, heat pump industry
is still in its nascent stage of development, characterized
by a lack of large-scale production of CO, compressors.
Consequently, the current high prices of CO, compres-
sors persist.

4.4.2 The life energy cost of each system in sample cities

As stated previously, the present study exclusively focuses
on the analysis of life energy costs. The results obtained
from the sample cities are presented in Fig. 15.

The life energy cost represents the cumulative electrical
energy consumption over the service life of the system,
which corresponds to the annual power consumption as
depicted in Fig. 11. Figure 15 shows the life energy cost of
each system in sample cities. It can be seen that the LEC
of R134a and R1234yf AC systems is much larger —about
5 times greater —than that of other systems due to the
inefficient PTC heater causing large energy consump-
tion in Beijing, Moscow and Washington. The LEC of the
HPAC systems demonstrates a saving effect.

4.4.3 The life total cost of each system in objective cities

The life total cost of each system in objective cit-
ies, including the IIC and the LEC, is expressed in the
Table 10. Due to space limitations in the paper, the analy-
sis results are presented.

In hot and warm regions, the life total cost of CO,
systems is comparatively higher, ranging from 11,000
to 30,000 CNY, compared to other systems, this can be
attributed to the expensive compressor used in CO, sys-
tems. However, in cold regions like Hatanga, CO, sys-
tems exhibit superior economic performance. In hot
regions, systems without heat pump technology dem-
onstrate the best economy performance, while in warm



Page 20 of 25

(2024) 3:16

Li et al. Carbon Neutrality

SlETel 8EY'vEL 8v9'8/ £6'8 6956/ ¥SE'68 890'7S 856'8S €998 |Ae|SOIBA
699701 16£'901 7LL'SS 8v0'09 Lv0'LS $63'€9 €ez'se 00LT¥ 190’19 Sfsuefs
1%5'S6 12926 L£6'T5 ¥81'/5 €0£%S 1ol'l9 708'se £20'0% 19//45 ebueley
€le's6 0£Y'S6 8LE'LS 067'SS W8S 9£1'65 88/'%€ 080'6€ 6£€'9S  Sfsueyy-ein
v/6'68 80126 0v'vy LLo'sy 695'St 689'LS 987'L€ 91TVE /'Ly zniseqy3

166'SL zel'os 9087 ¥67°0€ 76'6T osy'ee 9v6'1T 787'sT LYY'0E fieusfwy  uoibai pjod
661'lY see'ey €001 70701 Yor'zl LEo'€l 9956 9/96 0€6'0L  9beioyduy
v0/'SE £¥8'9¢ 8006 1126 89Y'1 1 o'zl 68 €98 L€6 104YyoH
766'81 8zl'lT 685C 0697 %955 €95 8657 79t €8/T A3|uers
66771 1291 b8l 716l 758y 1Z6v [v81 €061 9/61 uopuoT
60801 £9L'T) 5567 790¢€ 7/8S 9765 L60€ 6L1€ £07€  uolbulysep
856/ 9566 SelT 9zTe 6015 0515 14744 glee SlET ofyoL

v6.T [T6Y Tve 89¢ eve SShe L€ 0S€ 65€  s9lebuy so1  uoibal waem
858 096 6918 1858 9£/'0L 04L'0L 6006 L1Z6 6006  AQSIOW 110d
960/ 7/88 9569 €81/ 6v86 8066 018 6308 £018 elngy
8509 718L 985 6109 8/98 0€/8 ¥899 ¥0/9 ¥899 loueH
8151 ¥0S¢€ [9€1 &g 78sh S8eh ad zest Sevl pelelslelyy
126 £S0€ 8Ll ozl (1443 1TTE 01 601 €Ll e1060g

%4 651T 1z 1z adts LTI 9 L 9 eqeqysippy  uoibaijoH
DLd+DVHAPEZIY DLd+DVersld "OVdHIApeZLY 9 OvdHIAbEZIY MOvdHeveld **fovdHeveld "OwdH?0d 'DvdH?0D> % DvdH 0D STh)

(C0D-HY) 's21112 2A11D3[CO SWIOS UJ WIS1SAS 283 JO UOISSIWS UOGIRD )| 3| 6 d|qel



Li et al. Carbon Neutrality (2024) 3:16

20000

I Compressor
[ Heat exchangers

[ Addition
15000

10000

5000

Initial investment cost (CNY)

A
a
w
A
9
>
(2]

9SBHyydH epely
"JVdH eyelLy
25%9vdH %00
21'0SL IVdH Zoo
IAovdH 20D

Fig. 14 The initial investment cost of each system

- CO, HPACss:
- €O, HPAC ¢,
I co, HPAC,,
I R134a HPAC,,,
Il r134a HPAC,,
[ R1234yf HPAC,,.,
I R1234yf HPAC,,
Il R134a AC + PTC
I R1234yf AC +PTC

T

20000

15000 -

10000

T

The life energy cost (CNY)
[$2]
(=]
o
o

Beijing Moscow BrasiliaWashington Cairo
Fig. 15 The life energy cost of each system in sample cities

regions, the base heat pump systems exhibit the best eco-
nomic performance.

From an economic perspective, Fig. 12 (c) shows the
most cost-effective system across various regions world-
wide. The results display a gradual change in gradients,
recommending the R1234yf AC system for hot regions
(indicated by the blue region), the R134a HPACg, . sys-
tem for warm regions (represented by the pale yellow
region), and the CO, HPACVI system for cold regions.
For the transition region between warm and cold, the
R134a HPACVI system is recommended.

4.5 The map of recommended HPAC system in objective
cities

In order to determine the best-fit HPAC system for each

region, a selection criterion based on the analysis results

of annual energy consumption, life carbon emissions,

and life energy cost should be applied. A comprehensive
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comparative index has been introduced as an evaluation
criterion to evaluate systems, enabling the comparison of
life carbon emissions and life energy costs on the unified
dimensional scale by incorporating the concept of trans-
forming carbon emissions into an economic index. The
statistical result of the compare index of certain objec-
tive cities is shows in the Table 11. The suitability of the
system inversely correlates with the comparative index
value, meaning that a smaller comparative index indi-
cates a more suitable system. The visualization result all
around the world is showed in the Fig. 12(d).

According to the results presented in Fig. 12(d), the
CO, HPAC,, system is recommended for cold regions
to meet both environmental and economic criteria, as
the green part showed. In this region, annual energy
consumption is the primary consideration. The R1234yf
HPACg,,. system is recommended for warm regions
where extreme weather conditions are not prevalent, as
the baby blue part showed. For regions transitioning from
cold to warm climates, the R1234yf HPAC,, system is
suggested, as the deep blue part showed. And Both envi-
ronmental performance and annual energy consump-
tion of the refrigerant are considered. In hot regions, the
R1234yf AC system is recommended. The environmental
protection of the refrigerant can be a major considera-
tion. These recommendations are based on quantification
of annual power consumption, life cycle climate perfor-
mance, andeconomic analysis ensuring a suitable system
choice for each region worldwide.

5 Conclusion
This study aimed to determine the optimal HVAC sys-
tems for PBEVs by conducting quantitative assessments
on three key factors: annual energy consumption, life
cycle carbon emissions, and life total costs. The analysis
was carried out across multiple regions worldwide. By
considering the combined influence of these three fac-
tors, the most suitable and efficient HVAC system was
identified for PBEVs in each specific region. These find-
ings provide valuable insights for the development and
implementation of sustainable heat pump technologies in
the automotive industry, promoting the advancement of
environmentally friendly PBEVs.

The main conclusions of this paper are as follows:

When the ambient temperature ranges from -15 to
10°C, the R134a system exhibits the lowest heating energy
consumption. However, across the various HVAC sys-
tems, there’s no significant difference in heating energy
consumption within this temperature range, with the
maximum difference being only 41W. In the colder
temperature range of -30 to -15°C, the CO, system out-
performs the R134a and R1234yf systems, showing an
improvement of up to 0.9 in its COP compared to the
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R134a HPAC,,.. At cooling temperatures, however, the
power consumption of the CO, systems is approximately
5% to 40% higher than that of the R134a and R1234yf
systems.

From an annual energy consumption perspective,
heat pump technology demonstrates significant poten-
tial for energy savings in both warm and cold regions.
Comparatively, heat pump technology offers remarka-
ble energy savings of up to 80% compared to PTC heat-
ers in Washington and London. In addition, the energy
consumption of each heat pump system is comparable
in warm regions, whereas there is a significant disparity
in energy consumption in cold regions.

Considering the life cycle climate performance, the
R134a systems demonstrate the lowest environmental
performance across all regions due to their high GWP.
On the other hand, the CO, HPAC,,; system displays
exceptional environmental friendliness, especially in
cold regions, leading to carbon emission savings rang-
ing from 20 to 60%.

From the life cycle economic perspective, the cost of
compressors in CO, systems represents a significant
portion of the initial investment cost, surpassing that of
R134a and R1234yf systems. This cost differential acts
as a primary hindrance to expanding the application
potential of CO, systems in warm region.

Based on the quantitative computation evaluation of
annual energy consumption, life cycle climate performance
and life total cost, this study proposes a comprehensive
selection map for air conditioning systems in electric vehi-
cles. In the hot region, the R1234yf AC system is recom-
mended to be used for better environmental performance.
In the warm region, the R1234yf HPAC . system is rec-
ommended to be used. In the cold region, the CO, HPAC,,
is recommended. For regions transitioning from cold to
warm climates, the R1234yf HPAC,; system is suggested.
The map can be as a selection reference and decision-mak-
ing for the air-condition system of electric vehicles.

Abbreviations

AC Air-Conditioning

ACCU  Accumulator

COM Compressor

CcopP Coefficient Of Performance
utc Coordinated Universal Time
EVA Evaporator

EEV Electronic Expansion Valve

GHG Greenhouse gas

GWP  Global Warming Potential

HPAC  Heat Pump Air Conditioning

LCCP  Life Cycle Climate Performance
ICEV Internal Combustion Engine Vehicle
Ic Initial Investment Cost

IEC Life Energy Cost
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OHX Outdoor Heat Exchanger

PTC Positive Temperature Coefficient
PBEV  Pure Battery Electric Vehicle

PID Proportional-Integral-Derivative
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