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ABSTRACT

Countries are increasingly interested in spacecraft surveillance and recognition which

play an important role in on-orbit maintenance, space docking, and other applications.

Traditional detection methods, including radar, have many restrictions, such as excessive

costs and energy supply problems. For many on-orbit servicing spacecraft, image recognition

is a simple but relatively accurate method for obtaining sufficient position and direction

information to offer services. However, to the best of our knowledge, few practical machine-

learning models focusing on the recognition of spacecraft feature components have been

reported. In addition, it is difficult to find substantial on-orbit images with which to train

or evaluate such a model. In this study, we first created a new dataset containing numerous

artificial images of on-orbit spacecraft with labeled components. Our base images were

derived from 3D Max and STK software. These images include many types of satellites and

satellite postures. Considering real-world illumination conditions and imperfect camera

observations, we developed a degradation algorithm that enabled us to produce thousands

of artificial images of spacecraft. The feature components of the spacecraft in all images

were labeled manually. We discovered that direct utilization of the DeepLab V3+ model

leads to poor edge recognition. Poorly defined edges provide imprecise position or direction

information and degrade the performance of on-orbit services. Thus, the edge information

of the target was taken as a supervisory guide, and was used to develop the proposed Edge

Auxiliary Supervision DeepLab Network (EASDN). The main idea of EASDN is to provide

a new edge auxiliary loss by calculating the L2 loss between the predicted edge masks

and ground-truth edge masks during training. Our extensive experiments demonstrate

that our network can perform well both on our benchmark and on real on-orbit spacecraft

images from the Internet. Furthermore, the device usage and processing time meet the

demands of engineering applications.
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1 Introduction

Spacecraft surveillance and recognition systems have

found application in on-orbit maintenance, space docking,

and other orbit services. When offering on-orbit services,

one of the most significant tasks a satellite has to complete

is the recognition of spacecraft feature components.

Several countries have developed miscellaneous spacecraft

surveillance and recognition systems since the start of the

21st century. For example, to mitigate the growing risk of

space debris, the Air Force Research Laboratory (AFRL)

implemented a plan named Autonomous Nanosatellite

Guardian for Evaluating Local Space (ANGELS) in

2005. Special satellites were placed in geostationary

orbit to conduct continuous surveillance and accurate

detection of satellite targets in the near-space area. These

satellites extract important attributes of the target and

communicate with their own surveillance platform for
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feedback [1]. In 2014, the U.S. Air Force implemented the

Geosynchronous Space Situational Awareness Program

(GSSAP), which included four satellites to monitor other

satellites in space [2–4]. Canada launched a satellite

named NEOSSAT in 2013 to detect asteroids in near-

Earth space. It was also designed to track high-orbit

satellites and space debris [5]. These attempts have many

shortcomings: (1) traditional detection approaches such

as radar or infrared observations have cost and energy

supply restrictions; (2) they do not have any on-orbit

ability to process data acquired by the sensors. In other

words, they have to communicate with the ground control

center, leading to signal delays and substantial human

costs.

Compared with traditional detection methods, image

recognition is an easy but relatively effective method for

obtaining position and direction information. Tang and

Zou proposed a non-cooperative spacecraft recognition

approach based on the fusion of local features [6]. Zhi

et al. and Hu also introduced combined multi-feature

metrics towards the recognition of spacecraft feature

components [7, 8]. However, these traditional image-

processing studies, which depend on elaborate designs,

are geared towards certain types of spacecraft. Moreover,

they tested their methods on a few images, rather

than on a standard dataset. Recently, deep learning

technology has achieved great success in the field of

artificial intelligence [9]. Convolutional neural networks

(CNNs) have yielded outstanding results in the computer

vision field and refresh almost all of the records [10]. These

methods have rendered the recognition of spacecraft

feature components feasible both in algorithms and

engineering applications. Zhang et al. used CNN and

long short-term memory network (LSTM) for space

target recognition [11, 12]. However, they attempted

to recognize a space target based on radar echo signals.

To the best of our knowledge, a specialized CNN-based

deep learning model has not yet been proposed for the

recognition of spacecraft feature components in optical

images. Even more importantly, the lack of substantial

on-orbit images makes it difficult to train or evaluate

such a model.

This paper introduces a new labeled dataset with

thousands of artificial on-orbit spacecraft images. Base

images are derived from 3D Max and STK software,

and take both the modeling accuracy and costs into

consideration. These images include many types of

satellites (such as low earth orbit, medium earth orbit,

and geosynchronous earth orbit satellites) and many

postures. A degradation algorithm including geometric

transformation, noise, and image blur was developed to

simulate on-orbit illumination conditions and imperfect

camera observation. Thousands of artificial spacecraft

images were generated by applying this degradation

algorithm to the base images. The feature components,

such as panels of the spacecraft in all degraded images,

were annotated manually to evaluate the performance of

the recognition algorithms.

Our work mainly focuses on semantic segmentation for

the recognition of spacecraft feature components, which

involves labeling the images with pixel-level semantic

information [13]. Traditional image segmentation

methods mainly include four classes: (1) threshold

segmentation, in which an image is divided into several

features based on thresholds with several pixel values; (2)

edge detection segmentation, in which the pixel gray level

or discontinuous color of the edge is applied to detect

the area and achieve complete image segmentation; (3)

regional growth segmentation, the essence of which is to

connect pixels with similar features, such as grayscale

features, shape features (e.g., scale-invariant feature

transform (SIFT) [14], histogram of oriented gradient

(HOG) [15]), and other features, whereas it is challenging

to select features; (4) graph theory, which entails mapping

an image to a graph, and transforming the segmentation

of the image into the partitions of the graph. This includes

the Markov random field method based on graph cut [16]

and the random walk method [17].

All of these traditional methods have specific

disadvantages; hence, it is not easy to use one of these

approaches to recognize spacecraft feature components

when having to overcome different spacecraft postures,

backgrounds, and light conditions. In contrast to these

methods, the deep learning method can automatically

learn, extract, and accurately represent data features.

CNN-based semantic segmentation establishes mapping

from pixels to semantics without the need for posterior

manual work. FCN [18], SegNet [19], and U-NET [20]

are classical models of semantic segmentation using

CNNs. E-Net [21], and Link-Net [22] are light networks

created specifically for tasks that require low-latency

operations, which have fewer parameters and faster

speeds. DeepLab V3+ [23], a state-of-the-art model

in the current semantic segmentation domain, enables
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segmentation precision across multiple datasets. However,

our initial work showed that the DeepLab V3+ model has

poor edge recognition abilities. The feature components

of a spacecraft usually have regular shapes. Poorly defined

edges provide imprecise position or direction information

and lower the performance of on-orbit services.

In this paper, we propose a border-supervised network

based on the DeepLab V3+ model to address this

problem. We leveraged the edge information of the target

as a supervisory guide by proposing the Edge Auxiliary

Supervision DeepLab Network (EASDN) algorithm,

which calculates the L2 loss between the predicted edge

masks and ground-truth edge masks during training.

Subsequently, we conducted extensive experiments to

demonstrate that our networks perform well both on

our benchmark and on real on-orbit spacecraft images

from the Internet. Our light version, which is less

computationally expensive, can also meet the demands

of device usage and time in engineering applications.

2 Spacecraft feature component dataset

Owing to the particularity of spacecraft, it is difficult to

obtain real on-orbit images from the Internet, and those in

the public domain are almost all simulation images. Thus,

we chose to produce base spacecraft images using three-

dimensional (3D) animation rendering and production

software. We enlarged these base images to render an

on-orbit effect by applying a degradation algorithm. In

addition, the spacecraft feature components in all of these

images were labeled.

2.1 Base images

Zhang et al. established the BUAA-SID 1.0 space target

database [24], which is based on 3D models of space

targets and utilizes 3D Max software to render and

generate a full-view simulation image sequence of a space

target. However, the number of images is limited, and

the rendering effect does not closely correspond to the

real on-orbit environment. Our base on-orbit images of

spacecraft stem from 3D Max and STK software, both of

which exploit the 3D model of the spacecraft to obtain

the simulation image. The difference lies in the image

quality and computational cost. It takes a significant

amount of time for 3D Max to render a 3D model of the

spacecraft using a raytracer, although the quality of the

rendering image is high and close to that of real on-orbit

satellites. STK, on the other hand, generates simulation

images without distributed rendering. Capturing 3D

models directly in a space scene from STK is readily

achievable and saves time, but the outputs are not

realistic. Figure 1(a) is the rendering result produced

with 3D Max, and Fig. 1(b) is the result obtained with

STK. The 3D model in Fig. 1(b) is composed of regular

objects such as balls, cubes, conical surfaces, and so on.

They lack textures, reflections, and shading, which are

necessary to simulate realistic images.

(a) 3D Max rendering result

(b) Spacecraft model in STK

Fig. 1 Rendering results for satellite “a2100” using 3D Max
and STK software.

2.1.1 3D Max

3D models of spacecraft can be built and rendered from

essential 3D objects and components using 3D Max

software. Nevertheless, we need to survey the geometric

structural parameters of the spacecraft. Thus, it would

be more efficient to utilize the models in the STK satellite

library and import the files of the STK model (which

would need to be converted to the “.lwo” format) into 3D

Max software for rendering. In total, 16 types of satellites

were rendered by the 3D Max software.

2.1.2 STK

STK software was utilized to simulate the on-orbit
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operation of a satellite and record high-definition videos

with a resolution of 1280× 960 pixels at 60 frames per

second. Color images were extracted from the videos

every five frames as STK output images. Seven types

of satellites were produced using STK software. Each

satellite contained more than 200 images.

The 3D Max or STK software produces RGB images,

whereas real on-orbit satellite images are usually captured

in gray mode. Conversion to grayscale is therefore

necessary for all images to create a drawing of a real

situation. Because human eyes are most sensitive to green

and least sensitive to blue, a reasonable grayscale image

can be obtained by calculating the weighted average of

RGB channels according to the following formula [26]:

G(i, j) = 0.299×R(i, j) + 0.578×G(i, j)

+ 0.114×B(i, j) (1)

The resolution of the base images is scaled to 320×240

pixels for a unifying setting. The image size is scaled

by the bicubic interpolation method, which retains the

visual effect of the original image as much as possible.

This method considers not only the variation in the

four neighboring pixels, but also the variation of other

surrounding pixels, which has a smoothening effect on

the edges of the object [27]. Ultimately, we produced

images of 23 satellites, which were used to create 4550

gray images. The spacecraft feature components were

labeled on the base images.

2.2 Degradation algorithm

The spacecraft image captured on orbit was found on

the Internet, as shown in Fig. 2 [25]. As can be seen

from the figure, the optical observation image contains a

considerable amount of noise, which is especially obvious

in the background of the image. As a result of the effect

of noise interference, the color of the background is no

Fig. 2 Photographic image of the Shenzhou-7 on-orbit
spacecraft captured by a small satellite [25].

longer black, whereas the gray values of these pixels are

degraded.

Therefore, the real on-orbit optical image of the

spacecraft needs to be processed by adding simulated

illumination (light or sunshine), but the influence of

noise, distortion, and geometric transformation must

be considered. The process followed by the degradation

algorithm is illustrated in Fig. 3.

Fig. 3 Our degradation algorithm.

The synthetic degradation shown in Fig. 3 refers to

the process of applying several of the aforementioned

degradation operations to a base image, to obtain the

artificial spacecraft images under different conditions. It

is worth noting that the operations of noise, blur, and

illumination are solely conducted on the base image and

its mask does not need to be changed. On the other hand,

for the geometric transformation operation, it is necessary

to process the base image and its corresponding labeled

image simultaneously. At the same time, the dataset of

spacecraft feature components can be enlarged using this

degradation algorithm, because one base image can yield

many (we set this number to 7 for diversity) artificial on-

orbit images by randomly applying different operations

in different operating sequences.

2.2.1 Illumination

The illumination added here is stronger at the center of

the lobe than that around the lobe. This means that the

main lobe is the brightest locally. The relevant expression

is as Eq. (2):

f(x, y) = k

1−
√
(x− x0)

2
+ (y − y0)

2

r

 (2)
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where k is the brightness of the center point, (x0, y0) are

the coordinates of the center point, and r is the radius.

When k is sufficiently large, the main lobe of illumination

tends to be overexposed, thus losing its original texture.

If k is too small, the effect of the illumination operation

is not conspicuous. In our dataset, the value of k is 128.

The radius is equal to a quarter of the minimum width

and height of the input image.

In our dataset, the background in the base image is

almost entirely black, and only the spacecraft has gray

values. Therefore, it is appropriate to set the center point

as the centroid of the base image. The image centroid

calculation method was as Eq. (3):

f(x, y) =

{
1, target

0, background

x0 =

∑
xf(x, y)∑
f(x, y)

y0 =

∑
yf(x, y)∑
f(x, y)

(3)

where (x0, y0) is the centroid coordinate, and f(x, y) is

the gray value of pixel (x, y).

The effect of illumination is depicted in Fig. 4.

(a) Before (b) After

Fig. 4 Effect of illumination.

2.2.2 Noise

To ensure that the images in the dataset more closely

resemble those of the real spacecraft in orbit, it is

necessary to add suitable noise interference to the images

with a black background. According to the probability

distribution of the noise, the actual image noise can be

divided into Gaussian, Rayleigh, gamma, exponential,

and uniform noise. Gaussian noise (i.e., normal noise) is

often employed in practice because it is mathematically

easy to use in space and frequency domains. The

probability density function of the Gaussian random

variable z is given by the following formula [28]:

p(z) =
1√
2πσ

exp(−(z − µ)2/(2σ2)) (4)

where z is the gray value, µ represents the average value of

z, and σ is the standard deviation of z. The performance

of the noise is shown in Fig. 5. In our dataset, we exploited

the Gaussian-distributed additive noise. The mean of the

random distribution was 0, and its variance was set to

0.005.

(a) Before (b) After

Fig. 5 Effect of noise.

2.2.3 Blur

After the noise operation, the image texture too obviously

consists of particles, and the image is still far from the

actual situation. Therefore, Gaussian blur was added to

ensure the image is closer to the real situation. The blur

radius of the Gaussian blur was 0.05.

2.2.4 Geometric transformation

Geometric transformation processing is also required to

expand the dataset to include additional feasible images

and to counteract overfitting that occurs during training.

This processing does not change the pixel value of the

image, and it only maps the position coordinates of one

image to another. Our geometric transformations include

translation, rotation, scaling, and random combinations

of these three essential operators, which are illustrated

in Fig. 6.

Eventually, synthetic degradation, which includes these

operations, was carried out, as shown in Fig. 7. As a

result, our final Spacecraft Feature Component Dataset

(SFCD) consists of 27,240 on-orbit images.

3 Our models

In Section 2, we described the process we followed to

construct the new SFCD, which consists of images of

on-orbit spacecraft and their corresponding labels. This
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(a) Base image (b) Rotation (c) Translation (d) Scaling

Fig. 6 Geometric transformation.

Fig. 7 Synthetic degradation.

section is concerned with the problem of building an

effective model that recognizes the feature components

of an on-orbit spacecraft. The degradation algorithm

(especially the operations responsible for adding noise,

blur, and illumination) increases the difficulty of semantic

segmentation, inevitably in terms of object details and

boundary regions. To address this problem, we developed

the EASDN based on the DeepLab V3+ model, which we

modified to take into consideration the degraded image

boundary information.

3.1 DeepLab V3+

DeepLab V3+ [23], which forms the basis of our intelligent

spacecraft feature component recognition network, offers

the advantages of portability and high precision. It is the

latest version of the DeepLab algorithm series [29–31]. To

fuse multi-scale information, DeepLab V3+ introduces

the encoder–decoder architecture commonly used in

semantic segmentation, and balances precision and cost

in terms of time via atrous convolution by controlling

the resolution of the encoded features. The DeepLab

V3+ design is structured such that the entire previous

model of DeepLab V3 [31] is employed as an encoder,

followed by a simple but effective decoder. Atrous spatial

pyramid pooling (ASPP) is the core of the DeepLab

algorithm series. Multiple effective receptive fields can

be realized via convolution and pooling operations with

different dilation rates to obtain multiresolution features

and discover multi-scale context information. DeepLab

V3+ also utilizes depthwise separable convolution to

reduce the computational overhead. DeepLabV3+ has

advanced semantic segmentation capabilities and achieves

segmentation accuracy on multiple benchmarks.

DeepLab V3+ extracts deep features with an Xception

structure and performs feature fusion. Other common

feature extraction networks, such as ResNet [32],

DRN [33], and MobileNet [34], can also be applied as the

backbone of DeepLab V3+. According to our experiments

and the ablation study of Chen et al. [23], the model based

on Xception is the best. Although the MobileNet model
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is not as good as the model based on Xception, it has

fewer parameters and is computationally less complex.

Hence, MobileNet can be employed as a backbone that

meets the requirements of a light model. Based on these

factors, Xception and MobileNet were selected as the

backbone for feature extraction.

3.2 Edge Auxiliary Supervision DeepLab
Network

To simulate the on-orbit environment, the degradation

algorithm is applied to the base images. Unfortunately,

it causes the information about the target space to be

lost in the image, especially in the boundary area of

the spacecraft, thus reducing the precision of semantic

segmentation. Inspired by previous work [35, 36], we

developed the EASDN to which we added a supervision

guide for the target, enabling the neural network to

predict the edge of the target more precisely and improve

the segmentation accuracy simultaneously. The structure

of the model is illustrated in Fig. 8.

As shown in Fig. 8, the predict image P is obtained by

the model. The predicted edge map PE is the product of

the Edge Extract Module with input P . The true edge

map GE is produced in the same manner as the ground

truth G. Then, the true edge map GE is designed to pass

through a smooth module to obtain the smoothing true

edge map Gs. Finally, the edge auxiliary loss is calculated

between PE and Gs.

3.3 Edge Extract and Smooth Module

The function of the Edge Extract Module is to extract

the edge of the object in an image by using an edge

detection filter. The inputs are the predictive and real

masks. Edge detection filters can generally be described

as having a 3× 3 convolution. The Sobel filter [37] and

Laplace filter [28] are well-known edge detection filters.

Based on our experiments, the Laplace filter is isotropic

and delivers superior performance; therefore, we chose it

as our edge detection filter. Its basic formula is as Eq. (5):

y(u, v) = x(u, v) + c(∇2x(u, v)) (5)

where x(u, v) is the input image, y(u, v) is the output

image, and c is a coefficient.

Smooth Module is prepared for the true edge map GE,

which facilitates training and alleviates the overfitting

of our model. Here, we leverage the Gaussian filter.

Alternatively, the median filter or mean filter would also

be acceptable because their effects are almost the same

in this specific problem according to our experiments.

3.4 Loss function

The total loss LTotal consists of the original pixel-wise

cross entropy loss LCE and the new Edge Auxiliary Loss

LEdge:

LTotal = LCE + αLEdge (6)

where α is a weight parameter that balances the weights

of LTotal and LEdge and LCE is a common loss function

for semantic segmentation [38]. The definition is

LCE = −y log(y′)− (1− y) log(1− y′) (7)

where y′ is the predictive value and y is the true label

value.

Fig. 8 Edge Auxiliary Supervision DeepLab Network.



244 L. Qiu, L. Tang, R. Zhong

In addition, the formula for LEdge is as Eq. (8):

LEdge =
1

2m

∑
x

|y − y′|2 (8)

where x is a sample and m is the sample number of a

batch. LEdge is the mean square error between PE and

Gs.

4 Experiments

4.1 Experimental setup

4.1.1 Training setting

The model was tested on a Linux Ubuntu 16.04 system

based on the TensorFlow framework. Three NVIDIA

GeForce GTX 1080Ti 11 GB GPUs, Intel Core i7 CPU,

and 16 GB of memory were used for the training process.

The training settings are listed in Table 1.

Table 1 Training settings

Parameter Training setting
Learning rate scheduler Poly
Training steps 15,000
Output stride 8
Input size (pixels) 320× 240
Initial learning rate 0.0001
Training steps 15,000
Learning rate decay step 2,000
Learning rate decay factor 0.1

The learning rate scheduler is a method for adjusting

the learning rate, which has a certain influence on the

final training effect of the model. The output stride is a

specific setting that measures the size of the feature map

output by the encoder. It represents the ratio between

the input size and size of the feature map. When the

output stride is 16, which represents the size of the feature

map from the encoder and is 1/16 of the input size, the

corresponding atrous convolution rate is [12, 24, 36],

and when the output stride is 8, the rate is [6, 12, 18],

which enables the segmentation precision to be improved.

However, in this setting, the calculation cost and training

time increased. We also applied pre-trained models on

ImageNet for training [39].

4.1.2 Dataset

We utilized the aforementioned Spacecraft Feature

Component Dataset for training and testing. The

training, validation, and test sets were divided randomly.

There were 1603 images in the test set.

4.2 Evaluation metrics

To measure the function and contribution of the

segmentation system, its performance needs to be

evaluated. We would need to employ standard and

acknowledged metrics to ensure fairness. Several aspects

of the system need to be tested to assess its effectiveness,

including the execution time, memory occupation, and

accuracy [40].

Many criteria are available for measuring the accuracy

of algorithms in image segmentation. These standards are

usually variations of their pixel precision and intersection

over union (IoU). The mean intersection over union

(mIoU) is the most common metric because of its

simplicity and representativeness, and has been employed

by most researchers to report their results [18, 19, 21, 22].

Therefore, mIoU was considered as a criterion for

accuracy in this study.

mIoU is the ratio of the intersection and union of two

sets. For semantic segmentation, the two sets are the

ground truth and the predicted values. This ratio can be

viewed as the ratio between the intersection (i.e., true

positive) and the sum of false negative, false positive,

and true positive. It is computed by calculating the

intersection over union for each class, and then taking

the average [18]:

mIoU =
1

k + 1

k∑
i=0

pii∑k
j=0 pij +

∑k
j=0 pji − pii

(9)

where there are k + 1 classes (k = 1 in this study), pij
denotes the number of pixels that are predicted to be in

class j with label i. Therefore, pii is the true positive.

The denominator of Eq. (9) represents the sum of the

false negatives, false positives, and true positives for one

class.

4.3 Quantitative evaluation

We only evaluate the models based on what we have

trained because no similar datasets or models have been

proposed before. Table 2 shows the segmentation accuracy

of DeepLab V3+ with different backbone networks and

our proposed EASDN model. In addition to displaying

the segmentation accuracy of the model, Table 3 provides

the training and testing speeds of the models, as well as

the model size. Considering the different requirements of

the model accuracy and speed on different platforms and

hardware, our models satisfy the demands of engineering

applications.
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Table 2 mIoU of different models

Model (backbone) mIoU (training set) mIoU (validation set) mIoU (test set)

DeepLab V3+ (MobileNet) 88.12% 88.08% 88.08%
DeepLab V3+ (Xception) 93.89% 93.61% 93.05%

EASDN (Xception) 94.46% 94.83% 94.62%

Table 3 Other performance measures of different models

Model (backbone) Training speed (s/step) Testing speed (f/s) Model size (MB)

DeepLab V3+ (MobileNet) 0.045 60 9
DeepLab V3+ (Xception) 0.34 14 157

EASDN (Xception) 0.35 14 158

Fig. 9 Recognition results of EASDN.

The results in Table 2 indicate that the DeepLab

V3+ model based on Xception has higher segmentation

accuracy. In addition, EASDN further improves the

segmentation accuracy, with an increase of 1.57% mIoU

on the test set. At the same time, it can be seen from

Table 3 that although the accuracy of the DeepLab V3+

model based on MobileNet is not competitive with that

of the other networks, the training and testing speeds

are significantly improved, and the model requires little

memory. Moreover, our EASDN model did not reduce

the speed while improving the segmentation accuracy of

the algorithm.

4.4 Qualitative results

The qualitative results of our models can be seen in Fig. 9.

The figure depicts the segmentation results of the test

images in the presence of noise, blur, and sunlight in a

simulated on-orbit environment. The visualization results

indicate that the recognition and segmentation results

of the spacecraft panels by our proposed model can be
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Fig. 10 Results obtained for real on-orbit spacecraft images.

considered to be acceptable.

Figure 10 shows the results of our test of real on-

orbit spacecraft images from the Internet. Even under

poor conditions, the spacecraft panels can be correctly

identified and recognized, demonstrating the robustness

of the model. In other words, it proves that our dataset

is close to the real environment, and our degradation

algorithm is also suitable.

5 Conclusions

A variety of internal degradation factors (noise, blur,

and distortion from an on-orbit camera) and external

disturbances (sunlight, space dust, and the plume

from the space environment) make it challenging to

recognize spacecraft feature components. Moreover,

the lack of sufficient on-orbit spacecraft images has

hindered research. We attempted to address this issue

and constructed the SFCD with authentic degradations.

The EASDN model was proposed to perform efficient

and effective recognition of images in our dataset and

real on-orbit images from the Internet. Our extensive

experiments validated that the models trained on

our SFCD benchmark have a beneficial generalization

capability to real on-orbit conditions. In the future, we

aim to enlarge the SFCD benchmark by considering

a satellite against the Earth (or other planets) as

the background and plan to add labels for additional

feature components (such as aerials, cameras, and engine

nozzles).
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