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Engineering Two‑Phase Bifunctional Oxygen 
Electrocatalysts with Tunable and Synergetic 
Components for Flexible Zn–Air Batteries
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HIGHLIGHTS

• A novel heterostructured bimetallic Co/CoFe nanomaterial supported on nanoflower‑like N‑doped graphitic carbon (NC) is prepared 
through a strategy of coordination construction‑cation exchange‑pyrolysis.

• The Co/CoFe@NC exhibits high bifunctional activities with a remarkably small potential gap of 0.70 V between oxygen evolution 
reaction (OER) and oxygen reduction reaction (ORR), which can be used in liquid and flexible quasi‑solid‑state rechargeable Zn–air 
batteries.

• The density functional theory calculations reveal optimized adsorption energies for intermediates of ORR and OER on heterostructured 
Co/CoFe@NC.

ABSTRACT Metal–air batteries, like Zn–air batteries (ZABs) are usually suf‑
fered from low energy conversion efficiency and poor cyclability caused by the 
sluggish OER and ORR at the air cathode. Herein, a novel bimetallic Co/CoFe 
nanomaterial supported on nanoflower‑like N‑doped graphitic carbon (NC) was 
prepared through a strategy of coordination construction–cation exchange‑pyrol‑
ysis and used as a highly efficient bifunctional oxygen electrocatalyst. Experi‑
mental characterizations and density functional theory calculations reveal the 
formation of Co/CoFe heterostructure and synergistic effect between metal layer 
and NC support, leading to improved electric conductivity, accelerated reaction 
kinetics, and optimized adsorption energy for intermediates of ORR and OER. 
The Co/CoFe@NC exhibits high bifunctional activities with a remarkably small potential gap of 0.70 V between the half‑wave potential 
(E1/2) of ORR and the potential at 10 mA  cm‒2 (Ej=10) of OER. The aqueous ZAB constructed using this air electrode exhibits a slight 
voltage loss of only 60 mV after 550‑cycle test (360 h, 15 days). A sodium polyacrylate (PANa)‑based hydrogel electrolyte was synthe‑
sized with strong water‑retention capability and high ionic conductivity. The quasi‑solid‑state ZAB by integrating the Co/CoFe@NC 
air electrode and PANa hydrogel electrolyte demonstrates excellent mechanical stability and cyclability under different bending states.

KEYWORDS Bifunctional electrocatalysts; Oxygen electrocatalysis; Zn–air battery; Co/CoFe heterointerface engineering; Density 
functional theory calculations
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1 Introduction

The rapid development of portable and wearable electronics 
has triggered intensive research activities on various energy 
conversion and storage devices [1, 2]. Metal–air batteries, 
especially flexible Zn–air batteries (ZABs) have been consid‑
ered as promising candidates owing to their high theoretical 
specific energy density (1084 Wh  kg−1), source abundance in 
nature, environmental benignity and high safety [3, 4]. Nev‑
ertheless, the wide application of the ZABs is still hampered 
by the sluggish kinetics of oxygen reduction reaction (ORR) 
and oxygen evolution reaction (OER) at the air cathode dur‑
ing the discharging and charging processes, arising from the 
multistep and proton‑coupled electron transfer characters of 
the reversible oxygen electrocatalysis [5–7]. Currently, the 
noble metal Pt and metal oxides  RuO2/IrO2 are the most 
accepted benchmark electrocatalysts for ORR and OER, 
respectively. However, these precious metal‑based catalysts 
are plagued with high cost, severe scarcity and chemical 
susceptibility. In addition, their insufficient catalytic bifunc‑
tionality and inferior durability are also the shot‑slab [8–10]. 
It is thus imperative to develop highly efficient bifunctional 
non‑precious metal catalysts for rechargeable ZABs.

Under the alkaline condition, the discharge/charge 
(ORR/OER) reactions at the air cathode of ZABs are: 
 O2 +  2H2O +  4e− ⇋4OH−. The ideal bifunctional catalysts 
can mediate this reversible oxygen reactions from equi‑
librium status to  OH− or  O2 to a great extent [4, 11, 12]. 
Among various electrocatalysts ever reported, the material 
composites encompassing transition metal‑based compounds 
(such as oxides, sulfides, carbides, and nitrides) supported 
on heteroatom‑doped carbon (especially N‑doped carbon) 
were explored as a class of compelling catalysts toward both 
ORR and OER [13–16]. The carbon support with unique 
porous structure is essentially important for the high perfor‑
mance of the composite catalysts, which can not only facili‑
tate the charge transfer and mass transport, but also provide 
large surface area to ensure abundant exposed active sites. 
Recently, the supported bimetal alloy (e.g., CoFe, NiCo, and 
FeNi) composites have received growing interest owing to 
their binary active metal sites in a single nanoparticle, which 
may provide more selectivity for different catalytic reac‑
tions. In addition, the interaction between different metals 
can effectively modify the electronic structures, resulting 
in stabilized surface energy and moderate oxygen binding 
affinity [17–20].

At present, various strategies have been applied to syn‑
thesize bimetal alloy composite catalysts. High‑temperature 
pyrolysis of the mixture of metal salts and nitrogen‑rich 
small molecules provides a straightforward approach to 
prepare bimetal alloys supported in N‑doped carbon (NC) 
[21–23]. Although the one‑step pyrolysis of the mixture is 
a facile approach, the control of nanoparticle size and struc‑
ture has become challenging. Moreover, the nanocrystals are 
prone to aggregate into bulk phase during the carbonization 
at high temperatures, leading to decreased electrocatalytic 
performance. Whereas the pyrolysis at low temperatures 
could moderate agglomeration, it would lead to low degree 
of graphitization and poor contact between active metal 
nanoparticles and underlying carbon, which also reduces 
the activity and stability of the catalyst materials [20, 24]. 
The thermal decomposition of metal–organic frameworks 
(MOFs) provides another appealing approach to prepare 
bimetal alloys supported in N‑doped carbon. MOFs can be 
utilized as excellent self‑sacrificial templates in view of their 
tunable central metals, abundant heteroatoms, and uniform 
porous structures. However, the integration of two or more 
metals into a single MOF is usually difficult because of the 
mononuclear metal center of most simple MOFs [25]. Alter‑
natively, bimetal alloy composites may be obtained through 
a dual‑MOF pyrolysis approach, which however increases 
the complexity of experiments and the inhomogeneity of 
electrocatalysts [26]. The rational design and construction 
of high‑performance bifunctional oxygen electrocatalysts 
of bimetal alloys is still quite challenging for rechargeable 
ZABs.

To fabricate flexible ZABs, the solid‑state electrolyte 
(i.e., hydrogel electrolyte) is an essential component, 
which largely governs the transport behavior of conduc‑
tive ions and cycling stability of flexible ZABs. The low 
water take‑up and retention, weak interaction with elec‑
trodes, and structural instability intrinsically associated 
with common polymer electrolytes, e.g., polyvinyl alco‑
hol (PVA), polyethylene glycol, and gelatin have signifi‑
cantly limited their performance in solid‑state batteries 
[27, 28]. Recently, a novel low‑cost polyelectrolyte com‑
prising sodium polyacrylate hydrogel (PANa) was devel‑
oped for application in solid‑state batteries. As a promis‑
ing candidate of hydrogel electrolytes, the PANa‑based 
electrolyte exhibits superior properties of water retention, 
ionic conductivity, electrode/electrolyte contact, and 
mechanical strength [4, 28]. However, the compatibility 
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of PANa‑based electrolyte with various air cathodes, espe‑
cially under different bending states for achieving decent 
cyclability still presents a significant challenge for the 
practical application in flexible ZABs.

In this work, a novel Co‑based coordination framework 
with uniform nanoflower structure was explored as pre‑
cursor to prepare heterostructured Co/CoFe nanoparticles 
embedded in N‑doped graphitic carbon. The preparation 
strategy is facile and versatile, which allows hydrothermal 
coordination reaction for morphology construction and sub‑
sequent cation exchange for composition regulation. The 
pyrolytic Co/CoFe@NC material delivers multiple advan‑
tages in terms of oxygen electrocatalysis for its unique 
morphology, heterostructure and bimetallic composition. 
It maintains the nanoflower morphology of the precursor, 
which can expose abundant catalytic active sites and enlarge 
catalyst/electrolyte contact area. The supportive and protec‑
tive NC thin layer not only ensures a high electrical conduc‑
tivity, but also prevents nanoparticles from agglomeration 
and dissolution during catalysis. The density functional 
theory (DFT) calculations suggest that the incorporation 
of Fe atoms can moderate the adsorption free energies of 
oxygen‑containing intermediates in ORR and OER, which 
effectively boost the intrinsic activity of Co/CoFe@NC. The 
theoretical analysis also reveals the charge transfer from the 
metal layer to the NC layer, which can cause an electron‑rich 
state on the latter and induce extra surface catalysis from 
carbon matrix. As a result, the optimized catalyst displays 
extraordinary bifunctional oxygen electrocatalysis with a 
small ∆E (Ej=10 − E1/2) value of 0.70 V, which is among the 
best in literature reports. The rechargeable ZABs, including 
liquid batteries and flexible quasi‑solid‑sate batteries with a 
home‑made sodium polyacrylate hydrogel (PANa) as elec‑
trolyte were assembled, demonstrating very impressive per‑
formance with high open‑circuit voltage, small discharge/
charge voltage gap and excellent long‑term cyclability, and 
mechanistic flexibility.

2  Results and Discussion

2.1  Preparation and Physicochemical 
Characterizations

The synthesis process of Co/CoFe@NC can be divided 
into three major steps as illustrated in Fig. 1. Initially, a 

convenient solvothermal method was utilized to prepare Co‑
based coordination framework (denoted as Co‑PPD) via the 
strong coordination interaction between the  Co2+ ions and 
the amine functional group in p‑phenylenediamine (PPD). 
As shown in Fourier transform infrared (FTIR) spectra (Fig. 
S1a), the peaks of Co‑PPD at high wavenumber that arise 
from the stretching vibrations of the ‑N–H group become 
weaker as compared with the pure PPD. It signifies that the 
metal ions are anchored into the “nitrogen pots” in the Co‑
PPD [29]. In the X‑ray diffraction (XRD) pattern of Co‑PPD 
(Fig. S1b), only a small hump peak appears, suggesting the 
amorphous nature of the material. The scanning electron 
microscopy (SEM) images clearly show the nanoflower 
structure of Co‑PPD comprised of numerous nanosheets 
(Figs. S1c, d). The corresponding X‑ray spectroscopy (EDS) 
elemental mapping reveals the coexistence of C, N, and Co 
elements and their homogenous distribution in the whole 
sample (Figs. S1e‑h).

In the following step, Co/Fex‑PPD was synthesized by 
a cation exchange of the as‑prepared Co‑PPD coordina‑
tion framework. A series of Co/Fex‑PPD with different Fe 
contents were obtained by varying the amount of added 
Fe(NO3)3 in the solution bath for cation exchange. After 
thermal pyrolysis at 800 °C in Ar atmosphere, the Co/Fex‑
PPD nanoflowers were transformed into heterostructured 
Co/CoFex nanoparticles embedded in N‑doped porous car‑
bon nanosheets (In the following study, the Co/CoFe@NC 
signifies a sample with optimized content of Fe, while the 
Co/CoFeL@NC and Co/CoFeH@NC denote samples with 
low and high contents of Fe, respectively). During this 
pyrolysis process, metal ions were reduced to the metallic 
state through a carbothermal reduction reaction with the 
organic ligands, which in turn can catalyze the growth of 
graphitic carbon layers on their surface. As contrast samples, 
the monometallic Co@NC, Fe@NC and undecorated NC 
catalysts were also prepared through a similar method (see 
the Supporting Information).

The crystal structure of the as‑prepared materials was first 
characterized by XRD technology. The results (Fig. 2a) illus‑
trate the phase transition from metallic Co to CoFe alloy by 
varying Fe proportion in the Co/Fex‑PPD precursor. With 
an appropriate amount of incorporated Fe, the XRD pattern 
confirms the formation of mixed crystal phases with metal‑
lic Co (JCPDS No. 15–0806) and face‑centered cubic (fcc) 
CoFe alloy (JCPDS No. 48‑1818) [4, 30]. The tunable com‑
position of Co/CoFex@NC makes it possible for optimizing 
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the bifunctional electrocatalytic activities. As illustrated by 
Raman spectra in Fig. 2b, it is clear that two prominent peaks 
located at around 1335 and 1590  cm−1 can be observed for 
all samples, which are attributed to D‑band and G‑band 
derived from disordered carbon and the E2g vibration of sp2‑
hybridized graphitic carbon. In general, the relative peak 
intensity ratio of D and G band (ID/IG) is used to evaluate the 
graphitization degree of carbonaceous materials [31]. The 
low ID/IG ratio of Co/CoFe@NC (ID/IG = 0.92) implies that 
the existence of Co and CoFe alloy can efficiently promote 
the formation of graphitic carbon, which is beneficial to 
improve the electrical conductivity and corrosion‑resistance 
ability during electrocatalysis [9].

The morphology and microstructure of Co/CoFe@NC 
were examined by means of electron microscopies. As seen 
by SEM images in Fig. 2c, d, the Co/CoFe@NC preserves 
well the nanoflower morphology of Co‑PPD precursor with 
an average size of 500 nm, which is assembled by dozens 
of 2D nanosheets. A great deal of well‑dispersed nanoparti‑
cles with a size of approximate 10 nm are imbedded in the 
nanosheets. Similar observations are made on Co@NC, Co/
CoFeL@NC, and Co/CoFeH@NC (Fig. S2), whereas Fe@NC 
displays nanowire morphology (Fig. S3). In Fig. 2e, the trans‑
mission electron microscopy (TEM) image of Co/CoFe@NC 

also reveals the presence of a large number of nanoparticles 
in nanosheets. The inset shows the selected‑area‑electron‑
diffraction (SAED) pattern, confirming the polycrystalline 
nature of the material as indicated by the discrete spots. Fur‑
thermore, the high‑resolution TEM (HRTEM) image (Fig. 2f) 
demonstrates that the nanoparticles are surrounded by a few 
graphitic carbon layers. Such confinement effect not only 
prevents the Co/CoFe nanoparticles from agglomeration and 
detachment during the catalysis cycling, but also enriches the 
electron density on the carbon surface, thus inducing extra 
surface catalysis from carbon matrix (see theoretical calcu‑
lation below). Interestingly, the Co/CoFe heterostructure is 
formed in a single nanoparticle as marked by the white lines. 
The lattice fringes with spacings of 0.17 and 0.20 nm can be 
readily assigned to the (200) plane of Co and the (110) plane 
of CoFe, respectively, which are consistent with the results 
of XRD [4, 30]. As reported, the heterostructure interfaces 
can enrich the catalytic active sites and promote the charge 
transfer between different components, thus enhancing the 
electrocatalytic performance [32–34]. The high‑angle annular 
dark‑field TEM (HAADF TEM) image and the correspond‑
ing element mappings (Fig. 2g–k) illustrate that the N, Co, 
and Fe elements are homogeneously dispersed throughout 
the entire carbon sheet.
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Co/CoFe@NCOER
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Fig. 1  Schematic illustration of the synthetic route for Co/CoFe@NC
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The specific surface area and porous structure were inves‑
tigated by  N2 adsorption/desorption isotherms. As shown 
in Fig. 3a, both Fe‑free Co@NC and Co/CoFe@NC dis‑
play typical‑IV patterns with a distinct hysteresis loop at a 
higher  N2 pressure (P/P0 = 0.4–1) according to the IUPAC 
classification, reflecting the unique mesoporous structure. In 
Fig. 3b, the pore size distribution also confirms the presence 
of mesopores [12]. The Brunaure–Emmett–Teller (BET) sur‑
face area of Co/CoFe@NC is calculated to be 468.6  m2  g−1, 
which is larger than that of Co@NC (255.4  m2  g−1). The 
large specific surface area is expected to provide more cata‑
lytic active sites with intimate catalyst/electrolyte contact.

X‑ray photoelectron spectroscopy (XPS) measurements 
were performed to analyze surface elemental compositions 
and bonding configurations of Co/CoFe@NC. The sur‑
vey XPS spectra in Fig. S4 affirms the existence of C, 
N, O, Co, and Fe elements and the atomic percentage of 

respective elements is listed in the inset table. The high‑
resolution C 1s XPS spectrum (Fig. 3c) can be deconvo‑
luted into three subpeaks including C–C/C=C (284.6 eV), 
C=N/C–O (286.9 eV) and C–N/C = O (289.4 eV). The 
detected C‑N component indicates that the N element has 
been successfully doped into the carbon lattice [7]. This 
is further demonstrated by N 1s core level spectrum in 
Fig. 3d. The subpeaks of N 1s XPS spectrum located at 
398.5, 399.7, 400.3, 401.1, and 403.3 eV can be assigned 
to pyridinic‑N, metal‑N, pyrrolic‑N, graphitic‑N, and oxi‑
dized‑N, respectively. The incorporation of N can modu‑
late the charge distribution and spin density of the adjacent 
C atoms to produce Lewis base sites, thus enhancing the 
electrochemical performance [12]. In Fig. 3e, the Co 2p 
XPS spectrum exhibits two pairs of peaks. The first pair of 
peaks centered at 779.1 and 793.9 eV are assigned to zero‑
valence Co atom in metallic Co and CoFe alloy [35]. The 

10

In
te

ns
ity

 (a
.u

.)

In
te

ns
ity

 (a
.u

.)

1 µm

Co (JCPDS 15-0806)

Co@NC

0.2 nm

)d()e()f(

0.2 nm

CoFe(110)

CoFe(110)

Co(200)

0.17 nm

5 nm

ID/IG=1.07

ID/IG=0.94

ID/IG=0.92

ID/IG=0.95

(111) (200) (220)

)b()a( (c)
D-band G-band

Raman shift (cm−1)

CoFe (JCPDS 48-1818)

Co/CoFeH@NC

Co/CoFe@NC

Co/CoFeL@NC

Co@NC

Co/CoFeH@NC

Co/CoFe@NC

Co/CoFeL@NC

(110)

20 30 40 50 60 70 80 900 1350 1800 2250 2700 3150

50 nm 500 nm

5 1/nm

C(002)
Co(200)

CoFe(110)

)k()j()i()h()g(

C eFoCN
500 nm

2θ (°)

Fig. 2  a XRD patterns, and b Raman spectra of various Co/CoFex@NC samples with different Co/Fe ratios. c, d SEM images, and e, f TEM 
and HRTEM images of Co/CoFe@NC. g‑k STEM‑EDS elemental mapping images of C, N, Co and Fe atoms in Co/CoFe@NC



 Nano‑Micro Lett. (2021) 13:126126 Page 6 of 16

https://doi.org/10.1007/s40820‑021‑00650‑2© The authors

other pair of peaks at 781.6 and 796.4 eV with shakeup 
satellites at 785.2 and 802.7 eV are ascribed to ionic‑state 
peaks of Co, implying the formation of Co–N bonding. 
Similarly, the core level XPS of Fe 2p in Fig. 3f discloses 
the metallic state peaks at 720.1 and 709.2 eV and ionic‑
state peaks at 710.9 and 724.8 eV with shakeup satellite 

peaks at 714.4 and 732.5 eV, which are attributed to metal‑
lic Fe and Fe–N bonding, respectively [4]. The forma‑
tion of Co–N and Fe–N bonding further demonstrates the 
strong interaction between Co/CoFe nanoparticles and 
N‑doped carbon nanosheet, which can facilitate electron 
transfer and reduce interfacial resistance.
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2.2  Electrocatalytic Performance Toward OER

The electrocatalytic OER performance of as‑prepared 
samples and commercial  RuO2 electrode were evaluated 

in 1 M KOH at a scan rate of 2 mV  s−1. Figure 4a shows 
the linear sweep voltammetry (LSV) curves of various 
Co/CoFex@NC electrocatalysts without iR correction. 
With the incorporation of Fe, the performance of Co/
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CoFex@NC was significantly improved initially and then 
decreased. At an optimized Fe content, the Co/CoFe@NC 
achieves an OER current density of 10 mA  cm−2 (Ej=10) at 
the lowest overpotential of 300 mV, which is even superior 
to the benchmark  RuO2 catalyst. The Tafel plots extracted 
from recorded LSV curves are used to probe the kinetics 
and intrinsic activities of electrocatalysts (Fig. 4b). Like‑
wise, the Co/CoFe@NC exhibits the lowest Tafel slope of 
49 mV  dec−1, smaller than the benchmark  RuO2 catalyst 
and other contrast samples. To reflect the performance dif‑
ference more intuitively, the overpotentials at 10 mA  cm−2 
and Tafel slopes of as‑prepared catalysts are summarized 
in Fig. S5, confirming further the favorable OER activity 
and reaction kinetics at the Co/CoFe@NC.

Electrochemical surface area (ECSA) and electrochemi‑
cal impedance spectroscopy (EIS) were analyzed to further 
understand the partial underlying reason for the enhanced 
OER activity. ECSA was estimated based on the electro‑
chemical double‑layer capacitance (Cdl) calculated from 
cyclic voltammetry (CV) at different scan rates (Figs. 4c 
and S6). As seen in Fig. 4d, Cdl value of Co/CoFe@NC is 
22.8 mF  cm−2, which is the largest among all examined 
samples. It indicates that the introduction of Fe can pro‑
vide more electrochemically accessible active sites. The 
Nyquist plots (Fig. 4e) reveal that all catalysts have a semi‑
circle at the high frequency region associated with charge 
transfer. Notably, the Co/CoFe@NC possesses the small‑
est semicircle diameter (Rct = 8.9 Ω), confirming its faster 
charge transfer and lower electrode/electrolyte interfacial 
resistance [30, 36].

Aside from high OER activity, the long‑term stability of 
Co/CoFe@NC was also examined. As displayed in Fig. 4f, 
after successive CV scans for 2000 cycles at a scan rate of 
100 mV  s−1, the polarization curve shows negligible differ‑
ence as compared with the initial one. The inset of Fig. 4f 
shows the time‑dependent current density curve of Co/
CoFe@NC at a static potential of 1.5 V, and the material 
electrode maintains its catalytic activity for at least 20 h.

2.3  Electrocatalytic Performance Toward ORR

To evaluate the bifunctionality of the as‑prepared materials, 
their ORR performance was also investigated by a series 
of electrochemical measurements. Figure 5a demonstrates 
the representative LSV curves recorded by a rotating disk 

electrode (RDE) at 1600 rpm. As expected, the Co/CoFe@
NC displays an impressive onset potential (Eonset) of 0.97 V 
and a half‑wave potential (E1/2) of 0.84 V, superior to that of 
Fe‑free Co@NC catalyst (Eonset of 0.9 V and E1/2 of 0.75 V) 
and even comparable to that of Pt/C (Eonset of 0.98 V and E1/2 
of 0.85 V). In addition, the Co/CoFe@NC exhibits the larg‑
est diffusion‑limited current density of 6.8 mA  cm−2, con‑
firming further the beneficial effect of Fe‑doping for ORR 
electrocatalysis. Figure 5b shows that the mass‑transferred‑
corrected Tafel slope of Co/CoFe@NC (60 mV  dec−1) is 
lower than that of Pt/C (78 mV  dec−1), indicating its fast 
ORR kinetic process. Figures 5c and S7 reveal that the dif‑
fusion current densities increase with increasing the rotation 
speed from 400 to 2025 rpm, consistent with the accelerated 
diffusion of oxygen molecules from the electrolyte to the 
electrode surface [37]. Furthermore, the Koutecky–Levich 
(K‑L) plots of Co/CoFe@NC with good linearity and the 
high coincidence at different potentials (inset of Fig. 5c) 
suggest the first‑order reaction kinetics with respect to the 
concentration of dissolved oxygen [38]. The electron trans‑
fer number (n) derived from K‑L plots is 3.8, implying that 
ORR on the Co/CoFe@NC dominantly follows an efficient 
four‑electron transfer pathway.

To quantitatively evaluate the intermediate peroxide 
product, the rotating ring disk electrode (RRDE) measure‑
ments were also performed. As displayed in Fig. S8, the Co/
CoFe@NC shows a high electron transfer number over 3.9 
per  O2 molecule and a  HO2

‒ yield below 5.0% in a wide 
potential range (0.2–0.8 V), both of which are superior to 
those of contrast catalysts and comparable to that of bench‑
mark Pt/C. This result is in good agreement with the n value 
derived from the K‑L plots. It verifies further that the highly 
efficient ORR on Co/CoFe@NC proceeds mainly via a dom‑
inant four‑electron transfer pathway.

The Co/CoFe@NC catalyst also exhibits superior ORR 
stability, which is very important for the practical applica‑
tion of electrocatalysts. As shown in Fig. 5d, the relative 
activity of the Co/CoFe@NC catalyst remains 98% after 
24 h of continuous operation at 0.65 V, far superior to 63% 
retention of Pt/C. The activity degradation of Pt/C could be 
at least partially attributed to the detachment of Pt nano‑
particles from carbon supports, leading to agglomeration 
of nanoparticles, catalyst compaction and porosity loss [9]. 
In addition, LSV curves of Co/CoFe@NC before and after 
chronoamperometric measurements (Fig. 5d inset) remain 
quite consistent, suggesting further the excellent durability 
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of Co/CoFe@NC. Because ORR is also an important half 
reaction in fuel cells, such as direct methanol fuel cell, the 
methanol crossover tolerance of Co/CoFe@NC was exam‑
ined and compared with commercial Pt/C catalyst (Fig. 
S9). By spiking methanol into the electrolyte solution, the 

cathodic ORR current at Pt/C immediately changes to an 
anodic current owing to methanol oxidation, indicating 
severe disturbance of ORR by methanol crossover. By con‑
trast, no significant current variation is observed for Co/
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CoFe@NC, suggesting the excellent methanol tolerance of 
Co/CoFe@NC.

The bifunctionality of oxygen electrocatalysts were 
assessed by the voltage difference (∆E) between E1/2 for 
ORR and the Ej=10 for OER, in which the smaller ∆E indi‑
cates the limited electrochemical polarization and higher 
bifunctional activity. Remarkably, the Co/CoFe@NC affords 
the lowest ∆E of 0.70 V among various Co/CoFex‑based 
samples and noble‑metal catalysts (Fig.  5e). Figure  5f 
summarizes the bifunctional electrocatalytic activity of 
as‑prepared Co/CoFe@NC with those of recently reported 
composite catalysts based on transition metals (note detailed 
information in Table S1), corroborating an extraordinary 
reversible oxygen catalytic performance of Co/CoFe@NC.

2.4  Theoretical Calculations and Mechanism Analysis

To further investigate and understand the intrinsically cata‑
lytic activity of Co/CoFe@NC, the adsorption Gibbs free 
energies (ΔG) of oxygen‑containing intermediates were 
analyzed by density functional theory plus U (DFT + U) 
calculations. Because ORR on the Co/CoFe@NC follows 
a four‑electron transfer pathway, the ORR and OER can be 
considered as reversible reactions. In alkaline condition, 
the widely accepted pathway for OER involves the follow‑
ing four elementary steps Eqs. 1–4, where * represents the 
active sites on catalysts, *OH, *O, and *OOH stand for the 
intermediate species adsorbed on the active sites, and ∆GI, 
∆GII, ∆GIII, and ∆GIV represent for Gibbs free energies in 
each reaction. The overpotential η of the whole process is 
defined in Eq. 5 [18, 39, 40].

The theoretical structure models of the OER intermediates 
adsorbed on the surfaces of Co@NC and CoFe@NC cata‑
lysts are presented in Figs. 6a, b and S10. When a potential 
of 0 V is applied, both catalysts display uphill pathways 

(1)OH
−+ ∗→ ∗ OH + e

− ΔG
I

(2)∗ OH + OH
−
→ ∗ O + H2O + e

− ΔG
II

(3)∗ O + OH
−
→ ∗ OOH + e

− ΔG
III

(4)∗ OOH + OH
−
→ ∗ +O2 + H2O + e

− ΔG
IV

(5)� = max
(

ΔG
I
, ΔG

II
,ΔG

III
,ΔG

IV

)

∕e − 1.23V

(Fig. 6c), where the step with maximum free energy change 
is the rate‑determining step (RDS). The RDS at pristine 
Co@NC is found to be the formation of *OOH from *O 
group in step 3 with a high overpotential of 2.06 V. This is 
consistent with the result of earlier study that the catalyst 
can bind O too strongly and the overall reaction is limited 
by the formation of *OOH species [41, 42]. Interestingly, the 
binding strength of OER intermediates can be modulated by 
introducing alien elements, which promotes the activity of 
catalyst [43, 44]. By comparing the free energy profiles in 
Fig. 6c, CoFe@NC exhibits a lowered OER overpotential 
of 1.77 V for the RDS of *OOH formation step, confirming 
the improved OER performance after the incorporation of Fe 
atom into the Co@NC. On the other hand, the energy bar‑
rier for  O2 desorption is altered in an opposite trend with the 
value increasing from 0.3 eV on Co@NC surface to 0.75 eV 
on CoFe@NC surface.

When the applied potential increases to 1.72 V that cor‑
responds to a theoretical overpotential of 0.49 V, the high‑
est ΔG value of the OER elementary steps (i.e., step 3) 
decreases to 0 eV. It suggests that the entire OER process 
can proceed spontaneously on the surface of CoFe@NC over 
this potential (Fig. 6d). For Co@NC, RDS is still hampered 
by an obvious energy barrier, requiring a higher applied 
potential to overcome. Thus, the comparison between Co@
NC and CoFe@NC, from both theoretical and experimen‑
tal analyses, points out the importance of engineering the 
Co/CoFe heterostructures for reducing the OER barrier and 
accelerating the reaction kinetic.

For the intimate contact between the supported metallic 
nanoparticles and the NC layer, the charge transfer between 
the two components was also simulated. As shown in Fig. 6e, 
electrons are transferred from the CoFe layer to the NC layer, 
causing an electron‑rich state on the NC layer, which is 
favorable for the ORR/OER process by rapid electron release. 
The charge delocalization is also beneficial to the formation of 
abundant surface catalytic active centers [18]. The results of 
theoretical calculations corroborates further that Co/CoFe@
NC possesses excellent oxygen electrocatalytic activity.

2.5  Performance of Liquid and Quasi‑Solid‑State  
Zn–Air Batteries

Considering the highly efficient bifunctional cata‑
lytic activity of Co/CoFe@NC, a homemade aqueous 
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rechargeable ZAB was assembled with the catalyst‑loaded 
carbon paper with gas diffusion layer as the air cathode 
and a polished zinc foil as the anode in electrolyte solution 
containing 6.0 M KOH and 0.2 M Zn(CH3COO)2 (Fig. 7a). 
For comparison, a battery employing a mixed composite 
of commercial Pt/C and  RuO2 (with a 1:1 weight ratio) 
as an air electrode was also assembled. The Co/CoFe@
NC‑based battery affords a higher open‑circuit volt‑
age of 1.49 V than Pt/C +  RuO2‑based battery of 1.41 V 
(Fig. 7b). Figure 7c displays the galvanodynamic charge 
and discharge curves of the two air electrodes. A narrower 
voltage gap between the charge and discharge polarization 
voltages is found for Co/CoFe@NC, implying its better 
rechargeable capability than Pt/C +  RuO2. Additionally, the 
Co/CoFe@NC air electrode delivers a higher peak power 
density (146.6 mW  cm−2) than the noble‑metal benchmark 

(117.3 mW  cm−2), demonstrating further its superior cata‑
lytic activity.

The cycle stability and efficiency were evaluated by 
the galvanostatic charge–discharge mode at a high cur‑
rent density of 20 mA  cm−2 for 40 min per cycle and the 
results are shown in Fig. 7d, e. The Co/CoFe@NC‑based 
ZAB displays an initial charge–discharge voltage gap of 
0.68 V, which is smaller than the ZAB assembled with 
Pt/C +  RuO2 (0.87 V). More significantly, the ZAB based 
on Co/CoFe@NC exhibits only a very slight voltage loss 
of 60 mV after continuous test of 550 cycles (~ 360 h, 
15 days), whereas the ZAB using Pt/C +  RuO2 undergoes 
severe performance degradation with 292 mV increase in 
voltage gap after only 275 cycles (~ 180 h). It presents 
an extremely low decaying rate of 0.109 millivolts per 
cycle for the ZAB based on Co/CoFe@NC, which is ten 
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times lower than the noble‑metal benchmark (1.061 mil‑
livolts per cycle). The poor stability of the Pt/C +  RuO2 
electrode is presumably due to nanoparticle agglomeration 
and catalyst‑support breakaway during the operation [45, 
46]. For Co/CoFe@NC, the fascinating porosity and ultra‑
thin protective carbon shell can not only suppress the cata‑
lysts from agglomeration, but also maintain continuous 
electron/mass‑transport channels for the ORR/OER. Such 
long‑lasting cyclability over the time scale in this work 
is evidently superior to other recently reported results, as 
shown in Fig. 7f (note detailed information in Table S2).

The battery with Co/CoFe@NC also possesses good rate 
performance. As observed in Fig. 7g, the discharge plateau 
decreases with increasing the current density and the rate 
performance of the battery with Co/CoFe@NC is superior 

to that with Pt/C +  RuO2 especially at the current density 
larger than 20 mA  cm−2. Based on the mass of zinc, the spe‑
cific capacities of our liquid ZAB are calculated to be 775.2, 
719.7, and 694.5 mAh  g−1 at current densities of 10, 30, and 
50 mA  cm−2, respectively (Fig. 7h). It is worth to note that 
the specific capacity of 775.5 mAh  g−1 at 10 mA  cm−2 is 
94.5% of the theoretical capacity (820 mAh  g−1) based on 
total Zn consumption.

The Co/CoFe@NC catalyst was also assembled into a 
flexible quasi‑solid‑state ZAB to investigate its applica‑
tion for flexible devices. As illustrated in Fig. 8a, the 
catalyst‑loaded carbon cloth serves as the air cathode, and 
the zinc‑deposited carbon cloth (Fig. S11) is employed as 
the flexible anode. Furthermore, we prepared sodium pol‑
yacrylate hydrogel (PANa) with good alkaline‑tolerance, 

(a)

(d)

(f) (g) (h)

)c()b(

(e)

Zn electrode

Vo
lta

ge
 (V

 v
s.

 Z
n)

Vo
lta

ge
 (V

 v
s.

 Z
n)

Vo
lta

ge
 (V

 v
s.

 Z
n)

Vo
lta

ge
 (V

 v
s.

 Z
n)

Vo
lta

ge
 (V

 v
s.

 Z
n)

Vo
lta

ge
 (V

 v
s.

 Z
n)

)N(selcycforebmuN)N(selcycforebmuN

Cycling of 20 min charge and 20 min discharge
@current density of 20 mA cm−2

C
yc

lin
g 

tim
e 

(h
)

Current density (mA cm−2)

Specific capacity (mAh g−1)

694.5 mAh g−1

719.7 mAh g−1

775.2 mAh g−1
30 mA cm−2

50 mA cm−2

50 mA cm−2

5 mA cm−2

1 mA cm−2

10 mA cm−2

20 mA cm−2

1 mA cm−2

10 mA cm−2

Current density (mA cm−2)

Po
w

er
 d

en
si

ty
 (m

W
 c

m
−2

)

Time (s)

∆ 
= 

0.
69

 V

∆ 
= 

0.
68

 V

∆ 
= 

0.
74

 V

d∆E/d∆N=0.109 mV cycle −1

d∆E/d∆N=1.061 mV cycle −1

Charge

Discharge

Electrolyte

Air electrode

e− e−

2Zn+4OH−

−4e−
+4e−

4OH−

O2

2ZnO+2H2OO2+2H2O

0

0

0 0 1 2 3 4 5 6

1.0

0 200 400 600 800 1000
0.0

0.5

1.0

1.5

2.0

1.1

1.2

1.3

1.4

1.5

5 10 15 20 25
0

50
100
150
200
250
300
350
400

50 100 150 200 250 300 350 400 450 500 550

0 50 100 150 200 250
0
20
40
60
80
100
120
140
160

800 1600 2400 3200
0.0

1.0

1.5

0.5

2.0

2.5

0 100 200 300 400 500

1.0

1.5

0.5

2.0

2.5

0.8

1.6

2.8

2.1

1.4

0.7
0.4

1.2

Co/CoFe@NC

Co/CoFe@NC

Co/CoFe@NC

Co/CoFe@NC

Co/CoFe@NC

Discharging

ChargingPt/C+RuO2

Pt/C+RuO2

Pt/C+RuO2

Pt/C+RuO2

Pt/C+RuO2

Time (h)

Ref. S24
Ref. S21Ref. S23

Ref. S18
Ref. S19

Ref. S20

Ref. S15

Ref. S26

Ref. S22

Ref. S25

Co3FeN

Co3O4NC/N-CNT

NiFe/N-CNT
Fe0.5Ni0.5@N-GR

FeNiCo@NC-P

Co/Co-N-C

CoNC-NB2

This work

3DOM-Co@TioxNy

CoFe/N-GCT

CoFe/Co@NCNT/NG

Fig. 7  a Schematic diagram of a liquid ZAB. b Open‑circuit plots, c galvanodynamic charge and discharge polarization curves and correspond‑
ing power density plots, d galvanostatic charge–discharge cycling profiles, and e voltage variation with cycles for ZABs assembled using Co/
CoFe@NC and Pt/C +  RuO2 catalysts, respectively. f Comparison of cyclability of ZABs between this work and other recently reported results. g 
Rate discharge curves and h specific capacity at various current densities



Nano‑Micro Lett. (2021) 13:126 Page 13 of 16 126

1 3

stretchability, and water‑retention capability as a prom‑
ising quasi‑solid‑state electrolyte [47, 48] to overcome 
the disadvantages of polyvinyl alcohol (PVA) polymer 
electrolytes used commonly. Figures 8b and S12 show 
the mechanical property of the PANa hydrogel with 6 M 
KOH and 0.2 M Zn(CH3COO)2 intake, which is easily 
stretched, compressed, bended and twisted without any 
breakage or visible cracking, thus establishing its excel‑
lent mechanical property and alkaline tolerance. The 
PANa‑based hydrogel also exhibits an excellent water 

intake capacity with 68.3% water retention after expo‑
sure in air over 10 days (Figs. 8c and S13). In contrast, 
the conventional PVA containing 1 M KOH begins to dry 
up after 12 h and only 16.1% water can be retained after 
exposure in air over 2 days. The excellent water hold‑
ing ability of PANa‑based electrolyte guarantees a larger 
ionic conductivity of 175 than 75 mS  cm−1 for conven‑
tional PVA‑based electrolyte (Fig. 8d).

As a result, the ZAB assembled with PANa‑based hydro‑
gel exhibits excellent cyclability. As shown in Fig. 8e, the 
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initial charge and discharge voltages are 2.03 and 1.16 V, 
respectively, corresponding to a charge/discharge overpo‑
tential of 0.87 V with a round‑trip efficiency of 57%. After 
550 cycles over 92 h at 5 mA  cm−2, the charge and dis‑
charge voltages only slightly change to 2.05 and 1.06 V, cor‑
responding to a round‑trip efficiency of 52%. In contrast, the 
ZAB assembled with PVA‑based electrolyte shows severely 
deteriorated performance with the charge voltage increasing 
from 2.14 to 2.69 V and the discharge voltage decreasing 
from 1.01 to 0.76 V after only 150 cycles.

The flexible nature of the PANa‑based electrolyte ren‑
ders good flexibility to the ZAB as evidenced by the stable 
charge and discharge voltages under different bending states 
(Fig. 8f). The good flexibility of the ZAB is also proved by 
charge–discharge within a large current density range under 
different bending states (Fig. 8g). Finally, as a demonstra‑
tion, two prototypical flexible ZABs connected in series can 
power the red LED screen of 2.5 V and simultaneously light 
up three LED indicators (Fig. 8h–j). These results clearly 
demonstrate the promising applications of our bifunctional 
electrocatalyst in a variety of wearable ZABs and other port‑
able metal–air batteries.

3  Conclusions

In summary, a strategy of coordination construction‑cat‑
ion exchange‑pyrolysis is developed to fabricate hetero‑
structured Co/CoFe nanoparticles embedded in N‑doped 
graphitic carbon (NC) with a novel nanoflower structure. 
The synthesized catalyst delivers extraordinary ORR/OER 
bifunctional electrocatalytic performance with a small ∆E 
(Ej=10 − E1/2) value of 0.70 V. Experimental and theoretical 
results collectively demonstrate the critical role of the heter‑
ointerface engineering of Co/CoFe nanoparticles and strong 
catalyst–support interaction in boosting the catalytic activity 
and stability. The assembled rechargeable ZAB employing 
the Co/CoFe@NC catalyst exhibits high specific capac‑
ity, low charge and discharge overpotential and exception‑
ally stable cyclability over 360 h (15 days), outperforming 
noble‑metal benchmarks and other recently reported results. 
Furthermore, the Co/CoFe@NC and PANa hydrogel elec‑
trolyte are integrated into a flexible quasi‑solid‑state ZAB, 
demonstrating an excellent cycling performance and a good 
round‑trip efficiency even under bending states. This study 
develops an excellent bifunctional oxygen electrocatalyst for 

ZABs by collective morphology‑composition‑structure engi‑
neering, and is significant for advanced flexible and wear‑
able energy‑storage devices.
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