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Abstract
This research is focused on addressing the energy-aware distributed heterogeneous welding shop scheduling (EADHWS)
problem. Our primary objectives are to minimize the maximum finish time and total energy consumption. To accomplish
this, we introduce a learning-based cooperative and competitive multi-objective optimization method, which we refer to as
LCCMO. We begin by presenting a multi-rule cooperative initialization approach to create a population that combines strong
convergence and diversity. This diverse population forms the foundation for our optimization process. Next, we develop a
multi-level cooperative global search strategy that explores effective genes within solutions from different angles and sub-
problems. This approach enhances our search for optimal solutions. Moreover, we design a competition and cooperation
strategy for different populations to expedite convergence. This strategy encourages the exchange of information and ideas
among diverse populations, thereby accelerating our progress. We also introduce a multi-operator cooperative local search
technique, which investigates elite solutions from various directions, leading to improved convergence and diversity. In
addition, we integrate Q-learning into our competitive swarm optimizer to explore different regions of the objective space,
enhancing the diversity of the elite archive. Q-learning guides the selection of operators within the small-size population,
contributing to more efficient optimization. To evaluate the effectiveness of LCCMO, we conduct numerical experiments on
20 instances. The experimental results unequivocally demonstrate that LCCMO outperforms six state-of-the-art algorithms.
This underscores the potential of our learning and knowledge-driven evolutionary framework in enhancing performance and
autonomy when it comes to solving EADHWS.
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Introduction

The welding process plays a crucial role in modern manu-
facturing, spanning various industries such as shipbuilding,
aerospace, construction machinery, automotive, and others
[1–3]. The efficiency of welding operations significantly
impacts overall production timelines, with welded structures
constituting over 50% of machinery parts [4, 5]. Notably,
the welding of large-scale structural components is a critical
aspect of manufacturing construction machinery. Enhanc-
ing the efficiency of welding shops has become a pressing
concern for manufacturing enterprises. However, there is
a scarcity of research addressing welding shop scheduling
problems (WSP) from an engineering application perspec-
tive. Furthermore, as global trade continues to expand,
distributedmanufacturing has become the prevailingmode in
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modern manufacturing [6–8]. Consequently, different facto-
ries exhibit diverse production environments, encompassing
variations in machine numbers, types, workers’ skills, and
more. Hence, the study of distributed heterogeneous WSP
(DHWSP) holds significance [9].

The WSP is an extension of the permutation flow shop
scheduling problem [10], taking into account that a job
can be processed by multiple welders in parallel [11].
The DHWSP further extends the WSP by considering
multiple heterogeneous factories to handle a substantial
volume of orders [12, 13]. Mainstream approaches for
DHWSP encompass decomposition-based methods [9, 12]
and Pareto domination-basedmethods [1, 13]. However, pre-
vious approaches have several notable disadvantages: (1)
Global Search: In previous methods for solving energy-
aware DHWSP, random elite selection is often employed for
crossover during the global search phase. This approach can
result in suboptimal solutions learning from other subopti-
mal solutions, leading to less-than-ideal outcomes. (2) Local
Search: Previous methods, such as those mentioned in ref-
erences [12, 13], apply local search operators either to the
offspring or the entire population. This can cause the popu-
lation to converge toward local optima, limiting the efficient
utilization of computational resources. (3) SolverUtilization:
Due to the complex nature of the search space in DHWSP,
previous algorithms struggle to sufficiently explore the objec-
tive space using a single solver. Each solver, whether it’s an
evolutionary algorithmas in [12] or a reinforcement learning-
basedmethod as in [9], can only explore a portion of the space
due to their inherent characteristics. As a result, cooperating
with different solvers can combine their search capabilities
to thoroughly explore various parts of the objective space,
leading to more comprehensive and effective optimization.

The competitive swarm optimizer (CSO), as introduced
by Zhang [14], is designed to accelerate the convergence of
global search. Unlike traditional particle swarm optimization
methods, CSO divides each generation’s population into two
distinct groups: winners and losers. In this process, only the
winners undergo mutation to improve their own character-
istics, while the losers gain valuable knowledge from the
selected winners to generate new solutions. However, it is
important to note that CSO was initially developed for con-
tinuous optimization problems and is not directly applicable
to the context of the DHWSP. Nonetheless, the concept of
competition-based cooperation among individual solutions,
as employed inCSO, can be integrated into theDHWSPalgo-
rithm to overcome the limitations of previous global search
methods. This adaptation may lead to improvements in solv-
ing the DHWSP by harnessing the power of competitive
swarm optimization principles.

Therefore, this study proposes a learning-driven cooper-
ative and competitive multi-objective optimizer (LCCMO)
to address these challenges for DHWSP. The optimization

objectives include makespan and total energy computation
(TEC). LCCMO makes the following contributions:

(1) Cooperative Optimization Framework: We propose a
learning-based cooperative and competitivemulti-objective
optimizer that encompasses cooperation at multiple lev-
els, including the collaboration of strategies, populations,
and solvers.

(2) Cooperation of Population: In our approach, we par-
tition the primary population into winner and loser
subpopulations within the mating pool. We utilize a
competitive and cooperative strategy to expedite the con-
vergence of the global search. Additionally, we manage
two distinct solver populations that retain elite solutions,
thereby contributing to the overall performance improve-
ment of the final non-dominated solution set.

(3) Cooperation of Solvers: We leverage a cooperative
approach that combines the strengths of both the rein-
forcement learning-based method and the evolution-
based method. By doing so, we effectively explore dis-
tinct regions of the objective space, promoting improved
convergence and diversity in our optimization process.

(4) Cooperation of Strategies:We incorporate three heuris-
tic rules to collaboratively produce a high-quality popu-
lation. Additionally, we employ five knowledge-driven
local search operators to enhance the convergence of
our algorithm. Furthermore, we combine three crossover
operators to create larger steps, facilitating a more rapid
exploration of the objective space.

LCCMO is systematically comparedwith six state-of-the-
art algorithms using 20 instances from [12, 13] to assess its
effectiveness. The numerical experimental results unequivo-
cally demonstrate the significant superiority of LCCMO.

The structure of this paper is organized as follows:
Section“Literature review” provides a comprehensive liter-
ature review, emphasizing the research gap in the field. In
Section“Problem statement and modeling”, we intricately
construct the model for DHWSP. Section“Our approach:
LCCMO” delves into the specific details of the proposed
method, referred to as LCCMO. We present the experimen-
tal results in detail in Section“Experimental results”. Finally,
the paper concludes in Section“Conclusions”, summarizing
the findings and outlining future research directions.

Literature review

Welding shop scheduling

Lu [15]was thefirst to investigateWSP froma real-world fac-
tory perspective, considering controllable processing time,
job-dependent transportation times, and sequence-dependent
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setup times. Furthermore, Lu [16] delved into WSP with
dynamic events in a real-world environment, factoring in
issues such as jobs with poor quality, machine breakdown,
and jobs with release time delay. Lu designed a gray wolf
optimizer for solving WSP, aiming to simultaneously min-
imize machine load, makespan, and instability. Li [17]
proposed a multi-objective artificial bee colony algorithm
with knowledge-based local search operators for this prob-
lem. Rao [18] studied WSP with the goal of minimizing the
machine interaction effect and the total tardiness simulta-
neously. Wang [12, 13] designed an effective whale swarm
optimizer and a decomposition-based multi-objective evo-
lutionary algorithm (MOEA/D) for DHWSP. Wang [19]
constructed a welding shop inverse scheduling problem
with dynamic events and developed an enhanced gray wolf
optimizer for solving it. Wang [11] proposed MOEA/D
with adaptive resource allocation for solving energy-efficient
WSP. Wang [9] designed a cooperative memetic algorithm
for energy-efficient DHWSP and achieved favorable results.
Lu [1] introduced human-robot collaborative scheduling in
WSP and designed a Pareto-based memetic algorithm for
solving it.

Competitive swarm optimizer

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

vl(t + 1) = r0vl(t) + r1
(
xw(t)′ − xl(t)

′) ,

xl(t + 1) = xl(t) + vl(t + 1),

xw(t)′ = xw(t) + r0vw(t),

xl(t)
′ = xl(t) + r0vl(t),

(1)

The CSO was originally proposed for continuous opti-
mization problems, with the primary learning schema being
vector difference as depicted in Eq. (1). Leveraging its rapid-
learning feature, CSO is frequently employed for solving
multi/many-objective optimization problems (MOPs) [20,
21]. Gu improved initialization and learning strategies of
CSO which can get better balance convergence and diversity
[22]. Huang introduced parameter adaptive CSO to enhance
its intelligence [23]. Large-scale MOPs constitute the pri-
mary research domain of CSO [24], leading to the proposal
of various improved versions of CSO. Mohapatra designed
a tri-competitive schema-based CSO to enhance exploration
[25–27], while Ge introduced inverse modeling to update
winners and accelerate the convergence of CSO [28]. Liu
devised three distinct competitive schemas to improve the
diversity of CSO [29], and Qi incorporated a neighbor-
hood search strategy to enhance CSO [30]. Huang divided
CSO into three phases, yielding superior results compared to
state-of-the-art approaches. Additionally, CSOfinds applica-
tions in constrainedMOPs [31],many-objective optimization

problems [32], feature selection [33], andwireless sensor net-
works [34].

Meta-heuristics with learning strategies

Learning-basedmeta-heuristics for addressing shop schedul-
ing problems have garnered significant attention. These
learning strategies encompass machine learning-based solu-
tion generation [35], machine learning-based operator selec-
tion [7, 36], reinforcement learning (RL)-based parameter
selection [37], RL-based operator selection [38, 39], and
deep RL-based operator selection [40, 41]. Recently, the
integration of RL with meta-heuristics has been thoroughly
explored. This collaboration is gaining traction because RL
can also serve as a solver for optimization problems [42].
Therefore, this research focuses on the synergy between
RL and meta-heuristic approaches, examining novel ways
of cooperation between these two paradigms.

Problem statement andmodeling

Problem statement

The DHWSP mainly solves following sub-problems: (i)
Dispatching each job to every heterogeneous factory; (ii)
Arranging the job sequence in all factories; and (iii) Deter-
mining thenumber of processingmachines for eachoperation
on each stage. A DHWSP instance has n jobs and n f facto-
ries. Each job has to be processed in sequence on ns stage in
every factory. There are m f ,s welders which can process an
operation in parallel in each stage. Each job’s original pro-
cessing time is p f ,i,s in stage s in factory f . Moreover, each
job’s real processing time r f ,i,s is p f ,i,s/μ f ,i,s , whereμ f ,i,s

is the welder number used in stage s. However, the welding
energy consumption of operation Oi,s does not increase in
linearity. A nonlinear coefficient η is multiplied by the num-
ber of welders μ f ,i,s and the welding energy consumption
of operation Oi,s is r f ,i,s × μ f ,i,s × η. The more μ f ,i,s ,
the higher welding energy consumption. This modification
is different from previous works [9, 12]. The primary goal
of DHWSP is to solve these sub-problems in order to find a
Pareto solutions set that minimizes both the makespan and
TEC. Figure 1 illustrates a Gantt chart representing a solu-
tion for DHWSP. Importantly, each job can be processed by
multiple welders simultaneously.

DHWSP operates under the following assumptions: (1)
Each welder is assigned to process only one job at each
stage. However, it’s important to note that each job can be
simultaneously processed by multiple welders. Additionally,
each welder is linked to a single machine. (2) The processing
times and associated energy consumption are deterministic
and known in advance. (3) Each job cannot be split and pro-
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Fig. 1 The gantt chart of a DHWSP solution

cessed in two different factories. Itmust be entirely processed
within a single factory. (4) The problem does not consider
transportation times or dynamic events that might affect the
scheduling.

Mathematical formulation

DHWSP’s notations are described as follows:

Indices:

– i : index of each job, i ∈ {1, ..., n};
– s: index of each stage, k ∈ {1, ..., ns};
– f : index of each factory, f ∈ {1, ..., n f };

Parameters:

– n: the number of jobs;
– n f : the number of factories;
– ns : the number of stage;
– m f ,s : maximum welders in each stage in f ;
– p f ,i,s : The original processing time for job i on stage s

in factory f ;
– s f ,i,s : The setup time for job i on stage s in factory f ;
– WB the basic power of whole factories;
– WI machine idle power;
– WO machine welding power;
– WS machine setup power;
– Kw welding duty cycle;
– L: a integer large enough;

Decision variables:

– EB the basic energy consumption;
– EI machine idle energy consumption;
– EO machine welding energy consumption;
– ES machine setup energy consumption;
– μ f ,i,s : The number of welders used by job i on stage s

in factory f ;
– C f ,i,s : the completion time of job i on stage s in factory

f ;
– Cmax: the makespan of a schedule;
– T EC : the total energy consumption of a schedule;
– X f ,i,s : The value is equals to 1, if job i is processed on

stage s in factory f ; otherwise it is set to 0;

In the context ofDHWSP, theprimaryobjectives to be con-
sidered are makespan (the time taken to complete all jobs)
and total energy consumption (TEC). An interesting trade-
off arises in this problem: (1) Makespan: When you have
more welders, the processing time for each job (denoted
as job i) tends to decrease, which in turn leads to a lower
makespan. (2) Total Energy Consumption (TEC): However,
a higher number of machines (welders) results in increased
energy consumption, which grows linearly. In this case, the
energy consumption is inversely related to the processing
time because, with reduced processing time, machines are
active for shorter durations. This relationship between TEC
andmakespan indicates a conflict between the twoobjectives.
When one objective is optimized, it often leads to a compro-
mise in the other. Formulations are designed to address this
conflict and find the best compromise solution for DHWSP.

min F1 = Cmax = max
{
C f ,i,ns

}
,∀i, f . (2)

min F2 = T EC = EB + ES + EI + EO , (3)

EB = WB × Cmax. (4)

ES = WS ×
n f∑

f =1

n∑

i=1

ns∑

s=1

s f ,i,s . (5)

EI = WI ×
n f∑

f =1

ns∑

s=1

n∑

i=2

·
(

C f ,i,s − C f ,i−1,s

−s f ,i,s − p f ,i,s

μ f ,i,s

)

(6)

EO = [WI · (1 − Kw) + WO · Kw]

×
n f∑

f =1

ns∑

s=1

n∑

i=1

p f ,i,s · (
1 + 0.5 · ln(μ f ,i,s)

) )

(7)

The TEC in DHWSP comprises four components: (1)
EB : This represents the basic energy consumption, which
includes energy usage for lighting and air conditioning. (2)
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ES : It accounts for the energy consumption associated with
machine setup before the welding process begins. (3) EI :
This component represents the energy consumption when
machines are in an idle state, waiting for the previous job to
be completed before starting the next one. (4) EO : This part
corresponds to the welding energy consumption. It’s note-
worthy that each welder has a cooling period after welding,
lasting for Kw%of the time. Furthermore, there’s a non-linear
relationship between the number of welders and EO , which
is modeled as a logarithmic function. The mathematical for-
mulation of DHWSP is introduced as follows, outlining the
problem’s variables, constraints, and objectives.

{
min F1 = Cmax

min F2 = T EC
(8)

subject to:

n f∑

f=1

n∑

i=1

X f ,i,s = 1,∀s (9)

n f∑

f=1

ns∑

s=1

X f ,i,s = 1,∀i (10)

1 ≤
n∑

i=1

ns∑

s=1

X f ,i,s · μ f ,i,s ≤ m f ,s,∀ f , s (11)

C f ,i,1 =
n∑

i=1

X f ,i,1 ·
(
p f ,i,1

μ f ,i,1
+ s f ,i,1

)

,∀ f , i (12)

C f ,i,s+1 ≥ C f ,i,s∀ f , i, s = {1, ..., ns − 1}

+
n∑

i=1

X f ,i,s · p f ,i,s

μ f ,i,s
,∀ f , i, s = {1, ..., ns − 1} (13)

C f ,i+1,s ≥ C f ,i,s +
n∑

i=1

X f ,i,s ·
(
p f ,i,s

μ f ,i,s
+ s f ,i,s

)

,

f , s, i = {1, ..., n − 1} (14)

X f ,i,s ∈ {0, 1},∀ f , i, s (15)

where Eq. (8) represents the objective function, including
both the makespan and TEC. Equations (9) and (10) specify
that each job cannot be dispatched to two factories simul-
taneously. Equation (11) imposes a constraint ensuring that
the number of welders used for each job does not exceed
the capacity limit. Equation (12) defines the finish time for
the first job at each factory. Equation (13) enforces that
each operation can only start once the preceding operation is
completed. Equation (14) guarantees that each machine can
process only one job at a time after the setup phase. Finally,
Eq. (15) pertains to binary decision variables, which are part
of the problem formulation.
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Fig. 2 LCCMO’s Framework for solving DHWSP

Our approach: LCCMO

Framework of LCCMO

Figure 2 provides an overview of the LCCMO framework.
The algorithm is structured around two populations, each
serving a distinct role in the optimization process. The pri-
mary population, denoted as P1, utilizes a competitive and
cooperativemulti-objective optimizer to explore the decision
space. The process begins with the initialization of P1 using
multiple heuristic rules. Subsequently, P1 is split into two
subpopulations: winners and losers, employing an implicit
competitive strategy. The loser population learns from the
winners, while the winners continue to evolve. Furthermore,
the selection of offspring and parent for the next generation
follows the NSGA-II strategy [43]. Additionally, an auxil-
iary population, labeled as P2, employs Q-learning-based
multi-operator cooperative search to explore a limited range,
complementing P1’s broader but less focused search. Both
P1 and P2 contribute their elite solutions to the archive �,
where local search techniques are applied. Finally, the Pareto
solutions are extracted from � as the final output.

Encoding and decoding

DHWSP represents a solution by two vectors and a weld-
ing scheduling matrix. Figure 3 shows DHWSP’s encoding
schema. J S is the job sequencing, FA is the factory assign-
ment, andWN is thewelding schedulingmatrix, representing
the number of welders utilized by each job in each stage.

Decoding schema: (1) Dispatching each job to the selected
factory according to the FA. (2) Determining the job
sequence in each factory according to the J S. (3) Calculating
each job’s real processing time in each stage according to the
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Fig. 3 An example for encoding schema for DHWSP

WN . (4) Calculating each job’s start and finish time under
the constraints. (5) The idle time between two adjacent jobs
can be obtained. (6) The makespan is the maximum comple-
tion time of all jobs in the final stage, and the TEC can be
calculated according to Eq. 3.

Multi-rule cooperative initialization

High-quality initialization plays a crucial role in generating
elite solutions with strong convergence, ultimately enhanc-
ing the search efficiency [37, 44, 45]. To achieve this, three
heuristic rules have been designed to construct solutions with
minimized makespan and TEC.

Rule1: Selecting more welders for each job can reduce pro-
cessing time to decrease Cmax . Thus, initial J S and FA
randomly, and each job in each stage selects the maximum
number of welders.

Rule2: Each job chooses fewer welders can reduce weld-
ing energy consumption. Thus, randomly initial J S and FA,
and every job in every stage selects the minimum number of
welders.

Rule3: Balance each factory’s workload can reduce the
makespan. Theworkload gap between all factories is smaller,
the makespan is lower. Thus, initial J S and WN randomly.
Calculate each job’s average processing time in each factory.
Then, transferring the average time to selection probability
P . The more average processing time, the lower P value.
Finally, each job selects a factory with the minimum work-
load in the current scheduling. If several factories have the
sameworkload, select the factorywith P by roulette strategy.

The initial population is partitioned into four sub-populations,
each consisting of ps/4 individuals. The first three subpop-
ulations are initialized using the proposed heuristic rules to
ensure high-quality solutions. In contrast, the fourth subpop-
ulation is initialized randomly, introducing diversity into the
population. In LCCMO, all populations are initialized using
a cooperative initialization. It’s important to note that these

3 4 1 5 2JS1

4 2 3 1 5JS4

A={1,4,6},B={2,3,5,7}

2 4 1 3 5JS3

1 2 3 4 5JS2

5

S

6

6

7

7

7 6

7 6

Fig. 4 Precedence operation crossover for J S
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Fig. 5 Universal crossover for FA

two populations have different sizes, tailored to their respec-
tive roles in the algorithm.

Cooperative and competitive global search

In this section, we introduce a cooperative and compet-
itive multi-objective optimizer, which is improved from
CSO. This method is specifically tailored for addressing
the DHWSP and involves three key enhancements over the
original CSO [14]: (1) Improved Crossover Strategy: The
original CSO, designed for continuous optimization prob-
lems, uses a vector difference crossover strategy that is not
suitable forDHWSP.To adaptCSO for efficient global search
in the context of DHWSP, two alternative crossover strate-
gies are adopted: Precedence Operation Crossover (POX)
[46] and Universal Crossover (UX) citeLR2022CAIE. (2)
Implicit Many-to-Many Competition: In the original CSO,
explicit one-to-one competition is employed, which can lead
to suboptimal solutions learning from other suboptimal solu-
tions. To overcome this limitation, an implicit many-to-many
competition strategy is proposed. (3) Self-Evolution forWin-
ners: In the original CSO, the winning solutions exclusively
undergo mutation. In the improved CSO, a self-evolution
strategy is introduced for the winner population, which
accelerates the convergence of global search. The following
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Fig. 6 Universal crossover for
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sections provide detailed explanations of these improvements
in the CSO, highlighting their adaptation to the DHWSP.

Algorithm 1 Implicit Competition.
1: Input: population P , Fitness F
2: Output: Winner W and loser L swarms
3: for i= 1 to ps − 1 do
4: for j= i+1 to ps do
5: if Pi ≺ P j then
6: Dom(i, j) = 1.
7: else if Pi � P j then
8: Dom( j, i) = 1
9: end if
10: end for
11: end for
12: for i= 1 to ps do
13: Ri = ∑N

j=2 Dom(i, j).
14: end for
15: for i=1 to ps do
16: for j=1 to ps do
17: if i 	=j then
18: Dis(i, j) = ||Fi − Fj ||.
19: else
20: Dis(i, j) = ∞.
21: end if
22: end for
23: end for
24: for i= 1 to ps do
25: Di = 1

min(Dis(i,:))+2 .
26: SFi = Ri + Di . //SPEA2 Fitness.
27: end for
28: I ← Sort SF by ascending.
29: W ← P(I (1 : ps/2), :).
30: L ← P(I (ps/2 + 1 : ps), :).

Implicit Competition: Algorithm 1 describes the detail of
implicit competition. First, the number of being dominated
Ri of each solution is calculated, regarding as a conver-
gence metric. Second, each solution calculates the distance
with the other solutions, and utilizes the closet distance’s
reciprocal as diversity metric Di . Finally, the comprehensive
metric is calculated by adding Ri to Di . The smaller SFi ,
the better comprehensive performance. Sorting population
with ascending SF . The first half is divided into the winner
swarm, and the other half is the loser swarm.

Winner

Loser

f1

f2

Fig. 7 Co-evolution and self-evolution

Co-evolution: In order to promote the loser to converge, the
loser learns from the winner. For each loser, randomly select-
ing a winner, and adopting POX and UX to generate two
offspring. The procedure of each vector’s crossover is shown
in Figs. 4, 5, and 6. Moreover, before calculating the fit-
ness of offspring, a repair operator is adopted for them to fix
the infeasible solutions generated by crossover and mutation
operators, because the number of welders in each stage in
each factory is different. The out-of-range values inWN are
fixed to the maximum number of welders. The co-evolution
strategy is described in Fig. 7.

Self-evolution: As shown in Fig. 7, each winner randomly
selects anotherwinner and adopts crossover operators to gen-
erate two offspring. Moreover, each offspring employs three
mutation strategies with probability Pm . (1) J S mutation:
randomly choose two jobs and exchange their positions in
J S. (2) FA mutation: randomly select a job and assign it to
another factory. If infeasible solutions occur, generate a FA
by random rule. (3) WN mutation: randomly select a job’s
stage and change the number of utilized welders.

Environmental Selection: The improvedCSOadoptsNSGA-
II’s environmental selection for population updating. First,
the offspring is combined with the parent. Then, the fast non-
dominated sorting is employed and the crowding distance
strategy is adopted to keep diversity. Finally, the first ps1
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solutions are accepted and saved to next generation. In this
work, ps1 = 100.

Learning-driven cooperative local search

Anagent-based population P2 is employed to assist improved
CSO to converge. P2 focuses on searching elite solutions in
a small range of objective space. P2 sizes 20 and employed
the Q-learning algorithm to select the optimal local search
operator. Five knowledge-driven operators are designed to
cooperatively search. The operators are introduced as fol-
lows:

N1: Randomly choose two jobs and exchange their posi-
tion to increase the diversity of population P2.

N2: Find the critical path in critical factory, referring to
[9]. Randomly select two critical jobs and exchange their
positions to reduce makespan.

N3: Choose two critical jobs randomly and insert the latter
job into the front of the former job.

N4: Randomly choose a critical job’s stage and increase
its number of used welders to reduce makespan. Because
the more welders, the shorter the processing time, and the
smaller makespan might be.

N5: In order to reduce makespan, choose a critical job
randomly and dispatch it to another factory.

Each solution employed a search operator to generate
offspring. Moreover, Q-learning is adopted to improve the
autonomy of cooperative search, and the design’s details are
as follows:

Q-table Design: The agent’s states in the Q-learning frame-
work are used to represent the success or failure of the current
search operator. Consequently, each operator has two states,
indicatingwhether it succeeded or failed to update the current
solution. The agent itself has ten states, reflecting the differ-
ent outcomes of the search operations. The available actions
for the agent correspond to five local search operators. The
structure of the Q-table, which guides the learning process,
is presented in Fig. 8. For instance, when the agent is in its
first state, denoted as S1, and selects action A2, if action A2

fails to update the current solution, the agent transitions to
the next state, S4. In this new state, the agent chooses the
next action, and the process continues. This cycling of states
within the agent’s decision-making process ensures a con-
tinuous exploration of the solution space while adapting its
actions based on past successes and failures.

Training Agent: The reward is 10 when the action success-
fully updates the current solution, but the reward is 0 when
it fails. Then, the solution gives the reward feedback to the
agent, and the Q-table is updated by following function:

Q(St , At ) = Q(St , At ) + α
[
Rt + γ max

(Q (St+1, At ) − Q (St , At ))
] (16)

State A1 A2 A3 A4 A5
S1A1S
S2A1F
S3A2S
S4A2F
S5A3S
S6A3F
S7A4S
S8A4F
S9A5S
S10A5F

Fig. 8 Detail of Q-table

The environmental selection process in our approach aligns
with NSGA-II [43]. The learning strategy comes into play
when the subpopulation, with a size of 20, engages in coop-
erative search to explore the objective space. As depicted
in Fig. 2, the learning mechanism is applied in the action
selection phase, just before executing local search. Here is
a breakdown of the steps involved in invoking the learning
strategy: (1) Obtain the current state of the agent. (2) The
agent selects the action with the highest q-value from the Q-
table in the row corresponding to the current state. (3) The
outcome of this action, whether it succeeds or fails, deter-
mines the agent’s next state. (4) A reward is assigned based
on the success or failure of the selected action. (5) The agent’s
Q-table is updated using the Q-learning equation. The addi-
tional computational cost incurred by the learning strategy
primarily pertains to action selection and Q-table updates.
Importantly, the computational complexity of this strategy is
O(N), which is notably smaller than the computational over-
head of the evolutionary process.

Elite strategy

After the environmental selection, the two populations pre-
serve their elite solutions to the elite archive �. In order to
find more Pareto solutions, each elite solution randomly exe-
cutes a local search operatorNi , i ∈ [1, 5]. The elite archive
deletes the repeat solutions and updates itself by saving the
Pareto solutions. The final results of LCCMO are output by
the elite archive.

Experimental results

Section “Our approach:LCCMO”has described theLCCMO
in detail. Numerical experiments are employed to validate
the effectiveness of LCCMO. Every algorithm is coded in
MATLAB and tested on an CPU of Intel(R) Xeon(R) Gold
6246R with 3.4GHz and 384G RAM.
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Fig. 9 Main effects plot of HV
metric

Instances andmetrics

Wang [12] initially introduced theDHWSPandprepared a set
of 20 instances for assessing algorithm performance. How-
ever, it appears that the benchmark dataset from [12, 13]
is currently unavailable. Therefore, this study has created
an additional set of 20 instances using the same methodol-
ogy and parameters as described in [12, 13]. This approach
ensures consistency and provides a reliable foundation for
evaluating algorithms. The job number is selected from
n ∈ {20, 40, 60, 80, 100} and the number of factories ranges
from n f ∈ {2, 3}. The stage number is from ns ∈ {2, 5}.
The processing time p f ,i,s ranges from [10, 50]. The setup
time s f ,i,s ranges from [1, 10]. The number of welders in
each stage μ f ,i,s ranges from [2, 5]. The processing power
isWO = 28 kWh, the setup power isWS = 10 kWh, the idle
power is WI = 0.3 6kWh, the basic power is WB = 5 kWh,
and the welding duty cycle is Kw = 0.8.

Hypervolume (HV) [47], Generation distance (GD) [43],
and Spread [48] are utilized to represent different algorithms’
comprehensive performance, convergence, anddiversity. The
higherHV, the better comprehensive performance. The lower
GD and Spread, the better convergence and diversity.

Experiment of parameters

LCCMO’s parameter setting affects its performance for solv-
ing DHWSP. The LCCMO contains six parameters which
are ICSO population size ps1, agent-based population size
ps2, mutation rate Pm , learning rate α, discount factor γ ,
and greedy factor ε. A Taguchi approach of design-of-

experiment (DOE) [49] is adopted and an orthogonal array
L27(36) is generated. The parameters’ levels are indicated
as follows: ps1 = {100, 150, 200}; Pm = {0.1, 0.15, 0.2};
α = {0.1, 0.2, 0.3}; γ = {0.7, 0.8, 0.9}; ε = {0.7, 0.8, 0.9};
ps2 = {10, 20, 30}. Every variant algorithm with different
parameter settings runs 10 times independently. The same
stop criterion is MaxNFEs= 400 ∗ n. All metrics’ average
values for 10 runs are collected for Taguchi analysis. Figure 9
shows the HV metric’s main parameters’ effects plot. Based
on the figure, the best configuration of parameter setting is
that ps1 = 100, ps2 = 20, γ = 0.8, and ε = 0.8. However,
the Pm and α have no inflection point, thus their settings are
discussed further. The control variable method is adopted.
The first group is Pm = {0.1, 0.15, 0.2}, α = 0.2, and other
parameters are the best configuration in Fig. 9. The second
group is α = {0.1, 0.2, 0.3}, Pm = 0.2, and other parame-
ters are the best setting. The results of HV metric among ten
times run are shown in Fig. 10. In two groups, each parameter
setting has no significant difference. Thus, the α and Pm are
not sensitive and the α is set to 0.3 and Pm is 0.1.

Ablation experiment

Some variant algorithms are generated to validate the effec-
tiveness of LCCMO’s improvements. (1) CSO has no
improvements utilized to compared with other variants; (2)
CSO+I1: CSO with initial rule 1 and random rule; (3)
CSO+I2CSOwith initial rule 2 and random rule; (4) CSO+I3
CSO with initial rule 3 and random rule; (5) CSO+HI
is CSO with multi-rule cooperative initialization strategy;
(6) CSO+L1: CSO with N1; (7) CSO+L2: CSO with N2;
(8) CSO+L3: CSO with N3; (9) CSO+L4: CSO with N4;
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Fig. 10 Box plot for LCCMO with different settings of Pm and α

Table 1 Results of Friedman rank-and-sum test for all variant algo-
rithms

MOEAs HV GD Spread

Rank p-value Rank p-value Rank p-value

CSO 12.95 0.0000 12.95 0.0000 10.9 0.0000

CSO+I1 6.25 0.0000 9.30 0.0105 1.60

CSO+I2 4.20 0.0094 5.50 0.0000 2.55 0.4404

CSO+I3 9.70 0.0000 2.35 4.75 0.0105

CSO+HI 3.35 0.0563 11.50 0.0000 12.45 0.0000

CSO+L1 8.30 0.0000 4.30 0.1133 6.10 0.0002

CSO+L2 8.10 0.0000 5.05 0.0283 5.80 0.0006

CSO+L3 8.05 0.0000 4.70 0.0563 6.45 0.0000

CSO+L4 5.15 0.0008 4.20 0.1330 5.10 0.0044

CSO+L5 9.85 0.0000 5.45 0.0118 4.65 0.0132

CSO+LS 12.00 0.0000 10.70 0.0000 9.90 0.0000

ICSO 2.10 0.3717 9.00 0.0455 10.6 0.0000

LCCMO 1.00 6.00 0.0030 10.15 0.0000

Bold values of metrics’ rank (such as HV, GD, Spread) indicating the
algorithm with the best metric rank
Italic indicates p-value smaller than 0.05, indicating the significance
difference between current algorithm and the best algorithm

(10) CSO+L5: CSO with N5; (11) CSO+LS is CSO with
multi-operator cooperative local search; (12) ICSO is CSO
with initialization and local search strategies. (13) LCCMO
is ICSO with an agent-based population. All algorithms
independently run twenty times and the stop criterion is
MaxNFEs=400 ∗ n ≥ 2 ∗ 104. All algorithms are coded
in MATLAB.

Tables S-I, S-II, S-III show all variant algorithmic statis-
tical results of all metrics. Moreover, the bold values mean
the best. The p−values indicate the significance between the
best rank algorithm and the current variant. Based on obser-
vation, the LCCMO is better than all variant algorithms on
HV metrics. However, LCCMO is worse than CSI+I3 and
CSO+L4 for GD metric, and LCCMO is worse than CSI+I1

Table 2 Results ofFriedman rank-and-sum test for all comparison algo-
rithms

MOEAs HV GD Spread

Rank p-value Rank p-value rank p-value

MOEA/D 6.35 0.0000 6.65 0.0000 3.60 0.1243

NSGA-II 2.75 0.0104 2.65 0.0157 4.78 0.0011

SPEA2 2.30 0.0570 2.40 0.0404 5.08 0.0002

IMOEA/D 6.50 0.0455 6.00 0.0000 4.60 0.0027

MOWSA 3.95 0.0000 3.95 0.0000 3.10 0.4208

CMA 5.15 0.0000 5.35 0.0000 2.55 –

LCCMO 1.00 – 1.00 – 4.30 0.0104

for Spread metric. Furthermore, Table 1 lists the Friedman
rank-and-sum test results. Some conclusions can be obtained
as follows: (1) LCCMO has the best HV rank, indicating
LCCMO has the best comprehensive performance. More-
over, p−values are smaller than 0.05 means that LCCMO
is significantly better than other algorithms. (2) Compar-
ing CSO, CSO+I1, CSO+I2, CSO+I3, and CSO+HI on all
metrics indicates that proposed initial rules and their coopera-
tion can increase the comprehensive performance. Compared
to CSO+HI, CSO+I1, CSO+I2, and CSO+I3 obtain better
GD and Spread because the signal rule makes the popula-
tion uniformly covers a part of Pareto Front. (3) Comparing
CSO, CSO+L1, CSO+L2, CSO+L3, CSO+L4, CSO+L5,
CSO+LS, and ICSO demonstrate that the single local search
operator can improve HV, GD, and Spread metric, and the
random cooperation of each operator decreases the all met-
rics. However, combining multi-operator cooperative local
search and multi-rule cooperative operators obtains the bet-
ter HV metric. The key components are the cooperation of
initialization rules and local search operators. (4) Compar-
ing LCCMO and ICSO indicates the solvers cooperation can
improve all metrics because different solvers can search dif-
ferent areas of objective space and the final non-dominated
solution sets combine each solver’s results to enhance con-
vergence and diversity.

Comparison and discussions

To further evaluate the effectiveness of our approach,
LCCMO is compared to the state-of-the-art algorithms
including MOEA/D [50], NSGA-II [43], SPEA2 [51],
IMOEA/D [12], MOWSA [13], and CMA [9]. The parame-
ters are set with the best configuration in their references—
crossover rate Pc = 1.0, mutation rate Pm = 0.1, and
population size ps = 100 for all algorithms. The neighbor-
hood updating range is T = 10 for MOEA/D, IMOEA/D,
and CMA. The parameter setting of LCCMO is the same
as Sect. 5.2. To conduct a fair comparison, all MOEAs run
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Fig. 11 Pareto Front comparison results on 20J2F2S

Fig. 12 Pareto Front comparison results on 100J3F5S

20 times and share the same stop criteria (MaxNFEs=400 ∗
n ≥20,000).

Tables S-IV, S-V, and S-VI record the statistical results
of all comparison algorithms for three metrics. Symbols
"−/ = /+" means significantly inferior, equal, or supe-
rior to LCCMO. Meanwhile, the best value is marked in
bold, and the last row of each table summarize the num-
ber of "−/ = /+" symbols. As Tables S-IV and S-V show,
LCCMO is significantly superior to compared algorithms for
HVandGDmetrics, indicatingLCCMOhas the best compre-
hensive performance and convergence for solving DHWSP.
As for the Spread metric, Table S-VI indicates no signifi-
cant difference between LCCMO and other algorithms, due
to the complex and large search space of DHWSP. The local
search step is too small for the WN matrix. Thus, the Pareto
solutions are close to each others for all algorithms, resulting
in the results of Spread. Table 2 indicates the results of the

Table 3 Comparison results by CPLEX solver and LCCMO

Instance CPLEX LCCMO

Cmax TEC Cmax TEC

3J2F2S 12.25 1656.6 6 697.208

3J2F4S 25 2606.8 11.2 1635.176

4J2F2S 11.25 1704.5 5.2 815.656

4J2F4S 22 3878.6 12.57 1990.96

5J2F2S 18.25 2303.6 10.5 1203.824

5J2F4S 25 4626.5 14.7 2372.64

6J2F2S 21.5 2225.6 7.93 1170.32

6J2F4S NA 5522.3 21.25 3252.136

7J2F2S NA 2912.2 11.4 1501.376

7J2F4S NA 6629.9 21.75 3791.168

Friedman rank-and-sum test for the comparison experiment.
LCCMO ranks the best for HV and GD metrics, indicating
LCCMO has the best comprehensive performance and con-
vergence for solving DHWSP.

The effectiveness of LCCMO is contingent on its design.
First, the proposedmulti-rule cooperative initializationmethod
yields a population with exceptional convergence and diver-
sity by constructing solutions closely aligned with the
lower bound. Second, the multi-operator cooperative local
search enables solutions to explore different directions, thus
preventing them from getting trapped in local optima. Fur-
thermore, the collaboration of various solvers effectively
amalgamates the search results from each solver, enhancing
both thediversity and convergenceof thefinal non-dominated
solution set. In addition, Figs. 11 and 12 present a com-
parison of the Pareto front results for all algorithms, with
the PF results selected based on the optimal HV value from
twenty runs. As depicted in Figs. 11 and 12, LCCMO con-
sistently yields Pareto solutions with superior convergence
and comprehensive performance, underscoring its ability to
effectively address DHWSP.

Model evaluation

The model is evaluated by CPLEX solver on ten gener-
ated small instances. The results are shown in Table 3. The
CPLEX can solve instances 1–7 in 60s and the other can-
not be solved because of the large amount of parameter. The
proposed LCCMO obtains better results than mixed integer
linear programming model because the cooperation of dif-
ferent solvers, multiple operators, and multiple rules. The
CPLEX code can be downloaded from https://github.com/
CUGLiRui/CPLEX_DHWSP.
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Conclusions

This study introduced a competitive swarm optimizer driven
by cooperative learning and knowledge for addressing
energy-awaredistributedheterogeneouswelding shop schedul-
ing problems. From the experimental results, several key
conclusions have been drawn: (1) The implementation of
multiple strategies and their cooperative interaction can
significantly enhance the performance of algorithms. In
the proposed algorithm, cooperative initialization, global
search, and local search processes effectively contribute to
population exploration. (2) Leveraging the cooperation of
different solvers, including reinforcement learning and evo-
lutionary algorithms, can effectively enhance the overall
performance of the algorithms. (3) Building upon the princi-
ple of cooperation, the proposed algorithm outperforms the
compared algorithms, showcasing its superior performance.
In summary, this research demonstrates that a collaborative
approach, involving multiple strategies and diverse solvers,
can lead to more effective solutions for energy-aware dis-
tributed heterogeneous welding shop scheduling problems.

Some topics will be considered further. (i) Adopting
LCCMO to other distributed heterogeneous shop scheduling
problems; (ii) Considering dynamical events for DHWSP;
and (iii) Studying end-to-end model for DHWSP.
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