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Abstract
Behavior trees have attracted great interest in computer games and robotic applications. However, it lacks the learning ability
for dynamic environments. Previous works combining behavior trees with reinforcement learning either need to construct
an independent sub-scenario or train the learning method over the whole game, which is not suited for complex multi-agent
games. In this paper, a framework is proposed, named asMARL-BT, that embeds multi-agent reinforcement learning methods
into behavior trees. Following the running mechanism of behavior trees, we design the way of collecting samples and the
training procedure. Further, we point out a special phenomenon in MARL-BT, i.e., the unexpected interruption, and present
an action masking technique to remove its harmful effect on learning performance. Finally, we make extensive experiments
on the 11 versus 11 full game in Google Research Football. The introduced MARL-BT framework could get an 11.507%
improvement compared to pure BT for certain scenarios. The actionmasking technique could greatly improve the performance
of the learning method, i.e., the final reward is improved around 100% times for a sub-task.

Keywords Behavior trees · Multi-agent reinforcement learning · Unexpected interruption · Complex multi-agent game tasks

Introduction

Behavior trees (BTs) is a popular control tool in robotics and
computer games, such as real-time strategy games [1, 2],
unmanned aerial vehicles [3, 4], mobile robots [5–7] and so
on. It is widely appreciated for its modularity, scalability and
reactivity [8]. However, it needs much human knowledge
and takes lots of effort to design a good one for a specific
scenario [9]. The behavioral structure of the manual design
is fixed which lacks the ability to dynamically adapt to the
decision-making environment.

Some works have focused on integrating reinforcement
learning with the design of BTs to enhance adaptability of
BTs in dynamic environments. The work in Ref. [10] learns
the fallback node to decide whether a child node should be
executed. The work in Ref. [11] uses the Q-learning method
to optimize the structure of the tree by selecting a proper
node for each control node in the tree. Much works has been
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done to substitute an action node in the tree with an entire
reinforcement learning model. The work in Ref. [12] uses
a Q-learning method and Ref. [13] considers Proximal Pol-
icy Optimization to learn an action node. Further, the work
in Ref. [14] proposes a hierarchical reinforcement learning
approach MAXQ, which is used to optimize control nodes
in the higher layer and learn the action node in the low layer.
However, this kind of work needs to construct a sub-scenario
to train the reinforcement learningmodel and then embed the
model into the tree. They are only feasible for simple prob-
lems, which is hard to be used for complex games. Such
problems often involves multiple agents. Different multi-
agent reinforcement learning (MARL) methods have been
proposed, such asMADDPG[15],QMIX[16],MAPPO[17].
However, they are only examined on mini-games like Star-
Craft II micromanagement tasks [18] and simple ball games
[19]. With the number of agents increasing, all MARLmeth-
ods will fail to obtain a reasonable solution in a finite time.

In this paper we consider to combine MARL methods
with BTs for solving complex problem. The BT is a good
tool to decompose a large task into multiple smaller sub-
tasks [20], which could be solved byMARLmethods. In this
way, we do not have to solve the complex problem directly
with MARL methods, which would need quite a lot of time
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and expensive resources. We propose a framework, named
as MARL-BT, to embed MARL methods into BTs. Differ-
ent from previous works, we neither need to construct an
independent sub-scenario nor run over the whole game. We
design a procedure to train theMARLmodel during the run of
BTs. Samples for theMARLmethod are collected when cor-
responding sub-task is activated. The episode for the MARL
method does not correspond to the full run of the game but is
just a segment, which improves the efficiency of collecting
samples.

Further, we notice a phenomenon that happened among
sub-tasks when combining BTs with MARL. The sub-tasks
decomposed by BTs have different priorities and may con-
trol some common agents. The conflict happens between the
learning-based task with lower priority and the rule-based
task with higher priority, which control the same agent. Once
the two tasks are both activated, the action of the agent com-
puted by the learning-based task will not be executed. For
example, in the StarCraft II game, some sappers on mining
tasks may be urgently dispatched to perform an offensive
task. We define such conflicts as unexpected interruptions.
When interruptions happen, actions computed by the agent
network are in fact not executed. However, we store such
samples into the replay buffer. Training the network with
such bad samples will lead to higher value prediction errors.
This error will also be accumulated during the computation,
which would hinder finding a good policy. Therefore, we
design an action masking technique that could remove the
impact of actions generated by other sub-tasks.

To clearly clarify the problem, we provide an example
which is shown in Fig. 1. The BT decomposes the soccer
backfield task into penalty-area defense, left-side, middle
and right-side sub-tasks, which is shown as the right sub-
figure. In BT, the middle sub-task is realized by the MARL
method, while others not. The penalty-area defense sub-task
has the highest priority, which means players belonging to
other tasks may be reassigned to this sub-task. The conflict
using of a common player between two sub-tasks is called
the unexpected interruption.

Finally, we make extensive experiments on the 11 versus
11 full game in Google Research Football to examine the
proposed methods. With the framework MARL-BT, we use
the MARL method to replace certain sub-task of BTs. We
could find that MARL converges quickly to perform better
than the rules. With the trained model, the performance of
BTs is also significantly improved. Comparedwith pure BTs,
MARL-BT could improve the win rate by around 11.507%
for certain scenarios. The action masking technique could
greatly improve the performance of the learning method, i.e.,
the final reward is improved around 100% times for a sub-
task.

Background

Behavior trees

BTs originated within the realm of computer games [21],
serving as integral planning and decision-making tools [12]
for the effective modeling and control of autonomous agents.
A BT consists of nodes that perform specific actions or con-
ditions. These nodes are categorized into three main types:
control nodes, action nodes, and condition nodes. The con-
trol nodes control the flow of execution in the BT, which is
divided into three categories, i.e., Sequence, Fallback, and
Parallel. The sequence node returns a Success when all its
child nodes succeed. The fallback node returns a Failure
when all of its children fail. In parallel nodes, there are M
child nodes, and each iteration requires the execution of all
nodes. If a node returns Failure or if all nodes return Success,
the parent node then returns Failure or Success. The action
node is always a leaf node, employed to execute specific
actions associated with the node, and it returns the execu-
tion outcome to the parent node based on the status of the
action execution. The condition node corresponds to the if-
else structure in programming languages, serving to assess
whether the current environmental state satisfies the specified
logical conditions. If the condition test is True, the condition
node returns Success to the parent node. If it is False, it returns
Failure.

Periodically, the execution of a BT starts from its root
node, a process facilitated by the generation of a tick sig-
nal that traverses the tree branches in accordance with the
distinct characteristics of each node type [22]. A node is
deemed eligible for execution solely upon receipt of the
tick signal. Upon execution, a child node promptly com-
municates its status to the parent, status either Running if
its execution is ongoing, Success if its objective has been
attained, or Failure if unsuccessful. The tick signal allows a
BT to respond and adapt to changes in the environment or
the agent’s state in real-time. By regularly updating the tree’s
nodes, the agent can make informed decisions and perform
appropriate actions based on the current state.

Multi-agent reinforcement learning

A multi-agent game can be modeled as a multi-agent exten-
sion of the Markov Decision Process [23]. It is represented
by the tuple 〈N ,S,A, R, P〉, where N = {1, 2, . . . , N } is
the set of agents.S = {

St
}T
t=0 is the environment state where

St is the state at time t and T is the maximum time steps.
The terminal state ST represents the final state when the stop-
ping condition is satisfied.A = {Ai }Ni=0 represents the action
space for all agents. R : S ×A → R is the reward function.
P = {Pa

ss′ | s, s′ ∈ S, a ∈ A} is the state transition function,
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Fig. 1 An example illustrating the combination of BT with MARL

and Pa
ss′ gives the probability from state s to state s′ if the

action a is taken. To compute the optimal policy, the state
value function V π (s) under policy π is introduced, which is
calculated by accumulated rewards with the discount factor
λ ∈ [0, 1], see (1), where E is the expectation:

Vπ (s) = Eπ

{ ∞∑

k=0

λkr t+k+1
∣∣∣∣S

t = s

}

(1)

Based on Vπ (s), the state-action value Qπ (s, a) is defined
as (2)

Qπ (s, a) = Eπ

{ ∞∑

k=0

λkr t+k+1
∣∣∣∣S

t = s, At = a

}

= r t+1 + λ
∑

s′
Pa
ss′V

π (s′) (2)

The optimal policy is obtained by iteratively updating
the Q-value function, for which a popular one is that of Q-
learning, see (3). α is the updating step:

Q(s, a) = Q(s, a) + α[r + γ max
a

Q(s′, a) − Q(s, a)]
(3)

For multi-agent games, a popular solution approach is
the value-decomposition based MARL algorithms [16, 23,
24]. Each agent i is associated with a neural network,
which is used to compute the individual value Qi based
on its observation. During the training process, the global
state-action value Qtot is computed as a function of Qi

for each agent. At present time, different algorithms are
proposed to study the relation between Qtot and Qi . For
example, VDN [24] expresses Qtot as a sum of Qi , i.e.,
Qtot = ∑

i Qi . QMIX [16] uses a continuous monotonic
function in form of a mixing network to express this relation,
i.e., Qtot = f (Q1, Q2, . . . , Qn). For value-decomposition
based method, a general principle Individual-Global-Max
(IGM) [25] should be satisfied, which is shown as (4). It
guarantees that a global argmax performed on Qtot yields

the same result as a set of individual argmax operations per-
formed on each Qi :

argmax
a∈A

Qtot(o, a)

=
(

argmax
a1∈A

Q1 (o1, a1) , . . . , argmax
an∈A

Qn (on, an)

)

(4)

Integrating reinforcement learning with BTs allows for
the potential adoption of adaptive strategies by the BTs.
BTs combined with reinforcement learning is not an entirely
new concept, there have been some works that integrate
reinforcement learning into BTs to relieve manual program-
ming BTs efforts. References [11, 26] generate BTs through
reinforcement learning, while the common approach is to
embed reinforcement learning as a learning node into BTs
to improve the adaptability of a predefined BT [10, 27].
However, the current research on BTs combined with rein-
forcement learning focuses on simple single-agent tasks,
i.e., BTs combined with single-agent reinforcement learn-
ing. And the learning process is independent of BTs, i.e.,
the training is conducted in a separate sub-scenario. Once
a learning model is obtained, it is embedded into the tree.
However, for complex multi-agent game tasks, such a sep-
arate sub-scenario is normally hard to be constructed. It is
better to train the model during the run of the behavior trees.
We present such a training procedure in this paper.

Methodology

In this section, we present a framework for combining BTs
with MARL algorithms, which is named as MARL-BT, and
provide a detailed description for the training procedure of
MARL-BT. In addition, we introduce unexpected interrup-
tions that can occur during MARL-BT training, and present
solutions for such problems.
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Fig. 2 The framework of MARL-BT

MARL-BT architecture

A BT is designed to decompose a complex task into multi-
ple sub-tasks with different goals. The number of sub-tasks
(action nodes) in BTs is denoted by J . The set of all agents
is denoted by N = N1

⋃
N2 . . .NJ . Each sub-task j is

denoted by 〈N j , T j , g j , p j , c j 〉, whereN j ∈ N is the set of
agents that are assigned to sub-task j , T j is the set of time
steps, p j is the priority value and g j is the goal of sub-task j .
c j is a binary value, for which 1means sub-task j is activated
while 0 means not. All sub-tasks are executed following the
control flow of BTs, i.e., Sequence, Fallback, or Parallel. The
whole frameworkMARL-BT is shown as Fig. 2. It consists of
two main parts, the left part involves sample collection, and
the right part concerns network updating. The sample col-
lection is responsible for interacting with the environment
and generating samples, which are then saved into the replay
buffer. The core module of sample collection is the BT with
a MARL sub-task. The network structure of the MARL sub-
task is shown in the right part, which is updated by samples
in the replay buffer.

The entire sampling and learning procedure of the frame-
work MARL-BT is delineated in Algorithm 1. The input is a
BT with a MARL node, and the output is the trained MARL
model parameterized by θ . The sample collection runs in
accordance with the operational mechanism of BTs, initiat-
ing the execution process of the BT. Upon a MARL sub-task
j receives the tick signal (Step 9), the MARL node agent
action set At

N j
and action masking vector δt are obtained

Algorithm 1 Training Procedure of MARL-BT
Input: BT with a MARL node defined by 〈N j , T j , g j 〉
Output: Optimized MARL neural network parameters θ

1: Initialize replay buffer D and network parameters θ in MARL
method;

2: for m = 1,2,…,M do
3: Initialize an empty episode batch;
4: for t = 1,2,…, T do
5: Execute the BT with tick signal
6: for ticked non-MARL node k ∈ J̄ do
7: Compute actions At

Nk
= {ati , i ∈ Nk}

8: end for
9: if the MARL node j ∈ Ĵ is ticked then
10: Collect observations Ot = {oti , i ∈ N j };
11: At

N j
, δt = Algorithm2(Nk ,N j , Ot ), introduced in section

“Learning with unexpected interruptions”;
12: Execute actions At = {At

Nk
, At

N j
};

13: Get new observations Ot+1 and reward r t ;
14: Insert (Ot , At

N j
, Ot+1, r t , δt ) in the batch;

15: if The sub-task goal g j is finished, or t ≥ T j then
16: Store the batch into the buffer D;
17: Reset the batch to be empty;
18: end if
19: end if
20: end for
21: end for
22: if UPDATE then
23: Randomly sample batches from D;
24: Calculate the loss according to (6);
25: Perform gradient descent for neural networks.
26: end if
27: return θ
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by Algorithm 2. At
N j

along with actions generated by other

active sub-tasks At
Nk

is passed to the environment.At the next

time slot t + 1, a reward r t , global state St+1 and observa-
tions Ot+1 are obtained through the environment. A sample
(Ot , At

N j
, Ot+1, r t , δt ) is then acquired and stored in the

replay buffer.
Finally, we utilize the keyword ‘UPDATE’ to regulate the

frequency of updating the neural networks (Steps 22–26).
Specifically, the network structure comprises |N j | agent net-
works and a mixing network, following the idea of QMIX
[16]. Each timewe take samples from the replay buffer,which
are sent to agent networks. The Q-values are computed for
all agents, which are then disposed by the designed masking
mechanism to handle unexpected interruptions introduced
in section “Learning with unexpected interruptions”. Then a
mixing network is used to compute the total Q-value Qtot,
and the loss for the whole neural networks is computed as
(5) and (6). The loss computation follows the way of DQN
with double network [28]. θ ′ represents parameters of target
networks and θ represents parameters of current networks:

Qtot(O
t , At

N j
; θ) = f (Qi ((o

t
i , a

t
i ; θ), i ∈ N j )) (5)

loss = 1

|T j |
|T j |∑

t=1

(r t + γ max
A

Qtot(O
t+1, At+1

N j
; θ ′)

− Qtot(O
t , At

N j
; θ)) (6)

Learning with unexpected interruptions

In this section, we introduce unexpected interruptions that
happened in the framework MARL-BT. There are multiple
sub-tasks organized by control flow nodes of BTs.Many sub-
tasks run in overlapped time periods. In the case that they
control some common agents, different priorities will make
sure that no conflict will happen among sub-tasks. For the
sub-task realized by MARL method, a higher sub-task that
controls common agents may happen in BTs. It leads that
some agents controlled byMARLmethod may be scheduled
by other sub-tasks with the higher priority during its deci-
sion period. These agents may also come back to the sub-task
with MARL method again when sub-tasks with higher pri-
orities release the control of them. The actions of agents for
MARL method generated by sub-task with higher priority
are defined as unexpected interruptions. Such interruptions
will affect the learning efficiency of MARL methods. The
reason is that unexpected interruptions will be taken into
account in the computation of Q-value for each agent. This
will amplify the bias of the learned value function, leading to
high prediction errors which affect the updating of Q-values
of agents. The errors will be accumulated with the increas-

ing number of unexpected interruptions, which will hinder
finding a favorable strategy.

Algorithm 2MARL Node Action and Masking Vector Cal-
culation
Input: Non-MARL node agent set Nk , MARL node agent set N j and

its observation set Ot at the current time t
Output: Current MARL node action set At

N j
and masking vector δt

1: Initialized ε-greedy strategy;
2: for agent i ∈ N j do
3: if a random probability prand < ε then
4: ati = argmaxai∈A Qi

(
oti , a

t
i

)
;

5: else
6: ati = random(|A|);
7: end if
8: if there exist node k ∈ J̄ such that agent i ∈ Nk then
9: Compute masking vector δti according to Eq. (7);
10: end if
11: end for
12: return At

N j
= {ati , i ∈ N j }, δt = {δti , i ∈ N j }

Here we introduce a action masking mechanism to deal
with unexpected interruptions. In the BTs, the set of indexes
of all sub-tasks is denoted by J = {Ĵ ⋃

J̄ }. Ĵ represents
the set of sub-tasks realized byMARLmethods while J̄ rep-
resents the set of sub-tasks realized by rules. For a MARL
node j ∈ Ĵ , considering that agents in MARL nodes may
also be included in other nodes, we compute the agent action
set At

N j
and action masking vector δt by Algorithm 2. In

Step 2, each agent i ∈ N j computes its action ati based on its
observation oti . To facilitate action exploration, we employ
the ε-greedy strategy. Meanwhile, the action masking vector
according to Eq. (7). This means that δti = 0 if there exist
an activated node k (ck = 1) with higher priority pk gener-
ate actions for a common agent i , i.e., i ∈ N j

⋃
Nk . With

the action masking vector, the transition should be expressed
as (Ot , At

N j
, Ot+1, r t , δt ). To improve the learning perfor-

mance, we consider to change the reward for such samples,
if r t = 0, then set r t = r t + ε, and ε is small positive value.
Then the Qtot is computed as (8) and the loss is computed
still as (6)

δti =
{
0, i ∈ N j

⋃
Nk, c j = ck = 1, and pk > p j

1, Otherwise
(7)

Qtot(O
t , At

N j
; θ) = f (Qi (o

t
i , a

t
i ; θ) ∗ δti , i ∈ N j ) (8)

Experiments

In this section, we verify the effectiveness of the proposed
MARL-BT framework through extensive experiments. We
firstly describe the environment and experimental settings.
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With a given BT, we show the performance improvement
brought byMARLmethod, and the actionmasking technique
for the learning efficiency.

Experiment settings

We conduct experiments in a challenging task, i.e., Google
Research Football (GRF) [29], as shown in Fig. 3a. The game
requires balancing short-term control tasks such as passing,
dribbling, and shootingwith long-term strategic planning. To
evaluate the MARL-BT framework, we divided the football
ground into three zones: Backfield, Midfield, and Front-
field, with different tasks assigned to each area. For example,
defense tasks, organizing tasks, and attack tasks frequently
occur when the ball is in the Backfield, Midfield, and Front-
field, respectively, as shown inFig. 3b.Each agent in the game
has a discrete action space of dimension 19, including mov-
ing in eight directions, sliding, shooting, and other actions.
The observation contains information about the positions and
movement directions of blue agents, red agents, the ball, and
other elements.

We take the most votes code gfootball-with-memory-
patterns1 in the kaggle GRF game competition [30], and
reform it as a BT which is used as the baseline. We name it
as Baseline-BT which is used subsequently. Figure4 shows
the structure of the Baseline-BT used in our experiments.
decomposes the full game task into three independent sub-
tasks based on the ball’s position on the field: Backfield,
Midfield, and Front-field. In Backfield sub-task, four sub-
tasks are further decomposed, which corresponding to the
players’ defensive positions on the penalty, left-side, middle
and right-side of field. In addition, The penalty-area defense
sub-task is given the highest priority, and as a result, play-
ers from other tasks may be reassigned to this sub-task.
The Midfield and Front-field sub-tasks include emergency
marking tasks to prevent ball interception and perform coun-
terattacks. Moreover, based on ball ownership, the Midfield
sub-task is decomposed into an organizing task and a defen-
sive task, while the Front-field sub-task is decomposed into
an attacking task and a defensive task. Then we embed dif-
ferent MARL algorithms, i.e., VDN and QMIX, to the BT
with the proposed framework, which is named as VDN-BT
and QMIX-BT, respectively, as indicated by the red dashed
box. Finally, we use the action mask technique for the two
methods, and name them as MASK-VDN-BT and MASK-
QMIX-BT, respectively.

All the experiments are conducted on a computer with i7-
11700F CPU, RTX3060, and 32GRAM.We set the discount
factor γ = 0.99. The optimization is conducted using Adam
with a learning rate 5 × 10−4. ε is set to 0.1.

1 https://www.kaggle.com/code/yegorbiryukov/gfootball-with-
memory-patterns.

Comparison of the training performance

In this section, we compare theMARL learning performance
with the baseline for different scenarios.We take two popular
MARLmethods, i.e., VDN and QMIX, to replace respective
parts of BTs. For the reward design of the attack sub-task in
Front-field, we take the reward setting as in CHECKPOINT
provided by GRF Engine. For the organize task in Midfield,
we give +1 when the ball is near to the front line while -1
when the ball is near to the back line. For the middle sub-task
in Backfield, we give -1 when the ball is kicked into the goal
while +1 when the ball is near to the back line.

The training curves are shown in Fig. 5, in which the ver-
tical axis represents the sum of rewards over an episode and
the horizontal axis represents the training episodes. For all
curves, we can see that the reward increases gradually with
the increasing number of episodes. At the beginning, the
reward of Baseline-BT is better than VDN-BT and QMIX-
BT, due to the learning algorithm needs time to explore the
unknown environment. However, the performance of VDN-
BTandQMIX-BTgradually improves as training progresses,
and ultimately outperform Baseline-BT. Figure5a, b show
the performance of VDN and QMIX for the middle task
in Backfield. After about 0.5 × 104 episodes, the reward
of VDN-BT starts to be better than Baseline-BT, and after
about 1.4×105 episodes, the reward value tends to converge.
Compared to Baseline-BT, VDN-BT improved the reward
by 1.4 times, while QMIX-BT improved it by 2.6 times. Fig-
ure5c, d show the performance of the two MARL methods
for the organize sub-task in Midfield. The two MARL meth-
ods improve the reward by 1.7 times and 2.4 times compared
to Baseline-BT. For the attack sub-task in Front-field, i.e.,
Fig. 5e, f, the reward is improved by 0.3 times and 1.3 times,
respectively. This shows that MARL methods could effec-
tively improve the performance of BT in games.

For the masking mechanism, the performance of MARL
methods is improved significantly in all cases. In Fig. 5a, b,
the reward of VDN-BT is improved by 2 times with MASK-
VDN-BT, while that of QMIX-BT is improved around 1.2
times with MASK-QMIX-BT. The performance improve-
ments for Fig. 5c, d are 0.6 times and 0.8 times, respectively.
For the attack sub-task in Fig. 5e, f, the masking mechanism
improves the performance of VDN and QMIX by 0.3 times
and 0.2 times, respectively. Another important point to note
is that the reward growth of MASK-VDN-BT and MASK-
QMIX-BT is more significant in Backfield and Front-field
than that in Midfield. This is because in Backfield, the oppo-
nent often intercepts the ball, activating the assisting task
more frequently. Similarly, for the attack sub-task in Front-
field, the opponent frequently intercepts the ball, leading to a
higher frequency of the marking task. Overall, these results
highlight the importance of carefully evaluating different
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Fig. 3 a A snapshot of the 11_vs_11_competition football game. b Initial positions of agents. Yellow points represent our agents while blue
represent opponents. The black point represents the ball

Fig. 4 The structure of Baseline-BT in our experiments

Table 1 The possession, win and loss rate of MARL methods

Ground zone Target (%) Baseline-BT (%) VDN-BT (%) MASK-VDN-BT (%) QMIX-BT (%) MASK-QMIX-BT (%)

Backfield Possession rate 36.121 38.154 39.124 41.431 42.658

Win rate 55.031 55.123 56.221 56.43 56.987

Loss rate 34.237 24.633 23.534 22.102 20.592

Midfield Possession rate 36.121 41.244 42.512 42.824 43.641

Win rate 55.031 56.09 56.383 57.154 58.384

Loss rate 34.237 32.832 32.432 31.034 30.591

Front-field Possession rate 36.121 39.951 40.316 42.144 42.820

Win rate 55.031 59.031 60.970 62.20 63.940

Loss rate 34.237 32.792 31.114 30.166 29.236

learning algorithms embedding different scenarios, and con-
sidering masking mechanisms to improve performance.

Comparison of the evaluating performance

We further investigate the impact of VDN-BT, QMIX-BT,
MASK-VDN-BT, andMASK-QMIX-BT on the overall per-
formance of the full game, we conducted a comprehensive
evaluation using three key criteria: possession rate, win rate,

and loss rate. The possession rate reflects the number of times
that our agents were able to control of the ball, while the win
rate and loss rate indicate the number of matches that our
agents won and lost, respectively. By considering these three
criteria, we are able to obtain a holistic understanding of the
effectiveness of the MARL-BT.

The results for all methods under three tasks are shown in
Table 1, where bold values identify the data with the most
significant changes in evaluation criteria in Compared to
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Fig. 5 Comparisons of training performance for different sub-tasks

Baseline-BT, we found that VDN-BT improves the posses-
sion rate and win rate by around 3.7% and 1.7% on average,
respectively. The QMIX-BT improves that by around 5.9%
and3.6%.For the loss rate,VDN-BTandQMIX-BTdecrease
4.2% and 6.5% on average. Further, the masking mecha-
nism brings additional improvements, i.e., MASK-VDN-BT
gets 4.5% and 2.8% improvements in the possession rate
compared to Baseline-BT, while MASK-QMIX-BT obtains
around 6.7% and 4.6% improvements. This further verifies
that themaskingmechanism can successfully dealwith unex-
pected interruptions in the training procedure of MARL-BT.

More specifically, for the middle sub-task in Backfield,
the loss rate is reduced by 12.7% and 13.6% while the win
rate is increased only by 3% and 6% with MASK-VDN-BT
and MASK-QMIX-BT. The reason is that the main respon-
sibility for players in Backfield is to prevent the opponent
from scoring goals. Similarly, for the organize sub-task in
Midfield, the most significant improvement is the ball pos-
session rate.MASK-VDN-BT andMASK-QMIX-BT obtain
around 6.3% and 7.5% improvements in the ball possession
rate compared to Baseline-BT. The win rate is increased only
1.4% and 3.3%, The loss rate is decreased by 1.8% and 3.5%.
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Fig. 6 The training curves with different numbers of players

For the attack sub-task in Front-field, we clearly find that the
win rate is improved most significantly. This illustrates that
introducing MARL methods with the masking mechanism
can significantly improve the performance of BT. MASK-
VDN-BT and MASK-QMIX-BT improve the win rate by
around 5.8% and 8.9%, respectively, which is bigger than
that for the loss rate and for the ball possession rate.

Ablation study

In this section, we conduct experiments to examine the num-
ber of players controlled by the MARL method and the
impact of different performance MARL algorithms on the
learning performance of theMARL-BT framework.We con-
sider the organize task in the Midfield, in which the MARL
method controls 3 players and 5 players, respectively. The
results for embedding different MARL methods into BTs
with and without the action masking technique are shown
in Fig. 6. First, the MARL method and the action masking
technique could improve the performance of BTs no matter
how the number of players controlled by the MARL method
changes. Second, we observe a positive correlation between
the improvement in learning performance of the MARL-BT
framework and algorithmic performance. In the experiments,
the latest RiskQ [31] is embedded into BTs, i.e., RiskQ-
BT. RiskQ-BT exhibits superior performance compared to
QMIX-BT and VDN-BT, with the masked mechanism of
MASK-RiskQ-BT further enhancing the performance of
RiskQ-BT.

Conclusion

In this paper, we propose the framework MARL-BT, which
combines BTs with MARLmethods. It inherits the ability of
BTs for decomposing complex tasks to sub-tasks, and good
performance of learning-based methods on well-defined
small problems. Different from previous works which con-

struct a separate sub-scenario, or train over the whole game,
we present a procedure that the MARL method is trained
following the running mechanism of BTs, which works only
as a segment over the whole game. Meanwhile, we point
out a special phenomenon which is the unexpected inter-
ruption, that exists in MARL-BT. It happens between the
learning-based sub-task with lower priority and the rule-
based sub-task with higher priority. We propose a action
masking technique to remove the effects of unexpected inter-
ruptions for the learning of the MARL method. We conduct
experiments on the GRF game, and the results show that
the performance of BTs are significantly improved by the
proposed framework, i.e., getting an 11.507% improvement
for certain scenarios. The action masking technique could
greatly improve the performance of the learning method,
i.e., the final reward is improved around 100% times for a
sub-task. We hope that our approach could provide valuable
guidance for combining BTs withMARL to solve real-world
large-scale problems. As the future work, it would be inter-
esting to study more sophisticated method other than the
masking mechanism to deal with unexpected interruptions.
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