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Abstract
Accurate prediction of traffic flow is essential for optimizing transportation resource allocation and enhancing urban mobility
efficiency. However, traffic data generated daily are vast and complex, involving dynamic and intricate changes in the traffic
road network and traffic flow. Therefore, real-time and accurate prediction of traffic flow is a challenging task that requires
modeling the intricate spatial–temporal dynamics of traffic data. In this paper, we propose a novel approach for traffic flow
prediction, based on a Multi-Scale Residual Graph Convolution Network with hierarchical attention. First, we design a novel
encoder–decoder with multi-independent channels to capture traffic flow information from different time scales and diverse
temporal dependencies. Second, we employ a coupled graph convolution networkwith residual graph attention to dynamically
learn the varying spatial features among and within traffic stations. Third, we utilize channel attention to fuse the multi-scale
spatial–temporal dependencies and accurately predict traffic flow. We evaluate the proposed approach on multiple benchmark
datasets, and the experimental results demonstrate its superior performance compared to state-of-the-art approaches in terms
of various metrics.

Keywords Spatial–temporal · Traffic forecasting · Periodicity · Multivariate time series

Introduction

Accurate traffic flow prediction is a significant research
topic in the field of urban computing [1], as it can optimize
transportation resource allocation [2] and improve the effi-
ciency of intelligent transportation systems [3]. The immense
amount of traffic data generated daily holds crucial insights
into the long-term evolution of traffic dynamics, which are
integral to future traffic management and planning. Despite
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the potential benefits of utilizing traffic flow data, forecast-
ing traffic flow accurately in real-time remains a complex and
multifaceted task [4, 5].

Given the paramount importance of accurate traffic flow
prediction in optimizing intelligent transportation systems, a
substantial research effort has been devoted to this field in
recent years [1, 6]. Early research endeavors were focused
on predicting traffic flow at the city-level grid-based map
[7–9] utilizing convolutional neural networks (CNN) [10] or
recurrent neural networks (RNN) [11] to capture the intri-
cate spatial–temporal dependencies inherent in traffic flow
data. However, grid-based partitioning methods are limited
in their ability to capture the intricate spatial dependencies
of non-Euclidean data [12], such as traffic flow. With the
emergence of new and advanced techniques, recent research
has witnessed a shift towards utilizing graph construction-
based methods [13], such as Graph Convolutional Networks
(GCN) or Graph Neural Networks (GNN), to capture the
spatial–temporal dependence of urban traffic flow [2, 3, 14].
This shift has been driven by the ability of these methods to
handle physical and semantic information on road networks,
providing a more comprehensive understanding of traffic
dynamics. Moreover, a recent trend has emerged wherein
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Fig. 1 A simple example that
illustrates the dynamic
multi-periodic spatial–temporal
dependence of traffic flow in
areas segmented into residential,
commercial, and industrial
zones. The spatial–temporal
dependence of different zones
may vary over time (e.g., station
A and station B) and traffic
between zones may exhibit
regularity in hourly, daily, and
weekly patterns

multivariate time series forecasting is employed to ana-
lyze multi-periodic temporal patterns of traffic data [7, 14].
Despite these advancements, the intensive spatial–temporal
dynamics of traffic data and the variable multi-periodic tem-
poral patterns found in cities pose significant challenges for
these methods, making it difficult to dynamically learn from
multiple perspectives of traffic flow. As a result, accurate
traffic flow prediction faces two major technical challenges,
which are:

• Dynamic spatial dependence One of the key technical
challenges in predicting traffic flow is to capture the
dynamic spatial dependencies present in traffic data. The
traffic flow at a particular station may vary dynamically
over time, as shown in Fig. 1. For instance, during the
peak travel period of 18:00, residential zones may have a
high spatial dependency with commercial areas (i.e., sta-
tion A and station B), but this dependency may greatly
decrease at 20:00. Accurately modeling such complex
spatial dependencies is critical for developing precise
traffic flow prediction models. Despite the efforts to
address these challenges through the use of advanced
machine learning techniques [15], there is still room for
improvement and further research to fully understand and
effectively model the complex spatial dynamics of traffic
data.

• Multi-periodic temporal patterns Another key technical
challenge in predicting traffic flow is extracting the muti-
periodic temporal patterns of traffic flow data [16]. The
ability to account for the dynamic interplay of histori-
cal traffic data over different periods of time, which are
characterized by varying temporal scales, such as hourly,
daily, and weekly patterns, is critical for effective mod-
eling of traffic flow. Specifically, as depicted in Fig. 1,
closely spaced zones (e.g., residential and commercial
zones), may demonstrate strong periodicity in three-time
scales, while more distant zone (e.g., industrial zone)
may exhibit primarily weekly patterns. Such complex-
ities require the development of sophisticated techniques
capable of capturing the intricate temporal dependen-

cies and patterns that underlie traffic flow data. However,
many existing methods do not explicitly account for and
integrate the features of different periods of traffic flow.

To address the above challenges, we propose a Multi-
Scale Residual Graph Convolution Network with hierarchi-
cal attention to analyze traffic flow data comprehensively.
Firstly, we partition the traffic flow data into three temporal
scale based on hourly, daily, and weekly intervals, respec-
tively. Subsequently, we introduce a novel encoder–decoder
architecture to capture the intricate spatial–temporal depen-
dencies of the data. Specifically, we design three independent
channel integrate coupled graph convolution and residual
graph attention to establish a relationship matrix that cap-
tures the dynamic spatial dependencies among the stations.
Furthermore, our method employs a residual channel atten-
tion mechanism to fuse the spatial–temporal dependencies
across different temporal scales. Our main contributions are
as follows:

• We propose MSRGCN, a novel framework that can
effectivelymodel the spatial, temporal, and semantic cor-
relations among roads in a traffic network by analyzing
historical traffic flow data across multi-periodic temporal
patterns.

• We design a residual graph attention with coupled graph
convolution network that capture edge weight and node
weight at each time interval to better reflect the dynamic
traffic scenarios in the real world.

• Wepropose a residual channel attention that can integrate
and fuse the traffic features extracted at multiple scales
and calculate the final prediction result.

• We conduct extensive experiments with real-world data
from multiple cities and provide evidence of the supe-
riority of our proposed MSRGCN over state-of-the-art
approaches.

The remainder of this paper is organized as follows. We
review related work in “Related work” section. We describe
the definition used in this work in “Preliminaries” section.
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The MSRGCN design is elaborated and evaluated in “Multi-
Scale Residual Graph Convolution Network, Experiments”
sections, respectively. Finally, “Conclusion and prospect”
concludes this paper.

Related work

In this section, we review the literature related to our work
from the perspectives of traffic flow prediction andmultivari-
ate time series forecasting.

Traffic flow prediction

Early traffic prediction models, such as grid-based meth-
ods, utilize a grid map to perform the task. For instance,
Zhang et al. [8] proposed the two-phaseDeepSTDdeep learn-
ing framework to uncover spatial–temporal disturbances
and predict citywide traffic flow. Zhang et al. [9] designed
a multi-core-based clustering method to delineate traffic
map sub-regions and proposed the mutual-transition-aware
co-prediction framework to capture spatial–temporal trans-
formation patterns of traffic demand. However, these models
compromise the natural topological properties of the traffic
network, making them unsuitable for dynamic and volatile
real-life traffic prediction scenarios.

Recent research has demonstrated that graph-based data
structures are more effective in representing non-Euclidean
distance data, such as traffic road networks. Consequently,
graph neural networks have become a popular approach in
traffic flow prediction. For instance, Peng et al. [17] propose
a long-term traffic flow prediction method based on dynamic
graphs and use reinforcement learning to generate dynamic
graphs that enable stable and effective long-term predictions
of traffic flow. Lv et al. [18] present a Temporal Multi-Graph
Convolutional Network (T-MGCN) that jointly models the
spatial, temporal, semantic correlations, and various global
features in the road network. Ali et al. [14] propose a uni-
fied dynamic deep spatial–temporal neural network model,
based on graph convolutional neural networks and long short-
termmemory, named as (DHSTNet), that can simultaneously
predict crowd flows in every region of a city. Ye et al. [2]
develop a layer-wise coupling mechanism and self-learning
adjacency matrices to capture multi-level spatial dependence
and temporal dynamics simultaneously.

These methods have improved the accuracy and inter-
pretability of predictions to some extent, but they may not
fully consider the analysis of the periodicity of time series.
To address this limitation and ensure the effective capture
of short-term and long-term dependencies, as well as adapt-
ability to dynamic traffic patterns, our proposed approach
involves the extraction of specific time intervals from hourly,
daily, and weekly scales. This refined data organization strat-

egy enables our proposed method to comprehensively learn
the temporal influences on traffic flow data, encompassing
both fine-grained short-term variations and broader long-
term trends. By carefully selecting relevant time intervals
from different temporal scales, our proposed model gains a
more comprehensive understanding of the temporal dynam-
ics in traffic flow data.

Multivariate time series forecasting

Multivariate Time Series (MTS) data is a prime example of
spatial–temporal data [19], comprising various interrelated
time series with different scales. The precise and efficient
forecasting of MTS is of great significance in diverse fields,
including transportation, energy, and economics [7, 20, 21].
Therefore, this has been an ongoing area of research. To
address this challenge, several innovative techniques have
been proposed in recent years. For instance, Cao et al. [22]
have proposed a Spectral Temporal Graph Neural Network
(StemGNN) that captures intra-series temporal correlations
and inter-series correlations simultaneously. Du et al. [23]
have introduced Bi-directional Long Short-Term Memory
networks (Bi-LSTM) to learn long-term dependency and
hidden correlation features of multivariate temporal data
adaptively. Wu et al. [24] have presented a general graph
neural network framework that automatically extracts the
uni-directed relations among variables through a graph learn-
ing module. In the context of traffic flow prediction, Yang
et al. [25] have proposed Spatial–Temporal information and
Traffic Pattern Similarity information (STTPS), which con-
siders the impact of temporal factors on traffic from the
perspective of seasonal and super-recent factors. Addition-
ally, Zhu et al. [26] have utilized an LSTM-based variational
autoencoder to capture the multi-scale dependence of time
series.

However, most of the existingmethods that capture spatial
patterns employ static relationship matrices, which neglect
the dynamic nature of the interactions among and within
stations over time, limiting their ability to capture deeper
spatial–temporal features of traffic flow.

We present a pioneering approach that effectively com-
bines multi-independent channels with residual graph atten-
tion mechanisms, thereby capturing dynamic spatial depen-
dencies at each time interval. Through the integration of
information from multiple time steps, our proposed model
achieves a comprehensive understanding of traffic dynam-
ics, leading to more resilient predictions that encompass
both short-term fluctuations and long-term trends. Further-
more, we leverage the benefits of residual channel attention
to enhance and refine spatial–temporal features extracted
from these multi-independent channels, further improving
the model’s predictive capabilities.
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Fig. 2 Normalized traffic flow time series on the NYCBike and NYCTaxi datasets from June 18–30, 2016. The windows of predicted traffic and
three different temporal periodic patterns (hourly, daily and weekly) are marked by colored rectangles, respectively

Preliminaries

In this section, we introduce some important notations and
definitions and formalize the traffic flow prediction problem
as below.

Definition 1 (Traffic network graph) The traffic network is
modeled as a directed graph G(V , E), where the nodes V
correspond to the stations and the edges E indicate the traffic
flow between two stations. The feature vector of each node
consists of the historical pick-up and drop-off flow at that
station.

Definition 2 (Traffic flow data) The traffic flow data (e.g.,
volume) on the traffic network graph at time t is denoted
as Xh

t ∈ R
N×c, Xd

t ∈ R
N×c and Xw

t ∈ R
N×c, which rep-

resent hourly, daily and weekly scales of traffic flow data,
where N is the number of nodes in the graph and c is the
number of features. A traffic flow data instance consists of
an input part and an output part, which are defined as Xt =
[Xh

t−L:t , X
d
t−D−L:t−D, Xw

t−W−L:t−W ], Xt ∈ R
3 L×N×c and

Yt = Xt :t+M , Yt ∈ R
M×N×c respectively. The input part is

a sequence of L historical traffic flow data for each scale and
D and W represent the number of time intervals per day and
per week respectively. The output part is a sequence of M
predicted traffic flow data.

Different from traditional methods that denote the traffic
flow data (e.g., volume) on the traffic network graph at time t
as xt ∈ R

N×c, we split the input traffic flow into three cycle
types. This is because, as Fig. 2 shows, the traffic data in three
different period windows (hourly, daily and weekly) related
to the target window have a certain similarity when we study
the traffic characteristics of the target window.

Definition 3 (Relationshipmatrix) The relationshipmatrices
under different temporal scales are initialized by using the
traffic flowdata and calculating the similarity of the historical

traffic flow among the stations [2] as the weight of the edges
in the graph. For a given τ time intervals, starting from the
initial time t0, a function f A maps traffic status signals from
three periodic scales to three different relationship matrices,
which can be expressed as:

[Ah
(0), A

d
(0), A

w
(0)] = f A(Xh

t0+W :t0+W+τ ,

Xd
t0+W−D:t0+W−D+τ , X

w
t0:t0+τ ), (1)

where Ah
(0) ∈ R

N×N , Ad
(0) ∈ R

N×N , and Aw
(0) ∈ R

N×N can
be used to perform graph convolution operations on graph
G to learn spatial dependencies at hourly, daily, and weekly
scales.

We describe the specific operation process of function
f A as follows. We first apply singular value decomposition
(SVD) to traffic data Xh

t0+W :t0+W+τ , X
d
t0+W−D:t0+W−D+τ ,

Xw
t0:t0+τ to obtain multiple low-rank submatrices [27]. Tak-

ing the weekly scale as an example, we can formulate this
as:

Xw
t0:t0+τ = UXw�XwV T

Xw , (2)

whereUXw , �Xw and VXw is the low-rank submatrices from
Xw
t0:t0+τ , and UXw , VXw are represents the temporal-based

and spatial-based submatrices, respectively. To reduce the
dimensionality and describe the relationships among stations
as accurately as possible, we filter out redundant informa-
tion from the spatial-based submatrix VXw . We use a method
based on Gaussian kernel to calculate the similarity of row i
and row j of VXw as their edgeweight values in the adjacency
matrix, which can be formulated as:

Âw(i, j) = exp

(
‖V (i, :) − V ( j, :)‖2

ε

)
, (3)
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Fig. 3 Overall architecture of MSRGCN

where ε is the standard deviation. In practical operation,
Âw ∈ R

N×Nhas a large number of nodes may reduce the
system efficiency. In contrast to the traditional method [28],
which retains all the elements in the relationship matrix
irrespective of their values, we suggest to initialize the
relationship matrix at the initial time t0 by discarding the
elements that are negligible and do not influence the node
connections. This way, we can maintain the sparsity of the
relationshipmatrix and decrease the computational cost. This
procedure can be formulated as:

Aw
(0) = Max(0, D−1 Âw), (4)

where D is a diagonalmatrix such that D(i, i)= � j Âw(i, j).
The initialization process of Ah

(0) and Ad
(0) are similar to Aw

(0).

Definition 4 (Traffic flowprediction problem) The traffic pre-
diction problem is formulated as learning a function fP from
a large number of traffic flow data. The function fP maps 3L
historical traffic status signals from three periodic scales of
the current time t to future traffic status signals from time t
to t + M − 1, which can be expressed as:

Yt = fP (Xt ,G). (5)

Multi-Scale Residual Graph Convolution
Network

This section outlines the design of MSRGCN for precise
traffic flow prediction. It covers the overall architecture, the

Coupled Graph Convolution Network (CGCN), the Resid-
ual Graph Attention (RGAT) in the recurrent layer, and the
Residual Channel Attention (RCAT) for fusing temporal fea-
tures and generating the final prediction.

The framework of MSRGCN

MSRGCN is a novel framework for traffic flow predic-
tion that leverages three independent channels to capture
the spatial–temporal patterns of traffic flow at different
periodic: hourly scale channel, daily scale channel, and
weekly scale channel. Each channel employs the same net-
work structure, but differs in the input graph structures
and time series that it utilizes. For instance, as illustrated
in Fig. 3, the hourly scale channel has three layers: input
layer, recurrent layer, and output layer. The input layer
takes as input the traffic flow of L consecutive time series
Xh
t−L:t = [Xh

t−L , Xh
t−L+1, ..., X

h
t−1]and predicts as output

the traffic flow of M consecutive time series Xh
t :t+M =

[Xh
t , X

h
t+1, ..., X

h
t+M−1]. The recurrent layer comprises two

novel components: CGCNandRGAT. These components are
designed to dynamically update the relationship matrix and
learn node embedding at each time interval. As illustrated in
Fig. 3, the recurrent layer first employs coupled graph recur-
rent unit (CGRU) to obtain the aggregated edge-weighted
traffic flow state EXh

t−L , and then feeds it into RGAT to
dynamically learn node weights. After obtaining the predic-
tions of three channels, Xh

t :t+M , Xd
t :t+M and Xw

t :t+M , RCAT
is applied to integrate and fuse the traffic features extracted
at three scales and calculate the final prediction result Yt .
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The recurrent layer

Recurrent operations can effectively learn semantic associ-
ations across time sequences and capture temporal correla-
tions [29]. Convolution operations can effectively learn local
dependency and maintain shift invariance and capture spa-
tial correlations [30]. Therefore, we use recurrent units with
GCN to capture the spatial–temporal features of traffic flow.
However, most existing recurrent units based on GCN use
fixed relationship matrices in graph convolution, which may
overlook the dynamic variation of dependencies among and
within stations in actual traffic scenarios. Moreover, a fixed
relationship matrix may not be able to adapt to the spatial
changes of traffic flow at different temporal periodic scales.
To address this issue, we design a coupled graph convolu-
tional network and residual graph attention in the recurrent
layer, which can dynamically computes the edge weight and
node weight for each time interval.

Coupled graph convolution network One of the difficul-
ties in traffic prediction is to capture the temporal variations
of the spatial correlations among stations that may occur in
traffic data at different time intervals [31], such as morning,
afternoon, evening, night, etc. To tackle this difficulty,wefirst
introduce a graph convolution method that employs a cou-
pling mapping mechanism to learn the relationship matrix
among the stations [2]. The relationship matrix reflects the
similarity and influence of the traffic flow patterns among the
stations. Taking the hourly scale channel as an example, Fig.4
illustrates the structure of CGCN. We incorporate the traf-
fic flow characteristics Xh

t = Zh
(0) within each time interval

and the initial relationship matrix Ah
(0) as the input for graph

convolution. Each layer of graph convolution can extract the
corresponding station feature Zh

(i) and relationship matrix

Ah
(i) under the hourly scale. This can be expressed as:

Zh
(i) =

K∑
k=0

(
Ah

(i−1)

)k
Zh

(i−1)θ
k
(i−1), i = 1, 2, . . . , l (6)

where l represents the total number of convolution layers,
and Ah

i−1 is relationship matrix representing of i − 1 layer,
which can be formulated as:

Ah
(i−1) = w(i−2)

(
Uh

(i−2)

(
V h

(i−2)

)T)
+ b(i−2). (7)

Uh
(i−2) and V

h
(i−2) are low-rank submatrices [27] obtained by

Ah
(i−2) through SVD, andw(i−2), b(i−2) are learnable param-

eters in the fully connected layer. To aggregate Zh
(1:l) across

different layers, we need to assess the attention scores βh
(i) of

the relationshipmatrix for each layer, which can be expressed
as follows:

Fig. 4 The framework of CGCN within the hourly scale channel

Fh =
l∑

i=1

βh
(i)Z

h
(i), (8)

βh
(i) = exp(Zh

(i)wβ + bβ)∑l
i=1 exp(Z

h
(i)wβ + bβ)

, (9)

where wβ and bβ are learnable parameters in the fully con-
nected layer, Fh is the aggregated feature expression of
convolution, as output of CGCN.

Residual graph attention Traffic flow prediction also
faces the challenge of handling the diverse transportation
modes that may vary across different time intervals [32],
such as peak hours, off-peak hours, weekends, holidays, etc.
To address this challenge, we adopt RGAT to learn adap-
tive node-specific weights and embeddings that capture the
dynamic traffic flow patterns of each node. As shown in
Fig. 5, for the RGAT in the hourly channel, we input the
edge-weighted traffic flow state EXh

t that aggregates the
traffic information from different edges into RGAT, and cal-
culate the attention scores αh by using the scaled dot product
method, which can be formulated as:

αh
i, j =

[
wh
q

(
EXh

t,i

∥∥ehi )]
⊗

[
Wh

k

(
EXh

t, j

∥∥∥ehj )]
√
da

, (10)

where αh
i, j denotes the attention score between station i and

station j on the hourly scale; ehi is the randomly initialized
node embedding of station i on the hourly scale; EXh

t,i is the
edge-weighted traffic flow feature of station i at time interval
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Fig. 5 The framework of RGAT within the hourly scale channel

t that aggregates the traffic information from different edges;
‖ and ⊗ represent the concatenation operation and the inner
product operation respectively; wh

q and wh
k are the learnable

parameters of query and key; da is the dimension of query
and key. After obtaining the attention score, we compute a
weighted sum of the correlations of all stations to obtain the
latent state LXh

t , which incorporates both edge-weighted and
node-weighted information. The formula is as follows:

LXh
t, j =

∑
so f t max

(
αh
i, j

)
EXh

t, j + EXh
t, j (11)

In the hourly scale channel, the recurrent layer in the encoder
and decoder uses the output latent states LXh of RGAT to
capture the time series features.Moreover, the output layer in
the decoder consists of the latent states Xh

t :t+M = LXh
t :t+M .

The daily scale channel and the weekly scale channel follow
the same operation logic as the hourly scale channel.

Residual channel attention

Traffic flow is a complex spatial–temporal phenomenon that
exhibits different periodic patterns at different time scales,
such as hourly, daily, and weekly. These patterns reflect the
influence of various factors, such as traffic demand, road
network structure, weather conditions, and special events.
Therefore, to obtain accurate and reliable traffic flow pre-
dictions, it is necessary to fuse the traffic features extracted
from these time scales in an effective and efficient way. To
achieve this, we propose a novel P-layers dynamic residual
channel attention mechanism that can adaptively assign dif-

Table 1 Summary of the datasets used in the experiments

Dataset Sensors Sampling rate (min) Time steps

NYCTaxi 266 30 4368

NYCBike 250 30 4368

PeMS04 307 5 16,992

PeMS08 170 5 17,856

ferent weights to the traffic features from each time scale
based on their relevance and importance for the prediction
task. The dynamic residual channel attention mechanism can
also enhance the feature representation by adding residual
connections between the input and output channels, which
can facilitate the information flow and alleviate the gradient
vanishing problem. This can be formulated as:

Ŷ (p+1)
t = sigmoid(w(p) fap(Ŷ

(p)
t )) ⊗ Ŷ (p)

t + Ŷ (p)
t (12)

where Ŷ (0)
t = Xh

t :t+M ‖ Xd
t :t+M ‖ Xw

t :t+M , Ŷ (0)
t ∈

R
3×M×N×D denotes the concatenation of the outputs from

the hourly, daily, and weekly scale channels; fap represents
the average pooling operation andw(p) denotes the learnable
parameters of the fully connected network of the p-th layer.
After applying adaptive weighting P times to the results of
the three scale channels, we obtain the final output by com-
bining the results of the three scale channels, which can be
formulate as:

Yt =
3∑
j=1

Ŷ (P)
j,t , (13)

where Yt ∈ R
M×N×D represents the final prediction and

Ŷ (P)
j,t denotes the result of the j th scale channel after applying

adaptive weighting P times.

Experiments

Datasets

The experiments are conducted on four real traffic flow data
sets in urban mobility: NYCTaxi,1 NYCBike,2 PeMS04, and
PeMS08.3 Table 1 presents a comprehensive summary of the
datasets utilized in the experimental analysis. Specifically,
the datasets comprise NYCTaxi and NYCBike, with 30-min
sampling rates and 4368 time steps each. Additionally, the
PeMS04 dataset encompasses 307 sensors, a 5-min sampling

1 https://www1.nyc.gov/site/tlc/about/data.page.
2 https://www.citiNYCBike.com/system-data.
3 http://pems.dot.ca.gov/.
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rate, and 16,992 time steps, while the PeMS08 dataset con-
tains 170 sensors, a 5-min sampling rate, and 17,856 time
steps. These datasets play a pivotal role in evaluating the
proposed method’s efficacy in traffic flow prediction tasks.
Notably, the prediction targets involve forecasting the next
twelve steps of traffic flow, leveraging the information from
the preceding twelve steps of traffic signals and the traffic
graph.

Preprocessing steps for traffic flow datasets

Prior to conducting our experiments, we preprocessed the
datasets to convert them into suitable graph data for model
input. The NYCBike dataset is station-based, with each bicy-
cle parking spot serving as a station. In contrast, theNYCTaxi
dataset is generated by a station-free system, necessitating
the identification of potential stations to effectively capture
traffic flow characteristics. To address this issue, we utilized
the density peak clustering (DPC) algorithm [33] to identify
virtual stations within the NYCTaxi dataset.

Both datasets were segmented into time intervals of
30min, with traffic data standardized using the Z-score stan-
dardization technique prior to training. The feature dimen-
sion D of each station was set to 2, representing the number
of pick-ups and drop-offs, respectively. Historical time steps
and predicted time steps were both set to 12.

Evaluatingmetrics

To evaluate the proposed method’s effectiveness, we use
three common metrics: Root Mean Squared Error (RMSE),
Mean Absolute Error (MAE), and Pearson Correlation Coef-
ficient (PCC). These metrics are widely accepted in traffic
flow prediction and offer a comprehensive evaluation of our
approach. RMSE and MAE assess prediction accuracy com-
pared to the ground truth,while PCCmeasures the correlation
between predicted and ground truth values. Multiple metrics
ensure a robust and reliable assessment of our results. The
formulas for these metrics are as follows:

RMSE =
√√√√ 1

M

M∑
i=1

(yi − ŷi )2

MAE = 1

M

M∑
i=1

∣∣ŷi − yi
∣∣

PCC = ρyi ŷi

σyi σŷi
,

(14)

where yi and ŷi respectively represent the real traffic value
and predicted traffic value of the stations, M represents the
number of all predicted values, ρyi ŷi represent the covariance

Fig. 6 The convergence curves on the NYCBike dataset and NYCTaxi
dataset

of yi and ŷi , σyi and σŷi to represent the standard deviations
of yi and ŷi respectively.

Convergence analysis

The convergence behavior of our proposed model on the
NYCTaxi and NYCBike datasets is illustrated in the Fig.
6. As can be observed, the training and validation loss val-
ues for both datasets reached a plateau after about the 13th
epoch, which indicates that the model reached its final con-
vergence state at this point. In order to prevent potential
overfitting or underfitting, an early stopping mechanism [34]
was employed with a patience of 5. From the figure, it can
be seen that the validation loss did not exhibit a significant
improvement after the 13th epoch. Therefore, we stopped the
training of both models at the 18th epoch to avoid any poten-
tial overfitting. It is worth noting that this training strategy
is standard in deep learning, and it is essential to ensure that
the model can generalize well on unseen data.

Comparisonmethods

We evaluate our model against several baseline methods that
belong to two categories: classic methods and graph-based
methods. The classic methods are traditional approaches for
traffic prediction, while the graph-based methods are recent
advances that leverage graph structures to capture spatial
dependencies. We briefly introduce the methods that we use
for comparison as follows:
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Table 2 Performance
comparison of different methods
on NYCBike and NYCTaxi
datasets

Method NYCBike NYCTaxi

RMSE MAE PCC (%) RMSE MAE PCC (%)

HA 5.2003 3.4617 16.69 29.7803 16.1509 63.39

XGBoost [35] 4.049 2.469 48.6 21.199 11.680 80.77

FC-LSTM [36] 2.813 2.302 56.75 18.071 10.220 86.45

DCRNN [37] 3.205 1.895 72.27 14.792 8.427 91.22

STGCN [38] 3.604 2.761 73.16 22.648 18.455 91.56

STG2Seq [3] 3.984 2.497 51.52 18.045 9.941 86.50

GWNet [27] 3.294 1.991 70.03 13.072 8.103 93.22

STSGCN [39] 2.884 1.753 71.26 10.962 5.829 82.42

MTGNN [40] 2.779 1.659 – 10.947 5.919 –

GTS [41] 2.925 1.779 – 12.751 7.209 –

AST-GCN [42] – 1.881 – – – –

CCRNN [2] 2.838 1.740 79.34 9.563 5.497 96.48

ESG [43] 2.672 1.612 – 8.975 5.034 –

GMSDR [44] 2.721 1.676 81.07 8.653 4.983 97.11

GraphTS [45] 2.776 1.738 81.52 9.550 5.452 97.21

MSRGCN 2.101 1.258 88.86 7.932 4.428 97.64

bold formatting is used to highlight the top-performing metrics for each method and dataset, making it easier
for readers to identify the most effective methods based on the specified evaluation criteria

• HA Historical Averaging (HA) is a traditional method
based on the mean of past observations.

• XGBoost [35] XGBoost is a traditional regression tree-
based method.

• FC-LSTM [36] FC-LSTM is a traditional method applies
RNN with fully connected layer.

• DCRNN [37] DCRNN is a classical spatial–temporal
method that usesGCNandLSTMfor spatial dependence.

• STGCN [38] STGCN uses graph and 1-D convolutions
to model traffic flow’s spatial feature.

• STG2Seq [3] STG2seq creates traffic diagram sequences
to model long-short term dependence.

• GWNet [27] GWNet combines GNN and CNN with dif-
fusion and dilated convolutions.

• STSGCN [39] STSGCN utilizes a spatial–temporal syn-
chronous mechanism to capture localized correlations.

• MTGNN [40] MTGNN is a framework that extracts
uni-directed variable relations and integrates external
attributes for multivariate time series forecasting.

• GTS [41] GTS learns a probabilistic graph model with
GNNs and optimizes mean performance.

• AST-GCN [42] AST-GCN is a method that uses GCN to
relate graphical nodes in space and time.

• CCRNN [2] CCRNN uses a coupling mechanism to
update the relationship matrix across layers for multi-
step traffic flow prediction.

• ESG [43] ESG utilize hierarchical graphs with dilated
convolutions for scale-specific correlations.

• GMSDR [44]GMSDR is aGRUvariant that usesmultiple
historical inputs per time unit.

• GraphTS [45] GraphTS combines GRU and graph atten-
tion with multi-graph fusion to fuse sptial-temproal
information.

Experimental results and analysis

In this subsection, we conducted a comprehensive com-
parison of the proposed MSRGCN model with 15 other
methods, including classic and state-of-the-art algorithms.
The classic methods involved widely adopted models in
traffic time series prediction, such as Historical averaging
(HA),XGBoost, FC-LSTM, andDCRNN.On the other hand,
the state-of-the-art methods we compared MSRGCN with
include ESG, GMSDR, GraphTS, and others. To evaluate the
performance of these methods, we used four publicly avail-
able datasets, NYCTaxi, NYCBike, PeMS04 and PeMS08,
and assessed their performance based on evaluation criteria
such as RMSE, MAE, PCC.

!b
The results of the experiments are presented in Tables

2 and 3, where it can be observed that MSRGCN outper-
forms all compared methods for all datasets in most of
cases, indicating its superior ability to capture the spatial–
temporal dependencies and multi-scale features of traffic
data. Table 2 presents a comprehensive evaluation of our
proposed method, MSRGCN, against state-of-the-art algo-
rithms, GraphTS and GMSDR, on the NYCBike and NYC-
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Table 3 Performance comparison of different methods on PeMS04 and
PeMS08 datasets

Method PeMS04 PeMS08

RMSE MAE RMSE MAE

FC-LSTM [36] 40.28 26.76 43.96 30.69

DCRNN [37] 38.12 25.70 27.83 17.86

STGCN [38] 35.55 22.70 27.83 18.02

STG2Seq [3] 38.48 25.20 30.71 20.17

GWNet [27] 39.70 25.45 31.05 19.13

AST-GCN [42] 35.22 22.93 28.16 18.61

STSGCN [39] 33.65 21.19 26.80 17.13

MTGNN [40] 34.66 20.96 26.96 16.80

MSRGCN 32.97 21.46 26.14 16.57

bold formatting is used to highlight the top-performing metrics for each
method and dataset, making it easier for readers to identify the most
effective methods based on the specified evaluation criteria

Taxi datasets. The results indicate a significant improvement
of 24.3% inRMSEand 28.9% inMAEcompared toGraphTS
for NYCBike, and 16.9% in RMSE and 18.7% in MAE
compared to GMSDR for NYCTaxi. Moreover, MSRGCN
exhibits the highest PCC values of 88.86% and 97.64% on
NYCBike and NYCTaxi datasets, respectively, affirming its
superior ability to capture the correlation between predicted
and actual values when compared to other methods. Table
3 further underscores the effectiveness of MSRGCN as it
outperforms all other methods in terms of RMSE on both
PeMS04 and PeMS08 datasets. Specifically, on PeMS04,
MSRGCN achieves the lowest RMSE of 32.97, surpass-
ing all other approaches. Similarly, on PeMS08, MSRGCN
achieves the lowest RMSE of 26.14, further highlighting its
accuracy in traffic flow prediction for both datasets. Addi-
tionally, while MSRGCN excels in terms of RMSE, it also
competes favorably in terms of MAE. Across both datasets,
MSRGCN attains some of the lowest MAE values, attesting
to its effectiveness in providing accurate traffic flow predic-
tions.

Among the baselines, GMSDR, MTGNN and GraphTS
are the closest competitors to our method, but they still lag
behind by a large margin. The classic methods such as HA,
XGBoost, and FC-LSTM perform poorly compared to the
graph-basedmethods, which demonstrates the importance of
modeling the graph structure of traffic networks. The results
also show that some methods such as DCRNN and STGCN
have high PCC but relatively high RMSE and MAE, which
suggests that they can capture the overall trend of traffic
demand but fail to predict the exact values accurately.

Ablation study

To assess the impact of each module in MSRGCN on system
performance, we conducted ablation studies. The variants of
MSRGCN are as follows:

• Hourly-scaleAnalysis based on the hourly scale channel
only, excluding daily and weekly scales.

• Daily-scale Analysis based on the daily scale channel
only, excluding hourly and weekly scales.

• Weekly-scaleAnalysis based on the weekly scale channel
only, excluding hourly and daily scales.

• Seq2seq Data from all time scales concatenated into a
sequence as input for the model.

• No-RGAT Dynamic aggregation of the relationship
matrix at each time interval, without RGAT modules for
adaptive node embedding learning.

• No-RCAT Direct summation of flow features from the
three channels, without the RCAT module’s adaptive
weighting."

As shown in Table 4, the results demonstrate that
MSRGCN outperforms all other variants in terms of RMSE,
MAE, and PCC on both datasets, achieving a reduction in
RMSE by 9.1% and 6.1% and an improvement in PCC by
0.78% and 0.53% compared to the best-performing variants
on NYCBike and NYCTaxi, respectively. This suggests that
using theREATmodule to assign differentweights to theflow

Table 4 Performance
comparison of different variants
of MVDGCN on NYCBike and
NYCTaxi datasets

Method NYCBike NYCTaxi

RMSE MAE PCC (%) RMSE MAE PCC (%)

Hourly-scale 2.3145 1.3754 84.94 8.4621 4.8356 96.85

Daily-scale 2.3894 1.3952 83.69 8.4975 4.8962 96.80

Weekli-scale 2.2912 1.3446 85.71 8.4196 4.8011 97.13

Seq2seq 2.7346 1.6999 80.81 8.9315 5.3156 93.34

No-RGAT 2.6256 1.6746 82.10 8.8700 5.1491 96.91

No-REAT 2.1551 1.2487 88.51 8.0770 4.4825 97.46

MSRGCN 2.1009 1.2582 88.86 7.9320 4.4284 97.64

bold formatting is used to highlight the top-performing metrics for each method and dataset, making it easier
for readers to identify the most effective methods based on the specified evaluation criteria
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Fig. 7 Acase study:MSRGCNandCCRNNpredicting next-day traffic
flow at a random station on the NYCTaxi and NYCBike datasets

features from different scales is more effective than directly
summing them or concatenating them into a sequence. It also
suggests that using the RGAT module to learn node embed-
dings adaptively for each time interval is more effective than
dynamically aggregating the relationship matrix only at each
time interval. Moreover, it suggests that learning through
independent channels for different time scales is more effec-
tive than learning through a single channel for a time series
sequence.

Case study

To comprehensively assess MSRGCN’s performance, we
conducted a comparative study involving the advanced
method CCRNN, which shares a similar structural frame-
work with MSRGCN. CCRNN, akin to MSRGCN, employs
graph convolution techniques based on the underlying graph
structure and employs a coupling mechanism for iterative
relationship matrix updates during the convolution process.
Under these settings, we randomly selected a station from
both the NYCBike and NYCTaxi datasets and predicted its
traffic flow for the ensuing day. As depicted in the Fig. 7,
MSRGCN’s predictions demonstrate a superior fit to the
ground truth compared to CCRNN, particularly in scenar-
ios characterized by significant traffic fluctuations.

Quantitatively, we computed the RMSE values for both
MSRGCN and CCRNN in these instances. For the NYCBike
dataset, the RMSE value between MSRGCN’s predictions
and the ground truth is 2.16, the RMSE value between
CCRNN’s predictions and the ground truth is 3.34. For the
NYCTaxi dataset, these values are 7.56 for MSRGCN and
8.79 for CCRNN. The superior performance of MSRGCN,
as evidenced by lower RMSE values, substantiates its effec-
tiveness in this predictive task.

Conclusion and prospect

In conclusion, the proposed Multi-Scale Residual Graph
Convolution Network (MSRGCN) with hierarchical atten-
tion is a novel approach for accurate traffic flow predic-
tion. It addresses the challenges of modeling the intricate
spatial–temporal dynamics of traffic data by employing a
multi-channel encoder–decoder, coupled graph convolution
network with residual graph attention, and channel attention.
The experimental results on multiple datasets demonstrate
the superior performance of the MSRGCN compared to
existing state-of-the-art approaches in terms of prediction
accuracy.

For future work, we plan to incorporate additional data
sources such as weather, event schedules, and public trans-
portation data to further improve the accuracy of traffic flow
prediction. Furthermore, we plan to apply our approach to
other domains that involve complex spatial–temporal data,
such as social media analysis and recommender systems, to
explore more application possibilities.
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