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Abstract
Many optimization problems suffer from noise, and the noise combined with the large-scale attributes makes the problem
complexity explode. Cooperative coevolution (CC) based on divide and conquer decomposes the problems and solves the
sub-problems alternately, which is a popular framework for solving large-scale optimization problems (LSOPs). Many studies
show that the CC framework is sensitive to decomposition, and the high-accuracy decomposition methods such as differential
grouping (DG), DG2, and recursive DG (RDG) are extremely sensitive to sampling accuracy, which will fail to detect
the interactions in noisy environments. Therefore, solving LSOPs in noisy environments based on the CC framework faces
unprecedented challenges. In this paper, we propose a novel decompositionmethod named linkagemeasurementminimization
(LMM). We regard the decomposition problem as a combinatorial optimization problem and design the linkage measurement
function (LMF) based on Linkage Identification by non-linearity check for real-coded GA (LINC-R). A detailed theoretical
analysis explains why our proposal can determine the interactions in noisy environments. In the optimization, we introduce
an advanced optimizer named modified differential evolution with distance-based selection (MDE-DS), and the various
mutation strategy and distance-based selection endow MDE-DS with strong anti-noise ability. Numerical experiments show
that our proposal is competitive with the state-of-the-art decomposition methods in noisy environments, and the introduction
of MDE-DS can accelerate the optimization in noisy environments significantly.

Keywords Cooperative coevolution (CC) ·Linkagemeasurement minimization (LMM) ·MDE-DS ·Large-scale optimization
problems (LSOPs) · Noisy environments

Introduction

Noise widely exists in the fitness evaluation of many prob-
lems [1–3], which can mislead the direction of optimization.
In the past decade, many studies [4,5] on optimization
problems in noisy environments have been published, and
some strategies have been introduced to traditional evo-
lutionary algorithms (EAs) to tackle the noise. Examples
include explicit averaging [6], implicit averaging [7], Fourier
transform [8], fitness estimation [9], and more. Most of
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the previous research focuses on relatively low-dimensional
problems (up to 100-D), and a few studies on noisy prob-
lems with large-scale optimization problems (LSOPs) have
been published. In fact, many noisy optimization problems
are high-dimensional, such as parameters and structures opti-
mization of deep neural networks [10] and subset selection
[11].

TheLSOPs in noisy environments contain challenges both
on the scalability and robustness to noise,whichmake the dif-
ficulties of problem-solving explosive. The main reasons are
the following aspects: (1) the complexity of the optimization
problem increases, including the increase of dimensional-
ity and the existence of the noise. (2) The search space of
LSOPs increases exponentially with the increase of dimen-
sionality, which is known as the curse of dimensionality [12].
(3) The computational cost of building a surrogate model is
expensive, and the accuracy is also affected by noise and
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the curse of dimensionality, which makes some algorithms
limited [13,14].

Many algorithms have been proposed to overcome the
challenge of the LSOPs, such as designing optimization
operators to adapt the large-scale attributes [15], building
surrogate models [16], and decomposing the problem [17],
which is known as the cooperative coevolution (CC). In this
paper, we apply the CC framework to solve LSOPs in noisy
environments. This method is inspired by the divide and con-
quer, which has achieved great success in solving large-scale
continuous [18], combinatorial [19], and constrained [20]
problems.

How to decompose the LSOPs is the key to the suc-
cessful implementation of the CC framework. Many studies
[21,22] show that the CC framework is sensitive to problem
decomposition strategies. Taking the linkage identification
by non-linearity check for real-coded GA (LINC-R) [23] as a
pioneer, many decomposition methods have been proposed.
Differential grouping (DG) [24] first extends the identical
mechanism of LINC-R to the 1000-D problem. Extend DG
(XDG) [25] improves the shortage of DG in dealing with
overlaps. DG2 [26] notices the high computational cost in
DG and utilizes the transmissibility of separability to save
the computational budget. Global DG (GDG) [27] regards
the variable interactions matrix as the adjacency matrix of a
graph and depth-first search or breadth-first search is applied
to identify the interactions and formed the sub-problems.
Recursive DG (RDG) [18] further reduces the computa-
tional cost by examining the interaction between a pair of
sets of variables rather than a pair of variables, and forms
the sub-problems recursively. Efficient RDG (ERDG) [28]
uses the historical information on interaction identification
to save the computational cost in redundant examinations
and is more efficient than RDG. These decomposition meth-
ods are considered high-accuracy decomposition methods.
These methods detect the interaction by determining the dif-
ference between fitness difference and threshold. However,
they are extremely sensitive to the fidelity of observed objec-
tive value andwill completely fail to detect the interactions in
multiplicative noisy environments. We will explain the rea-
son in the section “Challenges of DG-based decomposition
methods in noisy environments”.

In this paper, we propose a novel decomposition method
named linkage measurement minimization (LMM), our pro-
posal allows an automatic decomposition that treats the
decomposition problem as a combinatorial optimization
problem, and we design the linkage measure function (LMF)
based on LINC-R as the objective function of combinatorial
optimization. In addition, the advanced optimizer: MDE-DS
is employed to optimize the sub-problems (MDE-DSCC-
LMM). More specifically, the main contributions of this
paper are as follows.

(1) Our proposal LMM provides a novel strategy to regard
the decomposition problem as a combinatorial optimiza-
tion problem, and the genetic algorithm is employed to
actively search the interactions between decision vari-
ables. We mathematically explain the feasibility of LMF
and its relationship with LINC-R. Theoretical analysis
shows how our proposal detects interactions in noisy
environments. In addition, we analyze the time com-
plexity of LMM, and the fitness evaluation times (FEs)
consumed in decomposition are controllable. And our
proposal can be extended to decompose the higher
dimensional, multi-objective, real-world problems with
a limited computational budget.

(2) MDE-DS is applied as the optimizer for sub-problems
and is well performed on various benchmark functions
in noisy environments. The results in this paper further
demonstrate that MDE-DS can accelerate cooperative
coevolutionary optimization significantly.

(3) Numerical experiments demonstrate that LMM is com-
petitive with some state-of-the-art decomposition meth-
ods for LSOPs in noisy environments, and the introduc-
tion of MDE-DS is efficient for sub-problems optimiza-
tion. To the best of our knowledge, not much work has
been reported on employing the CC framework to solve
LSOPs in noisy environments.

The rest of the paper is organized as follows: the section “Pre-
liminaries and related work” covers preliminaries,MDE-DS,
a brief review of the state-of-the-art decomposition method,
and reveals the challenges of DG-based decomposition
methods in multiplicative noisy environments. The sec-
tion “Our proposal:MDE-DSCC-LMM” provides a detailed
introduction to our proposal, MDE-DSCC-LMM. The sec-
tion “Numerical experiment and analysis” describes the
experiments on CEC2013 LSGO Suite [29] in noisy envi-
ronments and analyzes the experimental results. The section
“Discussion” discusses the direction of our research in the
future. Finally, the section “Conclusion” concludes the paper.

Preliminaries and related work

Preliminaries

Large-scale optimization problem

Without loss of generality, an LSOP can be defined as fol-
lows:

min f (X)

s.t. : X ∈ R
,
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Fig. 1 The flowchart of CC

where X = (x1, x2, . . . , xn) is an n-dimensional decision
vector, and each xi (i ∈ [1, n]) is a decision variable. f (X)

is the objective function needed to beminimized. In ourwork,
the large-scale optimization problem is a special case of
black-box optimization, where the number of decision vari-
ables n is large (e.g., n ≥ 1000).

Variables’ interaction

The concept of variable interaction is derived from biology.
In biology, if a feature at the phenotype level is contributed
by two or more genes, then we consider there are inter-
actions between these genes, and the genome composed
of these genes is called a linkage set [30]. In the defini-
tion of optimization problems. If min f (x1, x2, . . . , xn) =
(minc1 f1(..., ...), . . . ,mincm fm(..., ...)), then f (x) is a par-
tially separable function, and decision variables in identical
sub-problem consist of linkage set. There are two extreme
cases, when there is no interaction between all variables,
which means min f (x1, x2, . . . , xn) = min

∑n
i=1 f (xi1),

then we call f (x) is a fully separable function. On the con-
trary, we call f (x) a completely nonseparable function if all
variables have direct or indirect interactions with each other.

Cooperative coevolution

Inspired by divide and conquer, the CC framework was pro-
posed to deal with LSOPs by decomposing the problem into
multiple nonseparable sub-problems and optimizing them
alternately. A standard CC consists of two stages: decom-
position and optimization. Figure 1 shows the main steps of
the CC framework.

CC framework first decomposes the LSOPs into k non-
separable sub-problems with a certain strategy. Due to the
sub-solution i(i ∈ [1, k]) cannot form a complete solution
for evaluation, all sub-problems maintain a public context

vector [31] to construct a complete solution, and after opti-
mization, the latest information updates the context vector.
Some studies found that only one context vector may be too
greedy for evaluation. Therefore, the adaptive multi-context
CC framework [32] is proposed, which employs multiple
context vectors to co-evolve subcomponents.

Noise in objective functions

Additive noise [33] andmultiplicative noise [34]widely exist
in the evaluation of optimization problems. Mathematically,
the noisy objective function f N (X) of a trial solution X is
represented by

f N (X) = f (X) + η (1)

f N (X) = f (X) · (1 + β), (2)

where f (X) is the real objective function. Equation (1) shows
the objective function in addictive noisy environments, η is
the amplitude of the addictive noise. Equation (2) reveals the
relationship between the real objective function and objective
function in multiplicative noisy environments. β is a random
noise (such as Gaussian noise).

Anti-noise strategies in EAs

Many optimization problems suffer from noise, and to per-
form the optimization under the existence of noise, various
anti-noise strategies have been proposed in the literature. Fol-
lowing the classification reported in Ref. [35], two categories
of noise handling methods for EAs can be mainly classified;
each category can be divided into two sub-categories:

• Methods which require an increase in the computational
cost

(1) Explicit averaging methods
(2) Implicit averaging methods.

• Methods which perform hypotheses about the noise

(1) Averaging through approximated models
(2) Modification of the selection schemes.

Explicit averaging methods consider that re-sampling and
re-evaluation can reduce the impact of noise on the fitness
landscape. Increasing the re-evaluation times is equivalent to
reducing the variance of the estimated fitness. Thus, ideally,
an infinite sample size would reduce to 0 uncertainties in the
fitness estimations.

Implicit averaging states that a larger population allows
the evaluations of neighbor solutions, and thus, the fitness
landscape in a particular portion of decision space can be
estimated. Paper [36] has shown that a large population size
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reduces the influence of noise on the optimization process,
and paper [37] has proved that a GA with an infinite popula-
tion size would be noise-insensitive.

Both explicit and implicit averaging methods consume
more fitness evaluation times (FEs) to correct the objective
value, which is improper or even unacceptable for LSOPs
under the FEs’ limitation. To obtain efficient noise filter-
ingwithout excessive computational cost, various techniques
have been proposed in the literature, such as the introduction
of the approximated model [38], probability-based selection
schemes [39], self-adaptative parameter adjustment [40], and
so on.

Modified DE with distance-based selection

Differential evolution algorithm (DE) [41] was first proposed
in 1995 and has been wildly applied in data mining [42],
pattern recognition [43], artificial neural networks [44], and
other fields due to its characteristics, such as easy imple-
mentation, fast convergence speed, and strong robustness.
MDE-DS [45] is designed for continuous optimization prob-
lems in presence of noise with the modification in mutation,
crossover, and selection, and the detailed description of
MDE-DS is as follows.

Parameter control

The constants F and Cr are unnecessary, as F is randomly
sampled from 0.5 to 2 for each mutation operation and Cr is
randomly switched between 0.3 and 1 for each target vector.
Switching F between two extreme corners of the feasible
range is conducive to attaining a balance between exploration
and exploitation of the search. And there is a new parameter
b (the blending rate) in blending crossover, whose value is
also randomly chosen from among three candidates: a low
value of 0.1, a medium value of 0.5, and a high value of 0.9.
The utility of such a switching scheme has been discussed in
paper [46] for solving LSOPs.

Mutation

MDE-DS includes two different mutation strategies and
switches them randomly with 50% probability.

In the population centrality-based mutation, the elite sub-

population (top 50%) is selected and �̃Xbest,G is calculated by
the arithmetic mean (centroid) of the subpopulation individ-
uals. Eq. (3) is adopted to mutate the i th individual

�Vi,G = �Xr1,G + F
( �̃Xbest,G − �Xr2,G

)
, (3)

where �Xr1,G and �Xr2,G are two different individuals corre-
sponding to randomly chosen indices r1 and r2. �Vi,G is the

newly generated mutant vector corresponding to the current
target vector for present generation G.

In the DMP-based mutation scheme, the best individual
�Xbest,G in each generation is selected and the dimension-wise
average is implemented for both �Xbest,G and the current target
individual �Xi,G . The mutation is generated in the following
way:

�Vi,G = �Xi,G + �m ·
( �Mi,G

‖ �Mi,G‖

)

(4)

where �m = (Xbestdim,G − Xidim,G), with Xbestdim,G =
1
D

∑D
k=1 xbestk ,G and Xidim,G = 1

D

∑D
k=1 xik ,G .

�Mi,G

‖ �Mi,G‖ is a

unit vector with random direction.
The significance of the population centrality-based muta-

tion scheme is that it balances greediness while still main-
taining a certain extent of diversity. For example, it is less
greedy than the DE/best/1 scheme, and hence, the probabil-
ity of the optimization trapped in local optima is less. On the
other hand, the DMP-based mutation scheme prefers explo-
ration [47], and thus, in absence of any feedback about the
nature of the function, an unbiased combination of these two
methods is applied.

Crossover

Crossover plays an important role in generating promis-
ing offspring from two or more existing individuals within
the function landscape. Blending crossover is employed in
MDE-DS and described in Eq. (5)

u j,i,G =
{
b · x j,i,G + (1 − b) · v j,i,G

x j,i,G
, (5)

where u j,i,G and v j,i,G are the j th dimensions of the trial
and donor vectors, respectively, corresponding to the current
index i in generationG and x j,i,G is the j th dimension of the
current population individual �Xi,G . Blending recombination
has one parameter b, which is randomly selected from 0.1,
0.5, and 0.9. The concrete analysis can be referred to in Ref.
[45].

Selection

The canonical DE selects the offspring based on a simple
greedy strategy. However, if the fitness landscape gets cor-
rupted with noise, the greedy selection suffers a lot, because
in this case, the original fitness of parent and offspring is
unknown and it can be well nigh impossible to infer when
an offspring is superior or inferior to its parent. Thus, the
design of selection is the key to anti-noise. To handle the
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Fig. 2 A selection works on fitness landscape in noisy environments

presence of noise, a novel distance-based selection mecha-
nism is introduced without any extra parameter. There are
three cases of the proposed selection mechanism which are
described subsequently

�Xi,G+1 =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

�Ui,G , if f ( �Ui,G )

f ( �Xi,G )
≤ 1

�Ui,G , if f ( �Ui,G )

f ( �Xi,G )
> 1 and ps ≤ e− � f

Dis

�Xi,G , else.

(6)

In case 1, when f ( �Ui,G )

f ( �Xi,G )
≤ 1, the offspring replaces the parent

and survives to the next generation.
In case 2, although the parent performs better than the

offspring, the offspring still can be preserved and survive
into the next generation based on a stochastic principle.

And the probability is calculated by e− � f
Dis , where � f =⏐

⏐
⏐ f ( �Ui,G) − f ( �Xi,G)

⏐
⏐
⏐ represents the absolute fitness differ-

ence between �Ui,G and �Xi,G , Dis = ∑D
k=1

⏐
⏐ui,k − xi,k

⏐
⏐

is the Manhattan distance between those two vectors. Man-
hattan distance is applied because of its simplicity and
computational efficiency, and ps is a random number gener-
ated from 0 to 1.

In case 3, If the parent significantly outperforms than off-
spring, then the offspring is removed and the parent persists
to the next generation.

This selection process is further illustrated in Fig. 2.
Figure 2 shows a fitness landscape scenario both in

noiseless environments and noisy environments, p and p
′

represent the parent individual in the original fitness land-
scape and landscape in noisy environments,o ando

′
represent

the offspring individual in original fitness landscape and
landscape in noisy environments, respectively. The fitness

information we can observe is only in noisy environments,
so in minimization problems, o

′
will be rejected to replace

the p
′
in the next generation. The objective value of p is bet-

ter than o in the real fitness landscape, and if we re-evaluate
the o

′
and p

′
, the domination may be changed. The mecha-

nism of selection in MDE-DS allows the algorithm to give
us some probabilistic flexibility to select worse solutions as
in noise-affected landscapes.

In summary, the pseudocode of MDE-DS is shown in
Algorithm 1

Algorithm 1MDE-DS
Require: Population size : s;Maximum iteration : T ; Dimension : D
Ensure: Optimized population : X; Fitness of population X : F
1: t ← 0
2: X ← initialPop(s, D)

3: F ← evaluate(X)

4: while t < T and not stop criterion do
5: for i = 0 to s do
6: � (Mutation)
7: r ← rand(0, 1)
8: if r ≤ 0.5 then
9: update �Vi,G by Eq. (3)
10: else
11: update �Vi,G by Eq. (4)
12: end if
13: � (Crossover)
14: Cr ← rand(0.3, 1)
15: b ← randChoice([0.1, 0.5, 0.9])
16: for j = 0 to D do
17: update u j,i,G = by Eq. (5)
18: end for
19: � (Selection)
20: Fi ← evaluate(Ui )

21: � fi =
⏐
⏐
⏐ f ( �Ui ) − f ( �Xi )

⏐
⏐
⏐

22: Dis = ∑D
k=1

⏐
⏐ui,k − xi,k

⏐
⏐

23: ps ← rand(0, 1)
24: choose �Xi,G+1 by Eq. (6)
25: i ← i + 1
26: end for
27: t ← t + 1
28: end while
29: return X , F

A brief review of the state-of-the-art decomposition
method

Based on the divide and conquer, the CC framework decom-
poses the LSOPs into multiple nonseparable sub-problems
and optimizes them alternately, which is the mainstream
framework for solving LSOPs. In this section, we will briefly
review the state-of-the-art decomposition method.

Taking the LINC-R [30] as a pioneer, perturbation-based
decomposition methods become one of the most popular
strategies to collaborate with the CC framework. Equation
(7) defines the perturbation in the i th dimension and the j th
dimension
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s = (x1, x2, . . . , xn)

si = (x1, . . . , xi + δ, . . . , xn)

s j = (x1, . . . , x j + δ, . . . , xn)

si j = (x1, . . . , xi + δ, . . . , x j + δ, . . . , xn).

(7)

LINC-R identifies the interaction between variables based
on the fitness difference of perturbation with pre-defined
hyperparameter ε. More specifically

∃s ∈ Pop :
if |( f (si j ) − f (si )) − ( f (s j ) − f (s))| > ε,

then xi and x j are nonseparable.

(8)

ε is the allowable error. DG extends Eq. (8) first to LSOPs up
to 1000-D. Due to the FEs’ limitation in LSOPs, the fitness
difference from the lower bound of search space to the upper
bound can be accepted. The reuse of fitness and negligence of
indirect interactions decreases the needed FEs to O( n

2

m ), and
m is the number of sub-problems. In paper [24], a sensitivity
test for threshold ε is also implemented, the experimental
results show that the DG is sensitive to the threshold ε, and
ε = 10−3 is a recommended value.

Subsequently, the extended DG (XDG) [25] noticed that
DG cannot identify the overlapping; thus, it divides all direct
and indirect interacting variables into a sub-problem, and
then, the overlappings between sub-problems are checked to
identify conditional interactions. The needed FEs of XDG
are approximately n2. The complexity of the XDG results
in an unsuitable allocation of computational cost between
decomposition and optimization and limits the development
of XDG to deal with higher dimensional problems.

The high computational cost of decomposition is a criti-
cal problem. DG2 [26], a faster and more accurate DG-based
decomposition method, was proposed to address this issue.
DG2 utilizes the transmissibility of separability to save the
FEs. For example, if x1 interacts with x2 and x3, the identi-
fication between x2 and x3 is unnecessary, as they belong to
the same sub-problem, and the computational cost of DG2 is
reduced to n2+n+2

2 .
One of the most popular DG-based methods is Recur-

sive DG (RDG) [48]. The RDG examines the interactions
between a pair of sub-problems rather than a pair of single
variables. For f : RD → R is an objective function, X1 ⊂ X
and X2 ⊂ X are two mutually exclusive subsets of variables:
X1 ∩ X2 = ∅. If there are two unit vectors u1 ∈ UX1 and
u2 ∈ UX2 , two real numbers l1, l2 > 0 and a solution x∗ to
satisfy Eq. (9)

f (x∗ + l1u1 + l2u2) − f (x∗ + l2u2) �= f (x∗ + l1u1) − f (x∗),

(9)

then there are some interactions between variables in X1 and
X2; otherwise, X1 and X2 are considered as separable sets.
If X1 and X2 interact with each other, and RDG divides X2

into two equal-sized and mutually exclusive subsets, then
interactions between X1 and the two subsets are detected.
Repeat the above process until RDGfinds the variableswhich
interact with X1. The computational complexity of RDG is
O(n log2 n), which is better than DG, XDG, and DG2, and
more friendly to higher dimensional problems.

The hyperparameter ε also plays an important role in inter-
action identification, and different problems have various
fitness landscape characteristics, and the identical thresh-
old may not be suitable for all problems. Inspired by DG2,
RDG2 [49] introduces an upper bound of the round-off errors
incurred by the calculation of the non-linearity term and
applies it as the threshold value. The experimental results
in Ref. [49] showed that RDG2 improves the accuracy of
RDG in identifying the interactions between variables.

Challenges of DG-based decompositionmethods in
noisy environments

Additive noise and multiplicative noise are two representa-
tive noises. Additive noise is often irrelevant to the fitness
landscape, so we can carefully adjust the parameters to over-
come the additive noise in the decomposition, although it
is not easy [50]. However, multiplicative noise is related to
the fitness landscape, so fitness can amplify the noise. Deal-
ing with multiplicative noise is more difficult than additive
noise in the decomposition stage. Taking the LINC-R as an
example

∃s ∈ Pop :
�N
1 = f N (si ) − f N (s) = f (si )(1 + β1) − f (s)(1 + β2)

�N
2 = f N (si j ) − f N (s j ) = f (si j )(1 + β3) − f (s j )(1 + β4)

if |�N
2 − �N

1 | > ε,

then xi and x j are nonseparable (10)

βi is Gaussian noise. |�N
2 −�N

1 | = |�2 −�1 + f (si j )β3 −
f (s j )β4− f (si )β1+ f (s)β2|.When the noiseβ ∼ N (0, σ 2),
we define the noise term φi j = f (si j )β3 − f (s j )β4 −
f (si )β1 + f (s)β2 which follows the distribution: φi j ∼
N (0, ( f 2(si j )+ f 2(s j )+ f 2(s j )+ f 2(s))σ 2). In noisy envi-
ronments with multiplicative noise, LINC-R cannot identify
that the fitness difference is caused by interaction or noise and
the probability of φi j = 0 being satisfied is almost 0 [50]. In
practice, the decompositionmethods developedon theLINC-
R, such asDG,DG2, RDG, etc. will fail in environmentswith
multiplicative noise. We will provide experimental results
of decomposition in the section “Performance of LMM”.
Therefore, grouping methods that detect interactions by per-
turbation face severe challenges.
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Fig. 3 The flowchart of decomposition (LMM)

Our proposal: MDE-DSCC-LMM

In this section, we will introduce the details of our proposal.
Our proposal consists of two stages: decomposition and
optimization. In the decomposition, we divide the decision
variables into sub-problems with our proposal: LMM, and in
the optimization, MDE-DS is employed as a basic optimizer
to optimize the sub-problems. Next, the concrete procedures
of decomposition and optimization will be explained.

Decomposition: LMM

First, we provide the flowchart of our proposal in decompo-
sition: LMM. The flowchart is shown in Fig. 3.

The basic idea is that we regard the decomposition prob-
lem as a combinatorial optimization problem and design the
LMF based on LINC-R to lead the direction of searching for
a better decomposition solution. The specific derivation of
LMF is as follows.

The original LINC-R is defined as Eq. (11)
∃s ∈ Pop:

if |( f (si j ) − f (s j )) − ( f (si ) − f (s))| > ε

then xi and x j are nonseparable

, (11)

where the size of Pop is m, FEs consumed in a pair of vari-
ables based on Pop is 4m, and the interaction between every

( )
( )

( )

( )

(a)

( )

( )

( )

( )

(b)

Fig. 4 a LINC-R works on the separable variables. b Variant LINC-R
works on the separable variables

( )

( )

( )

( )

( )

Fig. 5 The variant LINC-R works on 3-D space [53]

pair of variables is identified in LINC-R. Thus, in the n−D
problem, the necessary FEs is 2mn(n + 1), which is unaf-
fordable for LSOPs. Many studies [18,24,51] only detect the
interactions by calculating the fitness difference from the
lower bound of search space to the upper bound to save the
FEs in decomposition, and we adopt the same strategy in our
proposal, although it is not so robust and may fail to detect
the interactions in trap functions [52].

We also notice that the original LINC-R can be trans-
formed into the vector addition form. Equation (12) shows
this variant LINC-R

if |( f (si j ) − f (s)) − (( f (si ) − f (s)) + ( f (s j ) − f (s)))|
< ε then xi and x j are separable.

(12)

Figure 4 shows howLINC-Rand the variant LINC-Rwork
on the separable variables xi and x j . Although the form is
different, the mechanisms of LINC-R and variant LINC-R
are identical.

Basedon this interestingfinding,wederiveLINC-R to3-D
and higher dimensions. In 3-D space, the schematic diagram
is shown in Fig. 5.
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Here, we define the fitness difference in 3-D

�i = f (si ) − f (s)

� j = f (s j ) − f (s)

�k = f (sk) − f (s)

�i jk = f (si jk) − f (s).

(13)

When the variant LINC-R is applied simultaneously to
determine the interactions between xi , x j , and xk

if |�i jk − (�i + � j + �k)| < ε,

then xi , x j , and xk are separable.
(14)

Therefore, we can reasonably infer that when the dimen-
sion reaches n

if |�1,2,...,n − (�1 + �2 + · · · + �n)| < ε

then x1, x2, . . . , .xn are separable.
(15)

However, when Eq. (15) is not satisfied, we only know
that interactions exist in some variables, but we cannot know
in which pairs of variables. Taking 3-D space as an example

if |�i jk − (�i + � j + �k)| > ε and |�i jk − (�i j

+ �k)| < ε then xi , x j are nonseparabale and xk

is separable from xi , x j .

(16)

Therefore, in the n-dimensional space, although it is dif-
ficult to detect the interactions between multiple variables
through high-dimensional LINC-R directly, we can actively
search for the interactions between variables through heuris-
tic algorithms. According to the above description, in the
n-dimensional problem, the linkage measurement function
(LMF) is defined in Eq. (17)

LMF(s) =
⎛

⎝�1,2,...,n −
m∑

i, j,...

�i, j,...

⎞

⎠

2

; (17)

m is the number of sub-problems. LMF in noisy environ-
ments is defined in Eq. (18)

LMFN(s) =
⎛

⎝�N
1,2,...,n −

m∑

i, j,...

�N
i, j,...

⎞

⎠

2

, (18)

where �N
1,2,...,n = f N (s1,2,...,n) − f N (s) = f (s1,2,...,n)(1+

βi ) − f (s)(1 + β j ). To optimize the LMFN(s), EGA is
employed as the basic optimizer. Figure 6 demonstrates that
how to decode from genotype to decomposition.

The length of a chromosome is LD, L is the genome
length, and D is the dimension of the problem.

We decode the binary chromosome to decimal phenotype
level and divide the decision variables into corresponding
sub-problems, and the decision variables assigned to sub-
problem0are regarded as separable variables. This procedure
of optimization guided by LMF is named linkage mea-
surement minimization (LMM), and the pseudocode of the
decomposition is shown in Algorithm 2

Algorithm 2 The Pseudocode of decomposition
Require: Population size : s;Genome length :

L;Maximum iteration : T Dimension : D
Ensure: The best decomposition : E
1: � (Decomposition solution initialization)
2: for i = 0 to s1 do
3: for j = 0 to D do
4: n ← randint(0, 2L−1 − 1)
5: bn ← binary(n)

6: Pt
i, j ← bn

7: end for
8: end for
9: Ft ← evaluate(Pt )
10: E ← bestIndi(Pt , Ft ) # save the best solution
11: � (Optimization by EGA)
12: while t = 0 and t < T do
13: Pt+1 ← selection(Pt , Ft , s)
14: Pt+1 ← crossover(Pt+1)
15: Pt+1 ← mutation(Pt+1)
16: Ft+1 ← evaluate(Pt+1)
17: Pt+1 ← replace(Pt+1, E) # elite is inherited to next generation
18: E ← bestIndi(Pt+1, Ft+1) # update the current best individual
19: t ← t + 1
20: end while
21: return E

As the general process ofGA,wefirst initialize the decom-
position solutions randomly in Algorithm 2, from line 2 to 8.
The object E saves the best decomposition solution. Then,we
repeat the procedure of selection, crossover, mutation, eval-
uation, and inheritance until the iteration reaches the stop
criterion from line 12 to 19. The elitist strategy [54] directly
replicates the best individual to the next generation, which
can prevent the elite individual from destroying the superior
gene and chromosome structure during optimization.

Time complexity analysis

FEs consumed in interaction identification are analyzed in
this section. As the structure of an individual in Fig. 6, the
best andworst time complexity for evaluating an individual is
O(1) and O(D), when all decision variables are identified as
nonseparable and separable, respectively. D is the dimension
of problems. Suppose that the population size is N ,maximum
iteration is M . Thus, the best and worst time complexity of
our proposal LMM is O(NM) and O(DNM).
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Fig. 6 A demonstration of
decoding from genotype to
decomposition 10 1 0
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Theoretical support for LMM in noisy environments

It is evident that the optimization guided by LMF can iden-
tify the interactions in the noiseless environment, because
the individuals containing correct linkage information have
lower linkage measurement values and higher fitness, which
prefer to survive in the selection of EGA. An example we
mentioned before is Eq. (16). And an important explanation
is why LMM can identify the interactions in noisy environ-
ments. Here, we provide theoretical support.

Corollary Let xi and x j be separable decision variables, and
xm and xn be nonseparable decision variables. I (xi , x j ) =
( f (si j ) − f (si )) − ( f (s j ) − f (s)) and I N (xi , x j ) =
( f N (si j )− f N (si ))−( f N (s j )− f N (s)) represent the inten-
sity of interaction between xi and x j in noiseless environment
and noisy environments, respectively. In noisy environ-
ments, if we prove that the probability P(I N (xm, xn) >

I N (xi , x j )) > 0, which means it is possible that the inten-
sity of the interaction between nonseparable variables can
be stronger than separable variables in noisy environments,
then the minimization of LMF can guide the direction to
search for more interactions.

Proposition In noisy environments, the probability
P(I N (xm, xn) > I N (xi , x j )) > 0, and individuals con-
taining correct detected interactions have better fitness to
survive.

Proof In noisy environments, the noise β ∼ N (0, σ 2). The
relationship between I N (·) and I (·) is defined in Eq. (19)

I N (xi , x j ) = I (xi , x j ) + (β1 f (si j ) − β2 f (si ))

− (β3 f (s j ) − β4 f (s)) = I (xi , x j ) + φi j
,

(19)

where φi j = (β1 f (si j ) − β2 f (si )) − (β3 f (s j ) − β4 f (s)),
and φi j follows the distribution:

φi j ∼ N (0, ( f 2(si j ) + f 2(s j )

+ f 2(s j ) + f 2(s))σ 2), (20)

and I N (xi , x j ) follows the distribution:

I N (xi , x j ) ∼ N (I (xi , x j ), ( f
2(si j ) + f 2(s j )

+ f 2(s j ) + f 2(s))σ 2). (21)

Due to xi and x j are separable variables, xm and xn are
nonseparable variables; similarly

I N (xi , x j ) ∼ N (0, ( f 2(si j ) + f 2(s j ) + f 2(s j )

+ f 2(s))σ 2)I N (xm , xn) ∼ N (I (xm , xn), ( f
2(smn)

+ f 2(sm) + f 2(sn) + f 2(s))σ 2). (22)

Here, we introduce a distribution Y = I N (xm, xn) −
I N (xi , x j ), and the problem is transformed to prove P(Y >

0) > 0. Y follows the distribution:

Y ∼ N (I (xm, xn), ( f
2(si j ) + f 2(s j ) + f 2(s j ) + f 2(s))σ 2

+ ( f 2(smn) + f 2(sm) + f 2(sn) + f 2(s))σ 2)

∼ N (I (xm, xn), σi jmn).

(23)

The expectation of Y is I (xm, xn), and there are two cases
that need to be discussed:

Case 1: I (xm, xn) > 0: In this case, P(Y > 0) > 0.5.
Case 2: I (xm, xn) < 0: In this case, 0 < P(Y > 0) < 0.5.
In summary, P(I N (xm, xn) > I N (xi , x j )) > 0 is true,

and the optimization of LMF has the probability to detect
more interactions in noisy environments, which can be
employed as the objective function in our experiment. ��

Optimization: MDE-DSCC

Figure 7 shows the procedure of optimization.
In the optimization, we first introduce the decomposition

from Algorithm 2 to divide the decision variables into k sub-
problems, and an empty set of the context vector is initialized.
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Optimization (Alg. 3)

LSOPs

sub-problem 

Mutation and 
crossover by MDE-DS

Population initialization

Evaluation

Terminate?

Evaluate the offspring

Y

N

decompose by Alg. 2

Context vector
participates in

Update the sub-solution and 
form a complete solution 

Selection by MDE-DS

MDE-DS (Alg. 1)

Fig. 7 The flowchart of optimization (MDE-DSCC)

For each sub-problem i(i ∈ [1, k]), we alternately optimize
it with MDE-DS. The pseudocode of the whole optimization
stage is shown in Algorithm 3.

Algorithm 3 Pseudocode of optimization
Require: Dimension : D;Computational budget :

C; Population size : M Maximum iteration : T
Ensure: The best solution : E
1: SP ← LMM() # Alg. 2 decomposes the original problem
2: � (Initialization)
3: V ← [0] ∗ D # empty context vector
4: for i = 0 to len(SP) do
5: Pt

i ← initialPop(SPi , M)

6: Ot
i ← evaluate(SPi , V )

7: E ← bestIndi(Pt
i , O

t
i )

8: V ← update(V , E)

9: end for
10: � (Optimization)
11: while t = 0 and t < T do
12: for i = 0 to len(SP) do
13: Pt+1

i , Ot+1
i ← MDE-DS(Pt

i , O
t
i , V ) # Alg. 1

14: E ← bestIndi(Pt+1
i , Ot+1

i )

15: V ← update(V , E)

16: end for
17: t ← t + 1
18: end while
19: return E

In Algorithm 3, the initialization of optimization is exe-
cuted from line 3 to 10. Here, we randomly generate
the sub-populations for each sub-problem and update the

context vector after evaluating the sub-populations. Then,
sub-problems are optimized alternately from line 12 to 20
until all FEs consumed. The context vector is updated after
every generation of optimization is finished.

Numerical experiment and analysis

In this section, a set of experiments are implemented to
evaluate our proposal, MDE-DSCC-LMM. In the section
“Experiment settings”, we introduce the experiment settings,
including benchmark functions, comparing methods, and
performance indicators. In the section “Performance of our
proposal: MDE-DSCC-LMM”, we provide the experimen-
tal results of our proposal and comparing methods. Finally,
we analyze our proposal both in the decomposition and opti-
mization in the section “Analysis”.

Experiment settings

Benchmark functions

We design 15 test functions in noisy environments based on
CEC2013 LSGO Suite, and Eq. (24) defines the benchmark
functions in our experiments

f Ni (x) = fi (x) · (1 + β), i ∈ [1, 15] (24)

β ∼ N (0, 0.01). Briefly, this benchmark suite consists of 15
test functions with 4 categories.

(1) f N1 (x) to f N3 (x): fully separable functions in noisy envi-
ronments;

(2) f N4 (x) to f N7 (x): partially separable functions with 7
none-separable parts in noisy environments;

(3) f N8 (x) to f N11(x): partially separable functions with 20
none-separable parts in noisy environments;

(4) f N12(x) to f N15(x): functionswith overlapping sub-problems
in noisy environments;
f13 and f14 consist of 905 decision variables, and the rest
functions are 1000-D problems.

Comparing methods and parameters

In our experiment design, we compare the decomposition
strategy of our proposal with various grouping methods, and
the algorithms applied in the comparisons are listed in Tables
1 and 2 shows the parameters of our proposal in the decom-
position stage. We also conduct the experiment between
MDE-DSCC-LMM and DECC-LMM to show the effect of
the introduction of MDE-DS. The maximum FEs including
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Table 1 A summary of the algorithms under comparison

Algorithms Decomposition methods

DECC-D Delta grouping [55]

DECC-G Random grouping [56]

DECC-DG DG [51]

DECC-RDG RDG [18]

DECC-DG2 DG2 [26]

DECC-LMM LMM

MDE-DSCC-LMM

decomposition and optimization are 3,000,000, and the pop-
ulation size of optimization for each sub-problem is set to
30.

Performance indicators

There are two stages of our proposal that need to be evaluated:
LMM and MDE-DSCC.

To evaluate the LMM, three metrics are employed: FEs
consumed in decomposition, decomposition accuracy (DA),
and optimization results. We adopt the calculation method

Table 3 The detailed decomposition results of DG, DG2, and RDG on CEC2013 LSGO Suite in noisy environments

Func Sep. vars Nonsep. vars Nonsep. groups DG(ε = 10−3)/DG2/RDG(α = 10−10)

Grouped sep. vars Grouped nonsep. vars Formed group’s number

f1 1000 0 0 0/0/0 1000/1000/1000 1/1/1

f2 1000 0 0 0/0/0 1000/1000/1000 1/1/1

f3 1000 0 0 0/0/0 1000/1000/1000 1/1/1

f4 700 300 7 0/0/0 1000/1000/1000 1/1/1

f5 700 300 7 0/0/0 1000/1000/1000 1/1/1

f6 700 300 7 0/0/0 1000/1000/1000 1/1/1

f7 700 300 7 0/0/0 1000/1000/1000 1/1/1

f8 0 1000 20 0/0/0 1000/1000/1000 1/1/1

f9 0 1000 20 0/0/0 1000/1000/1000 1/1/1

f10 0 1000 20 0/0/0 1000/1000/1000 1/1/1

f11 0 1000 20 0/0/0 1000/1000/1000 1/1/1

f12 0 1000 1 0/0/0 1000/1000/1000 1/1/1

f13 0 905 1 0/0/0 905/905/905 1/1/1

f14 0 905 1 0/0/0 905/905/905 1/1/1

f15 0 1000 1 0/0/0 1000/1000/1000 1/1/1

Table 4 The DA and consumed
FEs of DG, RDG, DG2, and
LMM on CEC2013 LSGO Suite
in noisy environments

Func DG DG2 RDG LMM

DA FEs DA FEs DA FEs DA FEs

f1 – 2.00e+03 – 5.01e+05 – 6.16e+03 – 6.14e+04

f2 – 2.00e+03 – 5.01e+05 – 6.16e+03 – 6.21e+04

f3 – 2.00e+03 – 5.01e+05 – 6.16e+03 – 6.17e+04

f4 10.0% 2.00e+03 10.0% 5.01e+05 10.0% 6.16e+03 16.1% 5.82e+04

f5 10.0% 2.00e+03 10.0% 5.01e+05 10.0% 6.16e+03 15.8% 5.82e+04

f6 10.0% 2.00e+03 10.0% 5.01e+05 10.0% 6.16e+03 16.4% 5.82e+04

f7 10.0% 2.00e+03 10.0% 5.01e+05 10.0% 6.16e+03 17.1% 5.82e+04

f8 10.0% 2.00e+03 10.0% 5.01e+05 10.0% 6.16e+03 14.1% 5.12e+04

f9 10.0% 2.00e+03 10.0% 5.01e+05 10.0% 6.16e+03 13.4% 4.56e+04

f10 10.0% 2.00e+03 10.0% 5.01e+05 10.0% 6.16e+03 13.8% 4.67e+04

f11 10.0% 2.00e+03 10.0% 5.01e+05 10.0% 6.16e+03 14.2% 4.12e+04

f12 100% 2.00e+03 100% 5.01e+05 100% 6.16e+03 11.9% 4.80e+04

f13 – 1.81e+03 – 4.09e+05 – 5.43+03 – 4.66e+04

f14 – 1.81e+03 – 4.09e+05 – 5.43+03 – 4.76e+04

f15 100% 2.00e+03 100% 5.01e+05 100% 6.16e+03 12.7% 4.80e+04
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Table 2 The parameters of decomposition optimization

Parameter Value

Optimization direction Minimization

Optimizer EGA

Population size 10

Maximum iteration 100

Genome length 5

of the DA in [49]. Essentially, DA is the ratio of the number
of interacting variables that are correctly grouped to the total
number of interacting variables. And to determine the exis-
tence of significance, we apply the Kruskal–Wallis test to the
fitness at the end of the optimization in 25 trial runs between
different decomposition methods. If significance exists, then
we apply the p value acquired from the Mann–Whitney U
test to do the Holm test. If LMM is significantly better than
the second-best algorithm, wemark * (significance level 5%)
or ** (significance level 10%) in the convergence curve.

To evaluate theMDE-DS, we apply theMann–Whitney U
test betweenMDE-DSCC-LMMandDECC-LMM. IfMDE-
DSCC-LMM is significantly better than DECC-LMM, we
mark *(significance level 5%) or **(significance level 10%)
at the end of optimization.

Performance of our proposal: MDE-DSCC-LMM

In this section, the performance of MDE-DSCC-LMM is
studied, both on the decomposition and optimization. Exper-

iments are conducted on the benchmark functions presented
in the section “Benchmark functions”.

Performance of LMM

To verify the analysis in the section “Challenges ofDG-based
decomposition methods in noisy environments” that DG-
based decomposition methods cannot detect the interactions
in noisy environments, we apply DG, DG2, and RDG to
decompose the benchmark functions. Table 3 shows the
decomposition results.

The decomposition results of DG-based methods prove
our analysis, all variables are divided into a sub-problem,
and interactions failed to be detected completely. Next, we
provide the DA and FEs for the decomposition of DG, RDG,
DG2, andLMMinTable 4, because thedecomposition results
of LMMare different in every trial run, theDAand consumed
FEs are calculated with the mean of 25 trial runs. The best
DA is in bold.

Finally, the optimization results of DECC-D, DECC-G,
DECC-DG, DECC-DG2, DECC-RDG, and DECC-LMM
are provided in Table 5, and the best solution is in bold.

Performance of MDE-DSCC

The mean and standard deviation of the optimum between
DECC-LMM and MDE-DSCC-LMM are shown in Table 6.

And the convergence curve of 25 independent runs of all
compared methods is shown in Fig. 8.

Table 5 Optimization results of DECC-D, DECC-G, DECC-DG, DECC-DG2, DECC-RDG, and DECC-LMM

Func DECC-D DECC-G DECC-DG DECC-DG2 DECC-RDG DECC-LMM

Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std

f1 1.52e+08 2.81e+07 1.49e+08 2.9e+07 1.92e+09 2.81e+08 2.44e+09 2.56e+08 2.00e+09 2.62e+08 6.10e+07 1.65e+07

f2 8.10e+04 3.30e+03 7.89e+04 3.19e+03 9.16e+04 3.35e+03 9.24e+04 2.43e+03 9.09e+04 3.43e+03 5.65e+04 9.39e+03

f3 2.11e+01 8.01e−02 2.12e+01 5.07e−02 2.11e+01 1.07e−01 2.12e+01 8.75e−02 2.11e+01 1.11e−01 2.11e+01 8.62e−02

f4 1.48e+12 6.30e+11 1.38e+12 6.36e+11 9.69e+11 2.41e+11 1.12e+12 2.34e+11 8.71e+11 2.31e+11 6.75e+11 2.31e+11

f5 1.36e+07 1.47e+06 1.27e+07 1.60e+06 1.53e+07 1.15e+06 1.54e+07 1.30e+06 1.56e+07 1.73e+06 1.06e+07 1.03e+06

f6 1.048e+06 2.98e+03 1.049e+06 3.33e+03 1.048e+06 3.16e+03 1.051e+06 3.70e+03 1.050e+06 3.94e+03 1.044e+06 5.88e+03

f7 3.77e+09 1.65e+09 3.70e+09 1.06e+09 3.40e+09 7.28e+08 3.84e+09 1.21e+09 4.04e+09 6.31e+08 2.88e+09 1.14e+09

f8 2.73e+16 1.20e+16 3.26e+16 2.13e+16 4.76e+16 1.79e+16 5.16e+16 1.84e+16 4.87e+16 2.07e+16 1.99e+16 5.33e+15

f9 9.41e+08 1.86e+08 9.38e+08 1.81e+08 1.15e+09 1.16e+08 1.20e+09 7.30e+07 1.14e+09 9.42e+07 8.22e+08 1.07e+08

f10 9.33e+07 3.98e+05 9.31e+07 4.12e+05 9.31e+07 3.79e+05 9.33e+07 4.43e+05 9.32e+07 5.21e+05 9.21e+07 6.88e+05

f11 4.41e+11 1.63e+11 5.46e+11 2.40e+11 4.57e+11 1.63e+11 5.05e+11 1.26e+11 4.77e+11 1.23e+11 2.54e+11 8.98e+10

f12 5.82e+12 2.68e+11 5.88e+12 2.05e+11 6.54e+12 2.46e+11 6.55e+12 2.01e+11 6.47e+12 2.06e+11 3.55e+12 3.59e+11

f13 2.79e+10 9.27e+09 2.63e+10 5.61e+09 3.69e+10 6.90e+09 4.11e+10 7.81e+09 3.92e+10 8.94e+09 1.81e+10 3.42e+09

f14 5.94e+11 1.69e+11 5.60e+11 1.47e+11 6.96e+11 1.51e+11 7.97e+11 1.45e+11 7.15e+11 1.17e+11 3.68e+11 6.65e+10

f15 4.34e+07 7.92e+06 4.04e+07 5.55e+06 6.03e+07 1.42e+07 7.05e+07 1.29e+07 5.65e+07 8.69e+06 2.20e+07 2.37e+06
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Table 6 Optimization results between DECC-LMM andMDE-DSCC-
LMM

Func DECC-LMM MDE-DSCC-LMM

Mean Std Mean Std

f1 6.10e+07 1.65e+07 4.95e+06 2.49e+06

f2 5.65e+04 9.39e+03 1.48e+04 9.15e+02

f3 2.11e+01 8.62e−02 2.09e+01 4.02e−02

f4 6.75e+11 2.31e+11 2.75e+11 1.64e+11

f5 1.06e+07 1.03e+06 9.79e+06 1.63e+06

f6 1.044e+06 5.88e+03 1.040e+06 2.72e+03

f7 2.88e+09 1.14e+09 1.08e+09 3.03e+08

f8 1.99e+16 5.33e+15 5.39e+15 1.53e+15

f9 8.22e+08 1.07e+08 8.80e+08 9.42e+07

f10 9.21e+07 6.88e+05 9.39e+07 4.77e+05

f11 2.54e+11 8.98e+10 1.61e+11 8.12e+10

f12 3.55e+12 3.59e+11 5.11e+08 1.27e+08

f13 1.81e+10 3.42e+09 1.17e+10 3.10e+09

f14 3.68e+11 6.65e+10 2.59e+11 7.79e+10

f15 2.20e+07 2.37e+06 9.58e+06 1.44e+06

Analysis

In this section, we will analyze the performance of LMMand
MDE-DS.

LMM in noisy environment

Theoretical analysis in the section “Theoretical support for
LMM in noisy environments” shows that LMM has the
potential to correctly detect the interactions between decision
variables in noisy environments. Experimental results in the
section “Performance of LMM” further support this analysis.
The identification of interactions in noisy environments is a
difficult task, and LMM identifies the decision variables with
relatively strong intensity as nonseparable. Although the fit-
ness differencewill be affected by noise, the relative intensity
of interactions between separable variables and nonseparable
variables still has a possible gap, which is the main reason
for successful implementation in noisy environments.

However, the optimization of LMF is not an easy task.
From the DA in Table 4, the interactions which can
be detected by LMM in noisy environments are limited.
Although LMF can lead the direction of optimization to
search for more correct interactions, a more powerful opti-
mizer will allow LMM to find more interactions.

LMM vs DG-based decomposition methods

DG-based decomposition methods detect the interactions by
determining the difference between the fitness difference and
a certain parameter ε, and even in fully separable functions,
the fitness difference will be amplified by noise and larger
than ε easily, which is the main reason of detection failure
in noisy environments, and all decision variables are divided
into a sub-problem and optimized directly. Due to the curse
of dimensionality, it is difficult for DE to find an acceptable
solution with this division. Thus, although the DA of DG-
based methods is higher than LMM in f12 and f15, LMM
still performed better than DG-based methods in the opti-
mization of these functions, and DG-based methods are the
most environmentally sensitive grouping method among the
compared methods.

LMM vs D

The schematic diagram of Delta Grouping is shown in Fig.
9.

Delta grouping notices that the difference in coordi-
nates from the initial random population to the optimized
population is different in the separable variables and the non-
separable variables. In Fig. 9, when the �i and � j has large
difference, Delta grouping identify xi and x j are separable.
This rough estimation is still affected by the noise, because
the Delta grouping samples in the fitness landscape and the
moving vector will still be influenced by the noise. Thus,
Delta grouping is second sensitive in our comparing meth-
ods, and experimental results fromTable 4 and Fig. 8 all show
that our proposed LMM outperforms DECC-D.

123



4452 Complex & Intelligent Systems (2023) 9:4439–4456

Fig. 8 The convergence curve of DECC-D, DECC-G, DECC-DG, DECC-DG2, DECC-RDG, DECC-LMM, and MDE-DSCC-LMM. The gap in
the initial period is FEs consumed for decomposition
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Fig. 8 continued
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(a) (b)

Parents

Offspring

Moving vector

∆

∆
∆ ∆

∆
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Fig. 9 aDelta groupingworks on the separable function.bDelta group-
ing works on the nonseparable function

LMM vs random grouping

It is unnecessary to provide any information about the fitness
landscape to Random grouping; therefore, Random group-
ing is the most environmentally insensitive decomposition
method. Although paper [56] has proven that Randomgroup-
ing is efficient and has a high probability to capture some
interactions, it cannot detect sufficient interactions and form
sub-problems properly, and LMM can detect more corrected
interactions, which is the main reason that LMM outper-
formed than Random grouping.

The efficiency of MDE-DS

Figure 8 and Table 6 all prove that MDE-DS has a strong
ability to search for better solutions comparedwith the canon-
ical DE in most benchmark functions, although canonical
DE performs better in f9 and f10. However, no optimiza-
tion algorithm can solve all optimization problems perfectly.
According to no free lunch theory [57] in optimization, the
average performance of any pair of algorithms A and B is
identical on all possible problems. Therefore, if an algorithm
performs well on a certain class of problems, it must pay for
that with performance degradation on the remaining prob-
lems, since this is the only way for all algorithms to have
the same performance on average across all functions. Thus,
although MDE-DS may perform worse than the canonical
DE in noiseless functions, it is successful to introduceMDE-
DS to solve problems in noisy environments.

Discussion

The above experimental results and analysis show that our
proposal both the LMM and the introduction of MDE-DS
have broad prospects to solve LSOPs in noisy environments.
However, there are still many aspects for improvement. Here,
we list some open topics for potential and future research.

How to improve the LMM

In this paper, we regard the decomposition problem as a
combinatorial optimization problem and design the LMF

to guide the direction of optimization by EGA. There
are two parts of LMM that can be improved: (1). The
design of LMF and (2). Optimizer for LMF. For LMF,
we notice that it is multi-modal, especially for separa-
ble functions. For example, f (x) = 2x1 + x22 − 0.5

√
x3,

((x1, x2, x3)), ((x1, x2), x3)), ((x1, x3), x2)), ((x1), (x2, x3)),
((x1), (x2), (x3)) are all global optima, and actually, ((x1),
(x2), (x3)) is our ideal decomposition. Thus, how to design
the LMF to avoid this issue is a problem that can be improved
in future research.And for the optimizer, this paper employed
EGA to optimize the LMF, and parts of correct interactions
can be detected in noisy environments. In future research, we
will apply various optimizers to optimize the LMF, and the
more powerful optimizers are expected to search for more
interactions in noisy environments.

Interactions’ identification in noisy environments

Although it is a difficult task to detect interactions in noisy
environments, it is necessary to develop an effective interac-
tion identification method to form sub-problems by a proper
strategy. Explicit averaging [6] can alleviate the uncertainty
of noise by re-evaluation. Let the re-evaluating times for
f N (X) be m and f Ni (X)) represents the i th re-evaluation
value. Then, we apply the principle of Monte Carlo integra-
tion [58], and the mean fitness estimation f̄ N (X), standard
deviation σ( f N (X)), and the standard error of the mean fit-
ness se( f N (X)) are calculated as

f̄ N (X) = 1

m

m∑

i=1

f Ni (X)

σ ( f N (X)) =
√
√
√
√ 1

m − 1

m∑

i=1

( f Ni (X) − f̄ N (X))

se( f̄ N (X)) = σ( f N (X))√
m

.

(25)

Equation (25) shows that sampling an individual’s objec-
tive function m times can reduce se( f̄ N (X)) by a factor of
m to improve the accuracy in the mean fitness estimation,
which means that the accuracy of sampling increases. It is a
feasible method to loosen the threshold ε in DG-based meth-
ods and combine the explicit averaging strategy to identify
the interactions, although it will consume lots of FEs.

Conclusion

In this paper, we proposed a novel strategy that regards
the decomposition problem as a combinatorial optimiza-
tion problem and designed the LMF to guide the direction
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of optimization. Besides, we introduce an advanced opti-
mizer named MDE-DS to tackle optimization problems in
noisy environments. Numerical experiments show that LMM
can detect some interactions in noisy environments, which
is competitive with the compared grouping methods. And
MDE-DS has a strong ability to search for better solutions,
which can accelerate the optimization in noisy environments.

In future research, we will focus on the improvement of
LMM and the development of efficient interaction identifi-
cation methods in noisy environments.
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