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ABSTRACT

Self-assembled monolayers (SAMs) represent an important tool in context of nanofabrication and molecular engineering of
surfaces and interfaces. The properties of functional SAMs depend not only on the character of the tail groups at the SAM-
ambient interface, but are also largely defined by their structure. In its turn, the latter parameter results from a complex interplay
of the structural forces and a variety of other factors, including so called odd-even effects, viz. dependence of the SAM structure
and properties on the parity of the number (odd or even) of individual building blocks in the backbone of the SAM constituents.
The most impressive manifestation of the odd-even effects is the structure of aryl-substituted alkanethiolate SAMs on Au(111)
and Ag(111), in which, in spite of the fact that the intermolecular interaction is mostly determined by the aryl part of the
monolayers, one observes a pronounced dependence of molecular inclination and, consequently, the packing density of the SAM-
forming molecules on the parity of number of methylene units in the alkyl linker. Here we review the properties of the above
systems as well as address fundamental reasons behind the odd-even effects, including the existence of a so-called bending
potential, which is frequently disregarded in analysis of the structure-building forces. The generality of the odd-even effects in
SAMs is additionally supported by the recent data for SAMs on GaAs, scanning tunneling microscopy data for SAMs on Ag(111),
and the data for the monolayers with selenolate and carboxyl anchoring groups on Au(111) and Ag(111). The implications of
these effects in terms of the control over the packing density and orientation of the tail groups at the SAM-ambient interface,
structural perfection, polymorphism, temperature-driven phase transitions, and SAM stability toward such factors as ionizing
radiation, exchange reaction, and electrochemical desorption are discussed. These implications place the odd-even effects as an
important tool for the design of functional SAMs in context of specific applications.
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maximal effect of the molecular assembly, e.g, in terms of
substrate protection, maximal density of functional tail groups, or
favorable orientation of the molecular dipole moments.
Optimization of these parameters relies on a complex interplay of
structural forces, including the interactions between the substrate
and anchoring groups, between the molecular backbones (chain-
chain), and between the tail groups, as well as possible sterical
constraints in case of bulky tail groups. There are, however, some
additional factors, which are especially relevant for such
archetypical and frequently used SAM systems as alkanethiolate
monolayers on Au(111) and Ag(111) substrates [2-4,15]. The
combination of an alkanethiolate linker and a unsubstituted or
substituted aryl moiety within a hybrid backbone, which can be
seen both as a substitution at an alkanethiolate or as an
introduction of an alkyl linker in between the aryl part and the

1 Introduction

Self-assembled monolayers (SAMs) are an important part of
modern nano- and biotechnology, providing a means to form well-
defined organic surfaces, a versatile tool to modify surface and
interfacial properties, and a platform for specific applications, such
as sensors, molecular electronics, carbon nanomembranes,
lithography, and more [1-14]. SAM-forming molecules are
usually rod-shaped and consist of three essential parts, viz.
anchoring group, making a covalent-like bonding to the substrate,
tail group, comprising the SAM-ambient interface, and molecular
backbone, connecting the anchoring and tail groups and driving
the process of self-assembly by intermolecular interactions. All
these parts can be flexibly and independently selected to adjust for
the identity of the substrate and the desired function of a
particular SAM. A specific combination of these parts as well as

the choice of the substrate define the structure of a SAM, which is
of primary importance for the SAM properties and the range of
possible applications. In most cases, dense molecular packing and
possibly upright molecular orientation are desirable, to achieve the

thiolate group, results generally in a non-trivial structural
behavior, termed as odd-even effects [16-18]. In spite of the fact
that the intermolecular interaction (Ej) is then mostly
dominated by the aryl part of the monolayers, there is a
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pronounced dependence of molecular inclination and,
consequently, the packing density of the SAM constituents on the
parity of the number (1) of methylene units in the alkyl linker.
The present paper reviews the properties of the respective systems
as well as addresses the fundamental reasons behind the odd-even
effects, including the existence of a so-called bending potential
(Epena)> which is frequently neglected in analysis of the structure-
building forces. The generality of the odd-even effects in SAMs is
additionally supported by recent data for GaAs substrates,
scanning tunneling microscopy data for Ag(111), and data for the
monolayers with selenolate and carboxyl anchoring groups on
Au(111) and Ag(111). The implications of these effects on the
packing density and orientation of the tail groups at the SAM-
ambient interface, structural perfection, polymorphism,
temperature-driven phase transitions, SAM stability toward
ionizing radiation, exchange reactions, and electrochemical
desorption are discussed. These implications place the odd-even
effects not only as an interesting phenomenon from the viewpoint
of fundamental research but also as an important tool for the
design of functional SAMs in context of specific applications.

2 Origin and manifestation of the odd-even
effects

The first hints that the introduction of an aliphatic linker between
the thiolate anchoring group and an aryl backbone can greatly
influence the structure of aromatic SAMs, resulting in some cases
in its significant improvement, were obtained in the early studies
involving SAMs of phenyl-, biphenyl, and terphenylthiols on
Au(111) [19-23]. It was found that the introduction of a single
methylene group between the aryl moiety and thiol group
significantly enhances the ability of the molecules to form ordered
monolayers and lead to an increase in the packing density
[19-23]. In a parallel study of a family of phenyl-substituted, long-
chain alkanethiolate SAMs on Au(111), only minor odd-even
behavior of some structural fingerprint characteristics was
recorded, although an odd-even variation of the wetting properties
for several liquids was found [24].

The first systematic study of the odd-even effects in aryl-
substituted alkanethiolate SAMs was performed for the
monolayers of w-(4-methyl-biphenyl-4-yl)-alkanethiols (CH;-
C¢H,-C¢H,-(CH,),-SH (MeBPnS; n = 1-6; Me = CH,)) formed
on Au(111) and Ag(111) substrates under the standard conditions
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temperature) [16, 17]. These systems (Fig. 1(a)) were studied by a
combination of several complementary experimental techniques,
including X-ray photoelectron spectroscopy (XPS), near-edge X-
ray absorption fine structure (NEXAFS) spectroscopy, and
infrared reflection-absorption spectroscopy (IRRAS). According to
the NEXAFS spectroscopy data (Figs. 1(b) and 1(c)), the average
tilt angles of the biphenyl groups in the MeBPnS SAMs vary in an
odd-even fashion, showing smaller values for n = odd and larger
values for n = even on Au and the opposite behavior on Ag. The
changes in the molecular inclination were accompanied by
alternating changes in the packing density, as evidenced by the
intensity ratios of the XPS signals stemming from the SAMs and
the substrate, respectively (Figs. 1(d) and 1(e)). Higher and lower
packing densities were observed for n = odd and n = even,
respectively, on Au; the opposite behavior was recorded on Ag.

The odd-even variation of the packing density was additionally
verified for Au(111) by scanning tunneling microscopy (STM)
[26,27]. Representative images for n = odd (MeBP3S) and n =
even (MeBP4S) systems are presented in Figs. 2(a) and 2(b),
respectively. According to these images, the structures and packing
densities of the respective SAMs are distinctly different. The unit
cell of the MeBP3S SAM, representative of the other MeBPnS
monolayers with n = odd as well, is described by an oblique
(2v/3xV3)R30° structure and contains two molecules. In
contrast, the MeBP4S SAM is described by a much larger,
rectangular (5+/3 x 3) structure with eight molecules per unit cell,
recorded for the other MeBPnS monolayers with n = even as well.
Significantly, the area occupied per molecule (molecular footprint)
for n = odd (21.6 A?) is smaller than that for n = even (27.05 A2
by about 25% [27], correlating thus perfectly with the results of the
spectroscopic characterization, described above [16, 17]. Note that
along with the linear dichroism in NEXAFS spectroscopy and the
intensity of the C 1s and substrate signals in the XPS spectra, a
variety of other fingerprint features associated with the structure of
the MeBPnS SAMs, such as intensities of the characteristic IR
modes, ellipsometric thicknesses, parameters of the photoemission
peaks, wetting properties, etc., exhibited odd-even behaviors
correlating perfectly with the structural changes [16, 17, 28].

The explanation of the odd-even behavior is illustrated in Fig. 3.
Two factors are of primary importance. First, the substrate-S-C
unit is obviously not a free-moving joint, which might adapt any
arbitrary angle to balance the structural forces in the given SAM.

(immersion into ethanolic precursor solution at room Rather, there is a preferable geometry of this joint, which can be
Au ——a90° (b)| Ag . NEXAFS (c)
m* 20° T o 01F 7 T T | ——
(a) CHs [ ] ¥ [ Au XPS (d)
n=6 n=6 2 0.08 i
20° 14° < [
O 2 0.06| A\/\' i
- %) L
3 wes| n=s —
2> 1 % Number of CH, units
‘0
c G 01F T T T T ]
O 2 n=4 n=4| © . Ag
= 20° 14° <°’ 0.08 - i
CH -~ g
SO(CH), ¥ ool )"
n=3 n=3 o L 1 1 1 1
11° 26° 3 4 5 6
NPT Livessninn [ Lo, M | TP Lo Lo L L Number of CHZ units
280 290 300 310 320 280 290 300 310 320

Photon energy (eV)

Photon energy (eV)

Figure1 (a) Schematic of the MeBPnS structure after its chemisorption onto the substrate. NEXAFS spectra of the MeBPnS SAMs on (b) Au and (c) Ag acquired at
X-ray incidence angles of 90° (bold solid lines) and 20° (shadowed spectra). The intensity difference at the position of the 1;* resonance, described as linear dichroism
in X-ray absorption, is a fingerprint of molecular orientation and orientational order [25]. The derived tilt angles of the biphenyl groups with respect to the surface
normal are given at the respective spectra. (d) and (e) XPS-derived intensity ratios as functions of 7. Reproduced (adapted) with permission from Ref. [16], © The

Royal Society of Chemistry 2000.

I~ %
I EEERL

Tsinghua University Press

@ Springer | www.editorialmanager.com/nare/default.asp



Nano Res. 2024, 17(5): 4231-4243

4233

Figure2 STM images of the (a) MeBP3S and (b) MeBP4S. SAMs on Au(111) along with the respective structural models for (c) MeBP3S and (d) MeBP4S. The unit
cells are marked (see text for details). The dimensions of the unit cells were determined with the help of the height profiles (not shown) along the lines A and B in (a)
and (b). Adapted with permission from Refs. [26, 27], © American Chemical Society 2003 and 2004, respectively.
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Figure 3 Schematic explanation of the odd-even effects in the aryl-(CH,),-S SAMs on (a) Au(111) and (b) Ag(111), by the example of MeBP2S and MeBP3S; the
biphenyl group is schematically drawn as a rounded rectangle. Balance of the structural forces associated with the E,q, intermolecular interaction (E,), and coverage
(Eqy) for (c) n = odd and (d) n = even on Au(111). The parameters are the substrate—S—C bond angle, the average distance between molecules, and the molecular
packing density. Adapted with permission from Refs. [28, 32], © American Chemical Society 2001 and 2006, respectively.

tentatively associated with an sp’ bonding configuration of the S
atom on Au(111) and an sp configuration of this atom on Ag(111)
[16], with the difference related probably to the different energetics
of S-Au and S-Ag bonds [29] and/or involvement of Au adatoms
on Au(111) [30,31]. The respective substrate—S—C angles are ~
104° and ~ 180°, giving a specific orientation to the adjacent CH,
segment. This orientation is then transferred to the aryl unit by the
alkyl linker, which tends to adopt the thermodynamically
favorable all-trans conformation—the second important factor in
the context of the odd-even effects. As seen in Figs. 3(a) and 3(b),
in which the extent of these effects is somewhat exaggerated, the
combination of the preferred bond angle and all-trans
conformation of the alkyl linker results in an upright orientation
of the aryl groups for n = odd on Au and n = even on Ag. In
contrast, strongly inclined orientation of these groups occurs for n
= even on Au and #n = odd on Ag, hindering a dense molecular
packing. Of course, the substrate-S-C joint is not absolutely rigid,
but can change its geometry to some extent, working against the
so-called bending potential, which reflects the optimal anchoring
geometry and has its minimum at a certain substrate-S-C angle,

specific for the particular substrate (see the top panels in Figs. 3(c)
and 3(d)). Thus, the bending potential contributes to the balance
of the “conventional” structural forces, affecting the resulting SAM
structure. There are, however, two distinctly different ways how
such a combination occurs depending on the parity of n [32], as
schematically illustrated in Figs. 3(c) and 3(d) for the case of
Au(111). The general tendencies of monomolecular assemblies are
to maximize the packing density (given by the number of Au-S
bonds per area unit) and to optimize the intermolecular
interactions. All this can be achieved easily in the case of # = odd,
in which the bending potential, entering the force balance in a
cooperative fashion, does not prevent dense molecular packing
and allows for most optimal molecular interaction (Fig. 3(c)) and
realization of a thermodynamic energy minimum. In contrast, for
n = even, the bending potential contributes to the force balance in
a competitive fashion, preventing a tight molecular packing and
optimal intermolecular interaction (Fig. 3(d)), so that an energetic
state less favorable than for n = odd is realized. As a result, the
Au-S-C joint is noticeably strained, which is in particular
reflected by the characteristic binding energies of the anchoring
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groups as measured by XPS [28,33] as well as by some other
properties, as will be discussed in further sections of this article.
Note that all arguments suitable for Au(111) in relation to Fig. 3(a)
are also applicable to Ag(111), with the reverse relation of the
structural effects to the parity of n. Note also that the inclination of
the aryl group is probably not the only orientational parameter
exhibiting odd-even behavior. It is possible that also the torsion
(twist) of the entire aryl group with respect to the tilt plane or
torsion between the two phenyl rings in the biphenyl moiety
exhibit an odd-even variation as well. Such torsion variation is
even sometimes considered as the major structural change [34],
which is, however, rather unlikely since the odd-even effects are
also recorded for acene groups, featuring annelated aromatic rings
(see below).

3 Generality of the odd-even effects

Whereas the odd-even effects have been first systematically
observed and rationalized for MeBPnS SAMs on Au(111) and
Ag(111) [16, 17,26-28], as discussed in the previous section, they
were later reported for a broad variety of other aryl groups, such as
terphenyl [33, 35, 36], perfluoroterphenyl [37], aceneoxazole [38],
perfluoroanthracene  [39], cyano-biphenyl [40,41], and
azobenzene [42]. So far, these effects were observed with all aryl
group tried, except for the specific molecular geometries discussed
in the next section.

Moreover, the odd-even effects were recorded not only for the
thiolate anchoring group and Au(111) and Ag(111) substrates but
also for the selenolate anchoring group, capable as well to bind
functional molecules to these substrates. Note that sulfur and
selenjum have similar valence electron configurations and are
neighbors in the 16" group of the periodic table, so that it is only
logical that the respectively anchored SAMs exhibit similar
properties.

Representative data for the SAMs of (methyl-biphenylyl)
alkaneselenolates (MeBPnSe) on Au(111) and Ag(111) are shown
in Fig.4. As seen in Figs. 4(a) and 4(b), both the effective SAM
thickness and the inclination of the biphenyl groups exhibit
distinct odd-even behavior, with the same relation of these
parameters to the parity of # as for the analogous monolayers with
the thiolate anchoring group (see Fig. 1) [43, 45]. Complementary
STM data for the MeBP3Se and MeBP4Se SAMs on Au(111) are
presented in Figs. 4(c) and 4(d), respectively, representative of the
entire MeBPnSe series [44]. The respective structural models and
schematic sketches of the structures are shown in Figs. 4(e) and
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4(g) for MeBP3Se and Figs. 4(f) and 4(h) for MeBP4Se [44].
According to the STM data, the unit cell of MeBPnSe SAMs with
n = odd can be described as close to a commensurate oblique
(24/3 x \/3)R30° structure with two molecules per unit cell (Fig.
4(c)). In contrast, the molecular arrangement in MeBPnSe SAMs
with n = even can be described by an irregular anisotropic
expansion of the above structure along its shorter unit cell vector
(Figs. 4(f) and 4(h)). Due to the irregularity, the respective unit
vector in the direction of the expansion cannot be defined but, as
the result of this expansion, the SAMs with n = even are
characterized by about 22%-28% lower packing density than
those with 7 = odd. Thus, the extent of the odd-even effects in the
MeBPnSe SAMs is close to that in the analogous MeBPnS
monolayers (~ 25%; see the previous section).

Interestingly, the structures of the MeBPnSe and MeBPnS
SAMs with n = odd are nearly identical, resulting from the
favorable balance of the structure-building interactions (see Fig.
3(c)). In contrast, the structures of the MeBPnSe and MeBPnS
SAMs with n = even are distinctly different, viz. the irregular
expanded, one-dimensional (1D)-ordered oblique (2v/3 x/3)
R30° arrangement (MeBPnSe) versus the two-dimensional (2D)-
ordered, rectangular (5v/3 x 3) structure (MeBPnS). Apart from
the competitive balance of the structure-building interactions (see
Fig. 3(d)), the key factor behind this difference is significant
mobility of the gold atoms in the topmost layer of the substrate
induced by the selenium atoms [44], resulting in a higher
adaptivity of the film structure to the specific balance of the
relevant interactions. The bonding between Se and Au substrate is
stronger than that for S, so that the anchoring Se group are
capable of dragging the topmost gold atoms to adapt a structure
most suitable for the given molecular assembly [46-48]. This drag
occurs however on the expense of bonding energy between the
atoms in the topmost and penultimate layers of the substrate, so
that there is an accumulation of stress increasing with the size of
the restructured domains. Consequently, these domains are
limited to a certain size, resulting in the irregularity of the overall
molecular structure [44].

Significantly, the odd-even effects are not limited to the
Au(111) and Ag(111) substrates, but are also characteristic of
semiconductor materials, such as GaAs. Whereas well defined
SAMs can be prepared on the different low-index surfaces of
GaAs using the thiolate anchoring group [50], the odd-even effects
were only tested for the GaAs(001) face. Both methyl-biphenyl-
(MeBPnS) and terphenyl-substituted (TPnS) molecules were
investigated and a similar behavior was recorded as with Au(111)

Figure4 (a) Effective film thickness and (b) average tilt angle of the biphenyl groups with respect to the surface normal in the MeBPnSe SAMs on Au(111) and
Ag(111). STM images of the (c) MeBP3Se and (d) MeBP4Se on Au(111) along with ((e) and (f)) the respective structural models and ((g) and (h)) schematics of the
molecular organization. Adapted with permission from Refs. [43, 44], © American Chemical Society 2007 and 2008, respectively.
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Figure5 (a) Average tilt angle of the terphenyl groups w1th respect to the surface normal, (b) effective film thickness derived from the XPS (black circles) and
NEXAFS (red circles) data, and (c) S 2p /As 3d intensity ratio for the TPnS SAMs on GaAs(001). (d) Schematic of the odd-even effects in the system. (e) Optimal
geometry of the GaAs-S-C joint. Adapted with permission from Ref. [49], © American Chemical Society 2013.

[49, 51]. Representative data for the latter system are shown in Fig.
5. There is a distinct odd-even behavior both in the orientation of
the terphenyl groups (Fig. 5(a)) and in the packing density in the
SAMs, expressed by their effective thickness (Fig. 5(b)) and the S
2p/As 3d intensity ratio (Fig. 5(c)). Interestingly, as shown in Fig.
5(d), the smaller molecular inclination and the higher packing
density are observed for the SAMs with n = odd, which mimics
the behavior of the analogous systems on Au(111) (see Fig.3(a)
and Ref. [35]). Consequently, the alkanethiolate SAMs on
GaAs(001) feature a similar bonding configuration of the S atom,
with an optimal bonding angle of ~ 105° (Fig. 5(e)).

Note that the odd-even effects are not necessarily limited to the
GaAs(001) substrate but can also occur for other semiconductor
materials, such as InP and Si, which, however, have not been
specifically studied so far in the given context. Also, metal
substrates other than Au(111) and Ag(111) may exhibit the odd-
even effects, which can be a subject of dedicated future research.

4 Geometry-related exceptions

As mentioned above, the odd-even effects have been observed for
all aryl groups tried. However, the situation is not entirely

straightforward in some specific cases, as shown by the example of
anthracene-terminated molecules (Fig. 6). The direct attachment
of anthracene (Ant) to the alkyl linker cannot occur along the long
axis because of the specific structure of acenes. Consequently, the
attachment has to take place asymmetrically, resulting in an
additional degree of freedom in form of the rotatability of the
anthracene group within a large space angle, as schematically
illustrated in Fig. 6(a) for the respective Ant-n-S SAMs on
Au(111). This rotation permits the adoption of an almost upright
orientation of the aromatic part regardless of the parity of n as
shown in Fig. 6(a) for n = 2 (even) and n = 3 (odd). Indeed, both
the inclination of the anthracene groups, given by the orientation
of the respective * orbitals (Fig. 6(b)) and the effective thickness
of the SAMs (Fig. 6(c)) do not exhibit pronounced and systematic
odd-even effects [52]. Nevertheless, the odd-even-effects can be
recovered for the (anthr)acene system, if it becomes annelated
with an oxazole (Ox) unit (Fig.6(d)), which allows a
(pseudo)symmetrization by permitting the substitution along the
long axis, as shown in Figs. 6(e) and 6(f) for the respective AntOx-
n-S SAMs [38].
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Figure 6 Schematic of the behavior of the (a) Ant-n-S and (b) AntOx-n-S SAMs on Au(111) and Ag(111) (for Ant-n-S only) along with ((b) and (e)) the average tilt
angle of the m* orbitals of the anthracene groups with respect to the surface normal and ((c) and (f)) the effective thickness for these monolayers. Note that the m*
orbitals of the anthracene group are oriented perpendicular to the plane of this group. Adapted with permission from Refs. [52, 38], © American Chemical Society

2011 and 2019, respectively.
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5 Polymorphism

The structure of aryl-substituted alkanethiolate and
alkaneselenolate SAMs with n = even on Au(111) and with n =
odd on Ag(111) results from a balance of several competitive
factors, as schematically shown in Fig.3(d). This can lead to
metastable structures, governed probably by kinetic factors, which
can be easily transformed into more stable ones by post-
deposition annealing. A representative example in this context is
provided by the MeBP4S and MeBP6S SAMs on Au(111) [32, 53],
with the data for the MeBP4S case shown in Fig. 7. As mentioned
above (section 2), preparation of this monolayer at the standard
conditions (room temperature, 1 mM solution) results in the
formation of a rectangular 5v/3 x 3 structure with eight molecules
per unit cell and an area per molecule of 27.05 A’ (Fig. 7(a)).
However, post-deposition annealing of this SAM at 373 K for 15 h
leads to the transformation of the 5v/3 x 3 structure, denoted as a-
phase, into a 61/3 x 24/3 arrangement, denoted as B-phase (Fig.
7(b)). The unit cell of the latter phase also contains eight molecules
but is significantly larger, so that the area per molecule becomes
324 A A further structural transformation occurs upon
annealing for 15 h at a slightly higher temperature of 383 K. It
corresponds to the emergence of a new, 21/3 x /13 structure with
four molecules in the unit cell and an area per molecule of 25.2 A2,
denoted as y-phase (Fig. 7(c)). The structures of all three phases
are additionally visualized in Fig.7(d). The different structural
arrangements and different molecular packing densities of these
phases are accompanied by different molecular orientations of the
SAM-forming molecules, as illustrated in Figs. 7(e) and 7(f) for the
a- and B-phase. The respective NEXAFS spectra exhibit distinctly
different extents of linear dichroism (intensity difference at the
positions of characteristic resonances upon variation of the
incidence angle of the primary X-rays). The analysis of these data
suggests that the molecules in the a- and p-phases not only feature
different tilt angles with respect to the surface normal but have
also different twist angles (torsion), describing the rotation of the
entire biphenyl group with respect to the tilt plane [32].

Note that polymorphism in aryl-substituted aliphatic SAMs was
not only reported for thiolates but for selenolates as well, viz. for
the MeBPnSe (1 = 2-6) monolayers on Au(111) [54]. Whereas the
SAMs with n = odd exhibited only a single phase, those with n =
even formed two or three different coexisting phases, including
the one observed at room temperature. The latter phase (a-phase)
featured 1D-character and an area per molecule of 26-27.7 A, In
contrast, the new phases had 2D-character and were either

3b,,

Intensity (a.u.)
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commensurate  (B-phase,  rectangular  5x2v/3)  or
incommensurate (y-phase, oblique 2v/3x1.2y/3) with the
Au(111) substrate, featuring an area per molecule of 37.5 and 26
A2 respectively [54]. Interestingly, the phase transition to the new
phases took place already at slightly elevated temperature of
incubation (333 K) confirming much higher mobility of MeBPnSe
molecules on Au(111) surface compared to MeBPnS for which
post-deposition annealing at noticeably higher temperature was
needed to induce the phase transitions (see above).

6 Carboxylate-anchored SAMs

As shown recently [55], odd-even effects in aryl-substituted
aliphatic monolayers are not limited to the thiolate- and selenolate-
anchored films, but are also characteristic of SAMs of aryl-
substituted fatty acids on Ag(111). For these films, the bonding to
the substrate occurs via the carboxylate (COO") anchoring group.
Representative data for the case of biphenyl-substituted
carboxylates (BPnCOO) are presented in Fig. 8. Accordingly, the
effective film thickness (Fig. 8(a)) and the area per molecule (Fig.
8(b)) exhibit distinct zig-zag behavior, with the higher thickness
and molecular density for n = even and the lower thickness and
molecular density for # = odd. The respective STM images show a
highly ordered molecular structure for n = even (Fig. 8(c)) and a
coexistence of amorphous (a) and quasi-ordered (B) phases for n
= even (Fig. 8(d)). The explanation of this behavior is illustrated in
Figs. 8(e)—8(h). Similar to the thiolate and selenolate case, the key
factors are (i) the optimal upright geometry of the substrate-OOC
joint with an optimal bonding angle across this joint of ~ 180° (see
Fig. 8(e)) and (ii) favorable all-trans conformation of the alkyl
linker, transferring the geometry of the substrate-OOC joint to
the attached biphenyl moiety, which follows the orientation of the
topmost CH, segment. Accordingly, n = even corresponds to
optimal adsorption geometry, allowing for upright orientation of
the terminal biphenyl groups and, consequently, for dense
molecular packing and long-range structural order (Fig. 8(e)). In
contrast, the BPnCOO films with n = even feature large
inclination of the biphenyl groups, hindering a dense molecular
packing and good orientational order and resulting in a liquid-like
structure. Note that the observed odd-even effects for the
BPnCOO SAMs on Ag are generally consistent with the tentative
model presented in Figs. 3(c) and 3(d), which, importantly, is
based on competition of only enthalpic contributions to the
energetics of the systems discussed in the previous sections. In
contrast, for the BPnCOO monolayers, the ordered and liquid-like
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Figure 7 High-resolution STM images of the MeBP4S SAM on Au(111) showing the structures of the (a) a, (b) B, and (c) y phases. (d) Schematic drawings of the
respective unit cells. ((e) and (f)) NEXAFS spectra of the a and [ phases of the MeBP4S SAM acquired at X-ray incidence angles of 90° (bold solid lines) and 30°
(shadowed). The most characteristic absorption resonances are marked. Adapted with permission from Ref. [32], © American Chemical Society 2006.
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Figure8 (a) Effective film thickness and (b) area per molecule for the BPnCOO SAMs on Ag(111), along with STM images of the (c) BP2COO and (d) BP3COO
monolayers, and the schematic drawing of the molecular arrangement for ((e) and (f)) n = even and ((g) and (h)) n = odd under the reasonable assumption of an
optimal substrate—OOC bonding angle of ~ 180° in (e) and (g). The unit cell of the BP2COO structure is marked in (c) and drawn in (f). The amorphous (a) and quasi-
ordered (B) phases are marked in (d). Adapted with permission from Ref. [55], © American Chemical Society 2017.

structures obtained for n = even and » = odd, respectively, indicate
certain entropic contributions which are, apparently, still of minor
importance considering that the observed odd-even effects are
very similar to those in the thiolate and selenolate SAMs where
such contributions are presumably quite small. These
considerations additionally confirm the validity of the proposed
model where enthalpic contributions, such as coverage,
intermolecular interactions and the bending potential, play a
dominant role for the odd-even effects.

7 Odd-even effect related properties

The significant variation of the packing density, orientational
order, molecular orientation, and structure of aryl-substituted
aliphatic SAMs, associated with the parity of n, affects their
properties. This includes in particular the sensitivity of these
monolayers to electron irradiation, which is an important issue in
context of SAM-based lithography and carbon nanomembrane
(CNM) fabrication [6,13,56] Typical reactions during electron
exposure are cleavage of intramolecular C-H and C-C bonds as
well as S-substrate bonds, followed by the formation of
intermolecular C-C bonds (crosslinking), and rearrangment of
the residual molecular backbones [56]. All these processes are
accompanied by molecular reorientation. Representative data are
shown in Fig. 9, in which the evolution of several fingerprint
parameters of the MeBPnS SAMs (n = 0, 1, 4, 5 and 12) on
Au(111) after their exposure to electron irradiation (10 eV; 8
mC/cm’) are presented. Accordingly, the intensities of the
characteristic IR modes for both the biphenyl group (Fig. 9(a))
and terminal methyl groups (Fig. 9(b)) decrease much less for the

//

SAMs with n = odd than for those with #n = even. A similar
situation occurs also for the linear dichroism in X-ray absorption
(Fig. 9(c)), which represents a measure of the orientational order
in the films. Thus, the more densely packed and better oriented
SAMs with # = odd are more robust and less sensitive to electron
irradiation compared to their counterparts with n = even.
Interestingly, the behavior of the biphenylthiolate SAMs without
the aliphatic linker (# = 0) is similar to that for n = even, which is a
further evidence that the introduction of a proper linker between
the aryl group and the anchoring group improves the quality and
robustness of the SAMs.

A similar behavior with respect to electron irradiation was also
observed for the BPnCOO SAMs on Ag(111) [58]. The
experimental data for these systems show a clear odd-even
behavior for characteristic electron-irradiation-induced processes,
such as desorption, cross-linking within the SAM matrix, and
damage of the anchoring groups. The more densely packed and
better ordered SAMs with n = even (see section 6) exhibit lower
extent of the above processes compared to those with n = odd.
Considering that electron-irradiation-induced crosslinking of
aromatic matrix is the most important process in the context of
fabrication of SAM-derived CNMs [6], these results demonstrated
also a way for controlling thickness and purity of such
nanomembranes, which are the key parameters for determining
the range of their applications [59].

A variety of further examples for the influence of the odd-
effects on diverse properties is provided in Fig.10. First, the
relative stability of the MeBPnS (Fig. 10(a)) and MeBPnSe (Fig.
10(b)) SAMs on Au(111) with respect to the molecular exchange
is illustrated [60]. For this purpose, these SAMs were immersed
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Figure 9 Evolution of fingerprint parameters of the MeBPnS SAMs on Au(111) after their exposure to electron irradiation: (a) intensities of the characteristic ¥(C-C)
and v;,(C-H) bands associated with the biphenyl group; (b) intensities of the characteristic v,,,,(CH;) band of the terminal methyl group; and (c) extent of the linear
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Figure 10 Fingerprint parameters for the response of the MeBPnS SAMs on Au(111) to external factors as functions of 7. (a) Residual portion of the MeBPnS
molecules after the exposure of the respective MeBPnS SAMs to a HDT solution. (b) Residual portion of the MeBPnSe molecules after the exposure of the MeBPnSe
SAMs to a HDSe solution. (c) Electrochemical desorption peak potential for the MeBPnS SAMs in 0.5 M aqueous KOH. ((d)—(g)) S-SNMS ion signals from the
MeBPnS SAMs during 15 keV Ar* ion irradiation: (d) total signal, (e) molecular signal (MeBPnS), (f) desulfurized fragment signal (MeBPn), and (g) biphenyl moiety
signal (MeBP; m/z = 168). (a) and (b) Reproduced (adapted) with permission from Ref. [60], © The Royal Society of Chemistry 2010. (c) Adapted with permission
from Ref. [61], © Elsevier Science B.V. 2002. (d)-(g) Adapted with permission from Ref. [62], © WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 2011.

(24 h) into the solution of hexadecanethiol (HDT) or
hexadecanselenol (HDSe), respectively, and the residual content of
the original molecules was monitored by IR spectroscopy.
According to the results (Figs. 10(a) and 10(b)), the denser packed
and better oriented SAMs with #n = odd are more robust and
resistent to the exchange reaction.

The next example refers to electrochemical stability. Within the
respective experiments, the MeBPnS SAMs on Au(111) were
subjected to adsorption/desorption cycles controlled by
cyclovoltammetry [61]. The respective desorption peak potential
exhibited pronounced odd-even behavior, being consistenly lower
(by ~ 83 mV; in terms of the absolute value) for n = even
compared with n = odd (Fig. 10(c)). Thus, the electrochemical
stability of the more densely packed and more upright oriented
SAMs with n = odd is higher than that of their counterparts with
n=even.

A further example is the stability of the MeBPnS SAMs on
Au(111) towards ion irradiation, recorded by static secondary
neutral mass spectroscopy (S-SNMS) and illustrated in Figs.
10(d)-10(g) [62]. Accordingly, the total yield of molecular
material emitted from these films during 15 keV Ar® ion
irradiation exhibits distinct odd-even behavior, with smaller yield
for the denser packed and better ordered SAMs with n = odd
compared to their counterparts with n = even (Fig. 10(d)). The
odd-even behaviour is also visible in the emission of the complete
molecule (MeBPnS, Fig. 10(e)) as well as its fragments
corresponding to the desulfurized molecule (MeBPn, Fig. 10(f)) or
methyl-biphenyl moiety (MeBP; m/z = 168, Fig. 10(g)).
Specifically, the lower MeBPnS emission for n = odd (Fig. 10(e))
indicates higher Au-S bond stability compared to # = even, which
is consistent with the odd-even effects discussed above, i.e. the
chemical exchange process (Fig. 10(a)) and the electrochemical
stability (Fig. 10(c)) as well as with an odd-even variation of the
characteristic binding energy of the anchoring groups observed in
the high-resolution XPS spectra [28,33]. Moreover, the reverse
phase of the odd-even effects observed for the MeBPn emission
(Fig. 10(f)) indicates that increased stability of the Au-S bond for
n = odd is achieved at the cost of reduced stability of the
neighbouring S-C bond in these SAMs [62]. The odd-even effect
for MeBP (Fig.10(g)) also correlates with the odd-even
reorientation of the biphenyl moiety as discussed earlier (Fig. 3)

indicating an odd-even stability of the C-C bond linking this
moiety to the rest of the aliphatic chain.

Finaly, we note that odd-even behaviour towards ion
irradiation was also observed in static secondary ion mass
spectroscopy (S-SIMS) analysis of M,Au  and M,Ag" (M =
complete molecule) clusters emitted from MeBPnS and MeBPnSe
SAMs on Au(111) and Ag(111), which shows a reversed "phase’
upon changing the substrate from Au(111) to Ag(11ll), in
accordance with all structural odd-even effects observed for these
monolayers [63].

8 Overview of the odd-even data

Whereas most of the published results related to the structure and
properties of the aryl-substituted aliphatic SAMs were discussed in
the previous sections, we think that a short overview of all relevant
publications on this subject (to the best of our knowledge) would
be useful. Such an overview is presented in Table 1, along with the
parameters of the SAMs and the major goals of the respective
studies.

9 Applications of the odd-even behavior

The distinct odd-even behavior of aryl-substituted aliphatic SAMs
has a variety of practical implications. First, as discussed in section
7, it provides a practical means to tune properties of these films in
context of a specific application. Second, it allows for rational
design of aromatic and hybrid aromatic-aliphatic SAMs. As
mentioned in several places above, including the discussion of the
data presented in Fig. 9, the introduction of a suitable aliphatic
linker between the anchoring group and an aryl backbone allows
to improve the quality of an aromatic SAM significantly, in terms
of both packing density and orientational order. Most frequently,
this approach is applied to aromatic SAMs on Au(111) with just a
single methylene group (1 = odd) as the linker.

A representative example is provided in Fig. 11. The issue was
to form a well-defined and stable metal film on a SAM template,
which allow for manufacturing of ultrathin insulation layers in
electronic and spintronic devices. For this purpose, SAM-forming
1,1'4,1"-terphenyl-4,4"-dimethanethiol (TPDMT) was designed,
featuring a terphenyl backbone, methylene linkers, and terminal
thiol groups (Fig. 11(a)) [69]. TPDMT formed monolayers of very
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Table1 List of the publications dealing with the odd-even effects in aryl-(CH,),-AG SAMs on Au(111), Ag(111), and GaAs(001)*

Aryl n AG Substrate Issue Ref.
Phenyl, biphenyl 0,1 -S Au Structure [19]
Terphenyl 1 -S Au C()Srizlzlccttt;rrlece [20]
Phenyl 1-3 -S Au Structure [64]
Phenyl 12-15 =S Au Basic properties [24]
Methyl-biphenyl 3-6 -S Auand Ag Basic properties [16]
Methyl-biphenyl 1-6 -S Auand Ag Basic properties [17]
Methyl-biphenyl 1-6 -S Auand Ag Photoemission [28]
Methyl-biphenyl 1-6 =S Au Electrochemistry [61]
Methyl-biphenyl 0,1,4,5,12 -S Au Electron irradiation [57]
Methyl-biphenyl 3and 4 =S Au Structure [26]
Methyl-biphenyl 1-6 -S Au Structure [27]
Methyl-biphenyl 4 =S Au Polymorphism [53]
Methyl-biphenyl 2,3,5 =S Au Stress [65]
Methyl-biphenyl 1-6,12 -S Au Electrochemical stability [66]
Methyl-biphenyl 4and 6 =S Au Polymorphism, force balance [32]
Methyl-biphenyl 2 -S Au Polymorphism [67]
Methyl-biphenyl 2,4,6 =S Au Polymorphism, ion irradiation [68]
Methyl-biphenyl 2-6 -S Au Stability against exchange [60]
Methyl-biphenyl 1-6 -S Au Ion-induced desorption [62]
Methyl-biphenyl 2-6 =S Auand Ag Stability [63]
Methyl-biphenyl 1-6 =S GaAs(001) Basic properties [51]
Cyano-biphenyl 1,2 =S Au Orientation [40]
Cyano-biphenyl 0,1,2 -S Au Basic properties, electron transfer [41]
Biphenyl 0-6 =S Au Theory: structure, properties [34]
Terphenyl 1-6 =S Auand Ag Basic properties [35]
Terphenyl 1-6 -S Au Structure [36]
Terphenyl 1-6 =S Auand Ag Photoemission [33]
Terphenyl 0-6 -S GaAs(001) Basic properties [49]
Perfluoroterphenyl 2and 3 =S Auand Ag Basic properties [37]
(i—)ﬁ:;r}:;?;iec) 1-6,10-12 =S Auand Ag Basic properties [52]
Perfluoroanthracene 2and3 =S Au Basic properties [39]
AnthraceneO).(azole 2-6 -S Auand Ag Basic properties [38]

(symmetric)

Azobenzene 3and 4 =S Auand Ag Basic properties [42]
Methyl-biphenyl 2-6 -Se Auand Ag Basic properties [43]
Methyl-biphenyl 1-6, 10, 11 -Se Auand Ag Basic properties [45]
Methyl-biphenyl 2-6 -Se Au Structure [44]
Methyl-biphenyl 2-6 -Se Au Polymorphism [54]
Methyl-biphenyl 2-6 -Se Au Stability against exchange [60]
Methyl-biphenyl 2-6 -Se Auand Ag Stability [63]

Biphenyl 1-4 -COO Ag Basic properties [55]
Biphenyl 2-6 -COO Ag Electron irradiation [58]

*AG is the anchoring group. “Basic properties” include molecular organization, packing density, molecular orientation, etc.

high quality on Au(111), which, after additional electron-induced
crosslinking (CL), provided a suitable template for the metal (Ni)
deposition. This was verified by ion scattering spectroscopy (ISS)
and angular resolved XPS. The Ni and Au ISS profiles taken across
the Ni/CL-TPDMT/Au sample show a well-localized Ni film on
top of the SAM and no Ni atoms in the SAM and at the SAM/Au

interface (Fig. 11(b)). The intensity of the Ni 2p XPS signal does
not show any significant variation with the takeoff angle of the
photoelectrons, in contrast to the intensity of the C 1s signal from
the SAM, which exhibits strong variation (Fig.11(c)). Such a
behavior is characteristic of a well-defined Ni film on the top of
the SAM (Fig. 11(d)), in full agreement with the ISS data.
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Figure11 (a) Custom-designed, SAM-forming TPDMT molecule. (b) Intensity of the Ni and Au ISS signals acquired in the course of ion-induced erosion of the
Ni/CL-TPDMT/Au sample. (c) Dependence of the normalized intensity of the Ni 2p and C 1s XPS signals on the takeoff angle of the photoelectrons (measured with
respect to the substrate surface) for this sample. (d) Schematic of the Ni/CL-TPDMT/Au sample. Adapted with permission from Ref. [69], © WILEY-VCH Verlag
GmbH & Co. KGaA, Weinheim 2005.

A further representative example is provided in Fig. 12. The studies of specific phenomena associated with molecular self-
goal of this particular project was to decouple the SAM-induced assembly. The examples of odd-even behavior are odd-even effects
electrostatic effects from chemical properties of the SAM surface, in surface wettability, work function, adhesion behavior,
which in many applications becomes interface to other materials, tribological properties, electron transfer, and chemical reactivity
such as semiconductors. For the electrostatic engineering, which is [18]. A representative example in this regard is given by studies of
crucially important in context of energy level alignment in organic the effects of in-surface and buried dipoles on the wetting

electronics and photovoltaics, SAMs are usually decorated with a properties of partially fluorinated alkanethiolate SAMs on Au(111)
polar tail group. This, however, changes the chemical identity of [75-77]. Among other parameters, the length of the alkyl linker
the SAM surface, which typically affects the morphology of a was continuously varied and an odd-even variation of the contact

functional material deposited on the SAM, such as an organic angles for different probe liquids was recorded, with a "phase’
semiconductor or a buffer layer. The solution is to embed the depending on the extent of fluorination and the position of the
dipolar group into the molecular chain, which, for the application- fluorinated groups in the molecular chain [75-77]. Another
relevant aromatic backbone, was for the first time achieved by example is the effect of the substrate roughness on the
design of the molecules shown in Fig. 12(a) [70-72]. In these morphology and properties of the SAM-ambient interface. Odd-
molecules, the central phenylene ring in the terphenyl backbone even variation of the contact angle for different probe liquids for a
was replaced by the dipolar pyrimidine group with the dipole series of non-substituted alkanethiolate SAMs on Ag(111) was
moment directed either from or toward the substrate. To obtain considered as a fingerprint of the film morphology and
densely packed and highly oriented SAMs on Au(111), it was conclusions on acceptable range of surface roughness were drawn

decided to inset a methylene linker (1 = odd) between the [78,79]. A variety of related effects, associated with the identity of
aromatic part and the anchoring thiol group. The work function the probe liquids, was recorded and rationalized and useful

of the SAM-modified surface varied then in accordance with the conclusions regarding interplay of the surface roughness,
direction of the embedded dipole (Fig. 12(b)) while the chemical backbone length, and probe liquid polarity were made.
identity of this surface, defined by the terminal phenyl ring, A further example is design and characterization of ferrocene-

remained unchanged. An additional effect is the electrostatic shift functionalized SAMs in context of odd-even effects in the
of the peak associated with the top phenylene ring in the XPS structure and electric conductance properties of thereof [80—82].
spectra (Fig. 12(c)), which helped to understand the importance of On the one hand, these effects were used to optimize inherent
such effects in photoemission [73] and provided a practical tool to packing tendencies of the molecules in the SAMs in order to

study morphology of dipolar molecular films by XPS [74]. minimize leakage currents in the two-terminal molecular
Along with the application-related design of functional, aryl- junctions. On the other hand, it could be demonstrated that the
substituted aliphatic SAMs, pronounced odd-even effects in these rather moderate odd-even changes in the orientation of the
systems provide a general tool for SAM design and dedicated terminal ferrocene group and SAM packing, recorded for these
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Figure 12 (a) Custom-designed, SAM-forming molecules with embedded dipolar group and the reference, non-polar molecule; (b) work functions of the respective
SAMs; and (c) high-resolution XPS spectra of these SAMs acquired at a photon energy of 350 eV. The spectra are decomposed into individual contributions; the peak
related to the top ring in the dipolar SAMs shifts depending on the direction of the embedded dipole. Acronyms: P = phenyl, Pm = pyrimidine, 1 = single methylene
spacer, up/down = direction of the dipole moment (red arrows) relative to the anchoring group. Adapted with permission from Ref. [70], © WILEY-VCH Verlag
GmbH & Co. KGaA, Weinheim 2015.
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monolayers, result in significant changes of the electric
conductance properties of the SAMs, with a particular strong
effect on their rectification ability.

The final example are the experiments on a series of prototypic
homo-oligopeptides based on glycine (Gly) with cysteine (Cys) as
a substrate bonding group chemisorbed on Au and Ag substrates
(Gly,Cys/Au(Ag), n = 1-9) [83]. These monolayers, featuring the
—C-S-substrate anchoring motif, exhibit pronounced odd-even
structural effects strongly affecting their packing density and
molecular conformation. Knowledge and understanding of these
effects represent thus a tool for rational design of such monolayers
and related biointerfaces.

10 Conclusions

In summary, this review article is devoted to the odd-even effects
in the structure and stability of aryl-substituted aliphatic SAMs.
On the one hand, these effects are an important phenomenon,
providing insight into the delicate balance of the structure-
building interactions in monomolecular films. On the other hand,
these effects represent a practical tool to vary and to optimize the
key parameters of the SAMs such as packing density, molecular
orientation, and coupling to the substrate. In its turn, this variation
allows to tune the properties of the SAMs, such as their
electrochemical stability, stability against exchange by other
molecules, reaction to ionizing radiation (electrons, ions), etc. The
understanding and rational application of the odd-even effects
enable a purpose-specific design of functional SAMs in context of
nanofabrication, organic and molecular electronics, and a variety
of other practical goals. Because of their general character, odd-
even effects are not only limited to aryl-substituted aliphatic SAMs
but are also of importance for other aliphatic monolayers, playing
an important role in their design and applications.
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