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Abstract
Immune signal transduction is crucial to the body’s defense against viral infection. Recognition of pathogen-associated 
molecular patterns by pattern recognition receptors (PRRs) activates the transcription of interferon regulators and nuclear 
factor-κB (NF-κB); this promotes the release of interferons and inflammatory factors. Efficient regulation of type I interferon 
and NF-κB signaling by members of the mitogen-activated protein (MAP) kinase kinase kinase (MAP3K) family plays an 
important role in antiviral immunity. Elucidating the specific roles of MAP3K activation during viral infection is essential to 
develop effective antiviral therapies. In this review, we outline the specific regulatory mechanisms of MAP3Ks in antiviral 
immunity and discuss the feasibility of targeting MAP3Ks for the treatment of virus-induced diseases.
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Introduction

Mitogen-activated protein kinases (MAPKs) are serine/
threonine protein kinases involved in cell physiology, cyto-
pathology, and various illnesses, including cancer [1]. The 
three-layer MAPK cascade includes MAP kinase kinase 
kinases (MAPKKKs or MAP3Ks), MAP kinase kinases 
(MAPKKs or MAP2Ks), and MAP kinases (MAPKs) 
[2–5]. MAP3Ks function as links in signal transmission, 
providing specificity for stimulus-dependent activation 
of the MAP2K-MAPK pathway, through distinct protein-
protein interactions and phosphorylation of signal effec-
tors [6]. Among the 24 identified MAP3Ks, MAP3K1-
21, A-Raf, B-Raf, and C-Raf (Raf-1) belong to the most 
diverse subfamilies in the MAPK signaling cascade 
[7, 8]. Different MAP3Ks can phosphorylate the same 
MAP2K and the same MAP3K can phosphorylate differ-
ent MAP2Ks (Table 1). MAP3Ks serve as tissue nodes or 

"hubs" in integrating cellular responses to offer specificity 
in MAPK activation and functional responses [54].

In the innate immune system, pathogen-associated molec-
ular patterns from viruses are mainly recognized by three 
PRRs, toll-like receptors (TLRs), retinoic acid-inducible 
gene I (RIG-I)-like receptors (RLRs), and DNA receptors. 
These will then trigger an immune response pathway that 
activates type I interferon (IFN-I) and NF-κB signaling 
for antiviral immunity [55, 56]. IFN-I signaling is strictly 
regulated. Failure to trigger IFN-I expression can result in 
severe inflammation, whereas prolonged IFN-I production 
can contribute to the development of autoimmune diseases 
[57, 58]. NF-κB can trigger the expression of inflammatory 
mediators, including cytokines, chemokines, and cell adhe-
sion molecules, thereby exerting antiviral effects [59].

MAP3Ks play several roles during viral infection and 
have reciprocal effects on virus survival. After viral infec-
tion, MAP3Ks regulate the production of interferons, inflam-
matory mediators, and other antiviral substances through 
antiviral pathways, which are essential to the host’s defense 
against viral invasion. Elucidating the functions of MAP3Ks 
during viral infection may help improve our understanding 
of viral illnesses and facilitate the development of efficient 
antiviral medications and techniques. Here, we provide 
an overview of the processes and functions of MAP3Ks 
in terms of IFN-I and NF-κB signaling. Additionally, we 
investigated the potential therapeutic benefits of targeting 
MAP3Ks in conditions caused by viruses such as human 
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Table 1  Mechanism of MAP3Ks regulating activity through transcriptional level, allosteric regulation, and post-translational modification

Gene name Alternative name Substrate Examples of MAP3Ks activity regulation Ref.

MAP3K1 / MKK1, MKK/4/7 Increasing MAP3K1 mRNA transcription by miR145 [9]
Oligomerization activates MAP3K1 [10]

MAP3K2 / MKK5, MKK4/7 Inhibiting of MAP3K2 mRNA transcription after heat stimulation [11]
K27-linked polyubiquitination represses MAP3K2 expression [12]

MAP3K3 / MKK1, MKK3/6, MKK5 Inhibiting of mRNA transcription by miR-188 [13]
Phosphorylation activates MAP3K3 [14]

MAP3K4 / MKK3/6, MKK4/7 Inhibiting MAP3K4 mRNA transcription in intrahepatic cholangiocarcinoma [15]
Phosphorylation activates MAP3K4 [16]

MAP3K5 ASK1 MKK3/6, MKK4/7 Increasing ASK1 mRNA transcription by stress exposure [17]
14-3-3 binds to the domain of ASK1 [18]
Deubiquitination leads to inactivation of ASK1 [19]

MAP3K6 ASK2 MKK3/6, MKK4/7 Increasing MAP3K6 mRNA transcription through transient ose-only expo-
sure

[20]

Phosphorylation activates ASK2 [21]
MAP3K7 TAK1 MKK3/6, MKK4/7 Inhibiting of mRNA transcription after heat stimulation [11]

TAB1 activates TAK1 through allosteric regulation [22]
Polyubiquitination degrades TAK1 [23]

MAP3K8 TPL2 MKK1, MKK4 Increasing TPL2 mRNA transcription by VEGF-A [24]
Inhibitors cause TPL2 conformational changes [25]
Phosphorylation activates TPL2 [26]

MAP3K9 MLK1 MKK2, MKK3/6, MKK4/7 Increasing MLK1 mRNA transcription by sodium butyrate [27]
MLK3 SH3–interacting peptide (MIP) binds to the SH3 domain [28]
Phosphorylation activates MLK1 [29]

MAP3K10 MLK2 MKK2, MKK3/6, MKK4/7 Increasing MLK2 mRNA transcription at day 35 in rats [30]
Phosphorylation activates MLK2 [31]

MAP3K11 MLK3 MKK2, MKK3/6, MKK4/7 Inhibiting MAP3K11 mRNA transcription by overexpression MIR-199A-5P [32]
MIP binds to the SH3 domain [28]

MAP3K12 DLK MKK3/6, MKK4/7 Inhibiting MAP3K12 mRNA transcription by overexpression Tetrachlorod-
ibenzo-p-diox

[33]

Phosphorylation activates MAP3K12 [34]
MAP3K13 LZK MKK4/7 Increasing MAP3K13 mRNA transcription in autoimmune hepatitis [35]

Phosphorylation activates MAP3K13 [36]
MAP3K14 NIK IKKα Increasing NIK mRNA transcription by Glucocorticoids [37]

Inhibitors cause NIK conformational changes [38]
Ubiquitination activates NIK [39]

MAP3K16 TAOK1 MKK3/6 Inhibiting TAOK1 mRNA transcription by captopril [40]
Phosphorylation activates TAOK1 [41]

MAP3K17 TAOK2 MKK3/6 Inhibiting TAOK2 mRNA transcription by miR-331-3p [42]
Phosphorylation activates TAOK2 [41]

MAP3K18 TAOK3 MKK3/6 Increasing TAOK3 mRNA transcription in high-fat diet mice [43]
Phosphorylation by leucine-rich repeat kinase 2 [44]

MAP3K19 RCK MKK7 Increasing MAP3K19 mRNA transcription by oxidative stress [45]
MAP3K20 ZAK MKK4/7 Inhibiting ZAK mRNA transcription in liver cancer tissue [46]

Inhibitors cause ZAK conformational changes [47]
Phosphorylation activates ZAK [48]

MAP3K21 MLK4 WNK1-
SPAK

Inhibiting MAP3K21 mRNA transcription in liver cancer tissue [49]
MIP binds to the SH3 domain [28]

A-Raf / MKK1/2 Increasing A-Raf mRNA transcription after hepatectomy in rats [50]
14-3-3 stabilized Raf dimerization [18]
Phosphorylation activates A-Raf [51]
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immunodeficiency virus type 1 (HIV-1) and other viruses. 
This review summarizes recent advances in the field and 
enables the translation of the current relevant knowledge 
into therapeutic discoveries.

Mechanisms underlying the regulation 
of MAP3Ks activity

Upstream MAP4Ks, oxidative stress, inflammatory 
cytokines, medications, and pressure are the major acti-
vators of MAP3Ks. The unhindered signaling, defects in 
which are strongly linked to many disorders like cancer and 
inflammatory diseases, is determined by MAP3Ks activity. 
MAP3K regulates the level of its own activity through a 
variety of mechanisms, such as regulation of transcriptional 
abundance, allosteric regulation, and post-translational mod-
ification (Table 1).

The abundance of MAP3Ks is regulated at the transcrip-
tional level, and its expression can be induced in a stimulus-
dependent manner. MAP3K8 abundance is lower in cells 
not stimulated by VEGF-A, and it increases after stimula-
tion. Continuous induction has the opposite effect, resulting 
in a decrease in MAP3K8 expression [24]. Similarly, the 
transcriptional levels of MAP3Ks are negatively regulated. 
The mRNA abundance of RAF1, MAP3K2, and MAP3K7 
decreases as the temperature increases in heat-stimulated 
cells [11].

Some MAP3Ks can regulate kinase activity in another 
important way: allosteric regulation. A key event in RAF 
activation is RAF dimerization mediated by scaffold and 
chaperone 14-3-3. In addition, 14-3-3 binds to the catalytic 
domain of Apoptosis signal-regulating kinase-1 (ASK1) and 
inhibits its kinase activity [18].

MAP3Ks are phosphokinases; their post-translational 
modification, particularly phosphorylation, is critical for 
their activity regulation. The regulation of all MAP3Ks 
activities is mediated by phosphorylation. Autophospho-
rylation on Thr-575 activates MAP3K1 [60]. MAP3K2 
and MAP3K3 are activated by lipopolysaccharide (LPS)-
induced phosphorylation at MAP3K2 Ser-519 and MAP3K3 
Ser-526, respectively [61]. Next to phosphorylation, 

ubiquitination is the most common post-translational modi-
fication of MAP3K. In the case of TNFα, MAP3K7 is poly-
ubiquitinated by a Lys48 linkage at K72 and then degraded 
through the proteasome pathway [23]. An atypical E3 ligase 
zinc finger protein 91 primarily mediates the synthesis of the 
Lys63-linked ubiquitinated stabilizing protein, which allows 
MAP3K14 to activate itself [39]. In addition, MAP3K7 is 
acetylated to prevent self-phosphorylation and activation 
[62].

The several types of mechanisms underlying the regula-
tion of MAP3Ks kinase activity make it possible to elicit 
suitable responses in various circumstances, including the 
antiviral innate immune response.

IFN‑I signaling pathway

After virus infection, the host recognizes viral nucleic acid 
via different PRRs and activates different signaling pathways 
according to the type of nucleic acid [63, 64] (Fig. 1).

The RLR family can recognize viral RNA in the cyto-
plasm. RIG-I recognizes viral double-stranded RNA 
(dsRNA) and 5′-triphosphate-RNA, while melanoma dif-
ferentiation-associated gene 5 (MDA5) recognizes long 
dsRNA. Laboratory of genetics and physiology 2 (LGP2) is 
mainly involved in the recognition and interaction of RNA 
with RIG-I and MDA5, but also in signal transduction [65]. 
Activated RIG-I and MDA5 interact with mitochondrial 
antiviral-signaling protein (MAVS); when stimulated by 
MDA5 or RIG-I CARD, MAVS oligomerizes and further 
recruits multiple tumor necrosis factor (TNF) receptor-asso-
ciated factor (TRAF) proteins (such as TRAF2, TRAF3, and 
TRAF6), which are necessary for the activation of TANK-
binding kinase 1 (TBK1) and inhibitor of nuclear factor 
kappa-B kinase ε (IKKε). Ultimately, these kinases phos-
phorylate interferon regulatory factor 3/7 (IRF3/7), which 
in turn leads to the production of IFN-I and interferon-stim-
ulated genes (ISGs) [66–69].

TLRs are the most widely studied PRRs. Humans have 
ten different TLRs (TLR1–10), most of which can sense 
RNA viral infections [70]. TLR2 typically functions by 
forming heterodimers with other TLRs, such as TLR1 and 

Table 1  (continued)

Gene name Alternative name Substrate Examples of MAP3Ks activity regulation Ref.

B-Raf / MKK1/2 Inhibiting B-Raf mRNA transcription peptide nucleic acid [52]

14-3-3 stabilized Raf dimerization [18]

Phosphorylation activates B-Raf [51]
Raf-1 / MKK1/2 Inhibiting of mRNA transcription after heat stimulation [11]

14-3-3 stabilized Raf dimerization [18]
O-GlcNAcylation stabilizes the expression of Raf1 [53]
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TLR6, to sense virus proteins [71, 72]. In the endosomal 
compartment, TLR3 recognizes viral dsRNA [73], whereas 
TLR7/8 recognizes viral single-stranded RNA [74]. All 
TLRs, except TLR3, activate interleukin-1 (IL-1) receptor-
associated kinases (IRAKs) through myeloid differentia-
tion factor 88 (MYD88), which in turn activates TRAF6. 
TLR3 recruits TIR domain adaptor molecule 1 (TICAM-1, 
also known as TRIF) [75, 76]. IKK complex, NF-kappa-B 
essential modulator (NEMO), and TBK1 are activated after 
a series of signal transductions, and they further activate 
transcription factors such as IRF3/7 and NF-κB to promote 
the release of IFN-I and other inflammatory factors.

Viral DNA is primarily recognized by cyclic GMP-
AMP (cGAMP) synthase (cGAS) [77]. cGAS then syn-
thesizes cGAMP to deactivate stimulator of interferon 
genes (STING) on the endoplasmic reticulum, causing it 
to transfer to the Golgi apparatus, thereby activating the 

TBK1-IRF3 signaling axis and triggering the production 
of IFN-I and other inflammatory factors. Absent in mela-
noma 2 (AIM2) [78], dead-box helicase 41 (DDX41) [79], 
and TLR9 [64, 80], among others, can also sense viral 
DNA.

MAP3Ks in IFN‑I signaling pathway

Many MAP3Ks affect the function of important IFN-I 
signaling molecules, thereby regulating IFN-I production 
(Fig. 1). Here, we focus on how a host can use MAP3Ks 
to regulate the IFN level for an antiviral immune response. 
Table 2 summarizes the list of MAP3Ks targeting key mol-
ecules in the main innate immune pathways mediated by 
RNA and DNA viruses.

Fig. 1  MAP3Ks in the IFN-I pathway. When viral nucleic acids bind 
to pattern recognition receptors, the corresponding adaptor proteins 
are recruited to activate three major signaling pathways: RIG-I, 
cGAS-STING, and TLR. RIG-I binds to MAVS via caspase recruit-
ment domain (CARD)-CARD interaction; cGAS recognizes DNA in 
the cytosol and is activated to produce cGAMP, which then binds to 
and activates STING; and TLR3 transmits signals via TRIF. These 

can activate the downstream protein kinase TBK1 and further phos-
phorylate IRF3/7. TLR7/8/9 recruit MyD88 and IRAK to form the 
MyD88 signaling complex, which can activate IRF5/7 and induce 
downstream IFN-I synthesis and related IFN-stimulating factors. 
MAP3Ks upregulate or downregulate the signaling are indicated in 
yellow and red backgrounds, respectively
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Raf family

The Raf family is the most studied subfamily of MAP3Ks 
and includes A-Raf, B-Raf, and C-Raf (Raf-1), which selec-
tively activate MAP2K1 and MAP2K2 [93, 94]. Raf-1 kinase 
is required for TLR8 and dendritic cell (DC)-specific inter-
cellular adhesion molecule 3-grabbing non-integrin (DC-
SIGN)-mediated signaling [95]. In addition, HIV-1 [96] and 
IFN-β [97] can activate Raf-1. In DCs, Raf-1 limits antiviral 
IFN-I responses during HIV-1 infection. Raf-1 depletion or 
pharmacological inhibition of Raf-1 with the small-molecule 
inhibitor GW5074 could induce the transient expression of 
IFN-β [81]. Mechanistically, Raf-1 activates mammalian ster-
ile 20-like kinase 1 (MST1), which further phosphorylates 
polo-like kinase 1 (PLK1) at Thr210 and facilitates its interac-
tion with MAVS, thus blocking MAVS-mediated signaling. 
In addition, there is an increased viral replication in A-Raf- 
or Raf-1-deficient cell lines during early vesicular stomatitis 
virus (VSV) infection [83]. This implies that A-Raf and Raf-1 
are also involved in VSV-induced innate immunity.

MAP3K1

MAP3K1 is required for MAPK signal transmission by 
activating MAP2K1/4/7. MAP3K1 regulates the prolif-
eration of invariant natural killer T cells and promotes the 

generation of T helper 2 (Th2) cytokines [98]; in addition, 
it is essential for B cell proliferation and antibody produc-
tion [99]. Endogenous MAP3K1 is necessary for IFN-I 
production by cytoplasmic dsRNA [100]. Suppression of 
MAP3K1 substantially decreases poly(I:C)-induced IFN-β 
mRNA expression by inhibiting the activation of RIG-I 
and MAVS. Meanwhile, co-transfection of MAP3K1 and 
IRF3 synergistically increases IRF3-promoter activity. 
Real-time polymerase chain reaction analysis demon-
strated that MAP3K1 knockdown with various siRNA 
oligonucleotides considerably lowers IFN-α/β levels. 
Mechanistically, MAP3K1 interacts with TRAF6, further 
stimulating the downstream IKK complex and MAP2Ks, 
thus playing a regulatory role in IFN-I production.

MAP3K2

MAP3K2 pr imar i ly  t ransmits  s ignals  through 
MAP2K4/5/7 [101]. MAP3K2-regulated intestinal stromal 
cells are identified as a new type of intestinal mesenchymal 
stromal cells that depend on MAP3K2 to regulate intesti-
nal stem cell ecology and protect against intestinal dam-
age [102]. In addition, MAP3K2 is an effector of tumor 
cell-secreted epidermal growth factor receptor (EGFR) 
in macrophages, which reduces the host innate antiviral 
immunity [84]. MAP3K2 phosphorylates IRF3 at Ser173 

Table 2  MAP3Ks targeting key 
molecules in IFN-I signaling 
pathway

Viruses Host targets MAP3Ks involved Functions of MAP3Ks Ref.

RNA virus
 HIV MAVS Raf-1 Inhibiting IFN production [81]

Unclear MAP3K11 Facilitating antiviral responses [82]
 VSV Unclear Raf-1 and a-Raf Inhibiting antiviral responses [83]

IRF3 MAP3K2 Inhibiting IFN production [84]
IRF3 ASK1 Enhancing IFN production [85]
Unclear NIK Enhancing IFN production [86]

 SeV IRF3 MAP3K2 Inhibiting IFN production [84]
Unclear ASK1 Enhancing IFN production [87]
IRF3 TPL2 Enhancing IFN production [88]

 IAV Unclear ASK1 Enhancing IFN production [87]
 EMCV Unclear ASK1 Inhibiting viral replication [87]
 NDV Unclear ASK1 Inhibiting viral replication [87]
 FMDV IRF3 TPL2 Enhancing IFN production [88]
 LCMV Unclear NIK Enhancing IFN production [86]
 HCV Unclear MAP3K11 Enhancing IFN production [89]
DNA virus
 HSV-1 IRF3 MAP3K2 Inhibiting IFN production [84]

IRF7 MAP3K3 Enhancing IFN production [90]
IRF3 ASK1 Enhancing IFN production [85]
STING NIK Enhancing IFN production [91]

 MCMV Unclear TPL2 Enhancing IFN production [92]
 MHV-68 STING NIK Enhancing IFN production [91]
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without involving extracellular-signal-regulated kinase 
5 (ERK5) or c-Jun N-terminal kinase (JNK), increases 
polyubiquitination via the K33-linkage, and inhibits virus-
induced IRF3 dimerization and nuclear translation, which 
further reduces the production of IFN-β and IFN-stimu-
lated genes. In addition, Map3k2-deficient mice are more 
resistant to viral infection and exhibit reduced viral loads 
compared to wild-type (WT) mice [84]. Even without the 
EGFR trigger, MAP3K2 modulates innate antiviral immu-
nity by regulating its activity in different ways. However, 
further studies are required to better understand the under-
lying mechanisms.

MAP3K3

In addition to MAP3K2, MAP3K3 can also activate 
MAP2K5 [103] and regulate vascular malformations 
[104], kidney diseases [105], and immune activation [106]. 
Following the cellular activation of the TLR7/9 signaling 
pathway to induce various types of IFN-Is, MAP3K3 is a 
potent stimulator of IRF7. Most notably, IRF7, induced by 
IFN-Is, is a key regulator of virus-driven IFN-I production 
[107]. MAP3K3 overexpression strongly activates IRF7, 
resulting in the induction of IFN-Is, whereas TLR7/9 
ligand activation results in decreased innate immune 
responses in cells lacking MAP3K3. Interaction between 
MAP3K3 and IRF7 induces interferon production, which 
results in IRF7 phosphorylation at multiple sites [90]. 
In vivo, MAP3K3 knockdown reduces IFN-I induction 
and increases the susceptibility to herpes simplex virus 
type 1 (HSV-1) infection. Endogenous MAP3K3 binds to 
and phosphorylates IRF7 upon the binding of TLR9 to 
its specific ligand CpG DNA. These findings implicate 
the existence of crosstalk between MAP3K activation and 
IFN-I induction in the endosomal TLR pathway.

MAP3K5 (ASK1)

MAP3K5 (also known as apoptosis signal-regulating 
kinase 1; ASK1), MAP3K6 (ASK2), and MAP3K15 
(ASK3) are the commonly known members of the ASK 
family. ASK1, the most studied of the three ASKs, regu-
lates cell survival primarily via the MAP2K3/6-JNK and 
MAP2K4/7-p38 pathways. ASK2 is extremely similar to 
ASK1, especially in its kinase domain, and forms a het-
erologous complex with ASK1, which is necessary for 
the stability and activity of the ASK2 protein. Therefore, 
ASK2 functions only as a MAP3K when ASK1 is pre-
sent [21, 108]. In addition, ASK3 plays a significant role 
in both osmotic shock and stress [109]. ASK1 not only 
mediates oxidative stress signaling but also plays a role in 
innate immunity. ASK1 knockdown in mice enhances the 

propagation of influenza A virus (IAV), a member of the 
Orthomyxoviridae family, and reduces IFN-I production 
in the lungs. Additionally, the increase in IFN-β mRNA 
abundance in response to encephalomyocarditis virus 
(EMCV) and newcastle disease virus (NDV) infections 
was blocked by ASK1 knockdown [87]. This emphasizes 
the importance of ASK1 as an antiviral protein in vivo. 
In contrast, ASK2 is required for ASK1-dependent apop-
tosis but not for induction of IFN-β expression. Further-
more, IAV replication in the lungs is increased in mice 
with ASK1 or ASK2 gene deletions. Therefore, ASK1/2 
is involved in antiviral defense mechanisms; however, 
ASK2 is a critical regulator of apoptosis rather than IFN-I 
responses.

Proinflammatory cytokines, including IL-1, IL-6, and 
TNF-α, are also produced via the RLR pathway. These 
cytokines regulate the permeability of the endothelium, 
which lines blood arteries and recruits blood cells and 
plasma proteins to infection sites.  ASK1-/- macrophages 
infected with the virus display lower levels of IL-6, sug-
gesting the involvement of ASK1 in the induction of these 
inflammatory cytokines [87].

F-box-only protein 21 (Fbxo21) plays a critical role 
in regulating the innate antiviral response by facilitating 
Lys29-linkage and activating ASK1. ASK1 without the 
Lys29-linkage cannot rescue the innate antiviral response 
in  Map3k5-/- RAW264.7 cells, suggesting that Fbxo21-medi-
ated ubiquitination and ASK1 activation are required for the 
innate antiviral responses [85].

MAP3K7 (TAK1)

MAP3K7 (also known as transforming growth factor-β-
activated kinase 1, TAK1) is a key factor mediating the 
signal transduction of IL-1 [90], transforming growth 
factor-beta (TGF-β) [110, 111], and TLRs [112]. IRF3 is 
the true substrate of JNK, and upstream kinase TAK1 pro-
motes the phosphorylation of IRF3 by JNK [113]. JNK1/2 
can directly catalyze the phosphorylation of Ser173 in 
IRF3. Co-expression of TAK1 significantly increases the 
activity of this kinase. However, TAK1 cannot directly 
phosphorylate IRF3.

TAK1 inhibition results in a slight decrease in IFN-β 
levels after poly(I:C) treatment of WT bone marrow-derived 
macrophages (BMDMs); however, the difference is not sta-
tistically significant [114]. Treatment with TAK1 inhibi-
tors significantly reduces IFN-β induction after poly(I:C) 
stimulation in  IRAK1-/- and IKKε-/- BMDMs compared 
to that in DMSO-treated  IRAK1-/- and IKKε-/- BMDMs. 
These findings imply that the enzymatic activity of TAK1 
is important for regulating IFN-I responses downstream of 
TLR3 by IRAK1.
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MAP3K8 (TPL2)

MAP3K8 (tumor progression locus 2; TPL2) is function-
ally similar to MAP3K1 in the MAPK cascade signal, but, 
in most cases, its function does not involve the activation 
of MAP2K7 [115]. The TPL2-ERK signaling pathway 
and TLR 2/4/7 directly activate the inflammatory axis 
and positively regulate ERK phosphorylation and early 
TNF secretion [116]. In addition, TPL2 positively regu-
lates p38α and p38δ in neutrophils [117]. TPL2 regulates 
IFN activation through IRF3, which leads to increased 
replication of foot-and-mouth disease virus (FMDV) [88]. 
However, IFN-α, myxovirus resistance 2, and CXC motif 
chemokine ligand 10 expression are significantly reduced 
in Tpl2-deficient mice, with no detectable change in IRF3 
phosphorylation. FMDV capsid protein VP1 inhibits 
TPL2 phosphorylation at Thr290, a critical functional 
site of TPL2 that promotes IRF3-mediated activation of 
the IFN-β signaling pathway. Similar results are obtained 
when cells are stimulated with poly(I:C) and Sendai virus 
(SeV) instead of FMDV.

The MAP3K8 (Sluggish) mutation causes splic-
ing errors in the Map3k8-encoded Tpl2 transcript. 
 MAP3K8Sluggish/Sluggish mice are resilient to mouse cyto-
megalovirus (MCMV) infection but extremely susceptible 
to group B streptococcus infection [92]. CpG-B-induced 
IFN-I production is significantly reduced in peritoneal mac-
rophages isolated from homozygous  MAP3K8Sluggish/Sluggish 
mice, whereas LPS- and poly(I:C)-induced IFN-I produc-
tion remains unaffected. Thus, TPL2 is important for 
IFN-I production in peritoneal macrophages, especially in 
response to MyD88-dependent TLR signaling.

MAP3K14 (NIK)

MAP3K14 (also known as NF-κB-inducing kinase, NIK) 
is a helpful regulator of the DNA virus-activated cGAS-
STING pathway [91]. STING and NIK colocalize and 
interact with each other. NIK relies on its kinase activity 
and functions in concert with STING to boost IFN-β tran-
scription [91]. NIK dysfunction has serious consequences 
for pro-immune activation during lymphocytic choriomen-
ingitis virus (LCMV) and vesicular stomatitis virus (VSV) 
infections. Indeed, viral replication is reduced in the spleen 
tissue of WT and Map3k14aly/aly mice after infection with 
either virus strain, and serum IFN levels are considerably 
reduced [86]. The aly mutation results in an amino acid 
substitution (G855R) in the Nik code. Aly/aly mice are 
completely devoid of lymph nodes and Peyer’s patches, 
thus, they are highly susceptible to viral infections [86, 
118]. NIK suppresses hepatitis C virus (HCV) replication 

in Huh-7 cells [119]. In addition, NIK is a component of 
the NF-κB-inducing signaling cascade, independent of any 
specific MAPK cascade [120].

Other MAP3Ks

Following a systematic evaluation of multiple genomic data-
sets, RNA interference (RNAi) screening tests demonstrated 
that MAP3K11 deletion drastically lowers RIG-I signaling-
mediated IFN production [89]. Increased HIV-1 transcrip-
tion by MAP3K11 is dependent on its kinase activity, and 
the corresponding MAP3K11 siRNA reduces HIV-1 infec-
tion by 40% [82].

Several MAP3Ks that regulate IFN-I signaling have been 
identified; however, each host MAP3K has a unique set of 
functions that vary depending on the virus and cell type. 
Further research is required to determine the antiviral roles 
of MAP3Ks in IFN-I signaling.

NF‑κB signaling pathway

NF-κB is a major transcriptional regulator in antiviral 
immunity and is activated after viral infection. In the previ-
ous chapters, we mentioned that after viral nucleic acid is 
recognized by PRR, the NF-κB pathway can be effectively 
activated, but it is not complete. Here, we introduce in detail 
two NF-κB pathways that play key roles in cells: the canoni-
cal NF-κB pathway and the non-canonical NF-κB pathway. 
Interestingly, these two pathways are dominated by two 
respective MAP3Ks (Fig. 2) [121, 122].

In the canonical NF-κB pathway, MAP3K7, also known 
as TAK1, occupies a dominant position. After the viral 
nucleic acid binds to the TLR, TAK1 is activated. TAK1 
is an upstream kinase that activates the IKKα, IKKβ, and 
NEMO complex. The phosphorylation of inhibitor of NF-κB 
(IκB) by IKK occurs on two serine residues, and proteaso-
mal degradation occurs, resulting in NF-κB dimers (includ-
ing RelA/p50) being rapidly released. Eventually, the con-
stitutively activated dimer translocates to the nucleus where 
it induces the transcription of NF-κB target genes [123].

Activation of the non-canonical NF-κB pathway is 
dependent on another MAP3K: NIK. Activated NIK phos-
phorylates the IKK complex, which is notable for containing 
only two IKKα subunits. Upon activation, IKKα directly 
phosphorylates p100, leading to the processing of p100 into 
p52 and, finally, nuclear translocation of the RelB-p52 het-
erodimer [124].

It is noteworthy that both DNA virus and RNA virus can 
activate NF-κB transcription in two ways. This will be elabo-
rated in the next chapter.
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MAP3Ks in NF‑κB signaling pathway

TAK1 and NIK are the main kinases mediating the two 
NF-κB pathways, while other MAP3Ks still play a role in 
NF-κB signal transduction. Interestingly, many viruses can 
activate two NF-κB pathways in different ways, which has 
nothing to do with whether it is a DNA or RNA virus. Here, 
we not only outline how other MAP3Ks mediate NF-κB 
signaling (Fig. 2) but also elaborate on how the host regu-
lates NF-κB activity through MAP3Ks after virus invasion, 
and then exerts antiviral effects (Table 3).

The phosphorylation and subsequent proteolysis of IκB 
is an important mechanism for NF-κB activation. MAP3K1 
transfection causes IκB degradation and activates NF-κB 
[137]. In addition, MAP3K1 participates in NF-κB signal-
ing by activating IKKα/β [138]. MAP3K3 and MAP3K2 

regulate the formation of IκBα:NF-κB and IκBβ:NF-κB 
complexes [139]; MAP3K3 can also phosphorylate Ser177 
and Ser181 sites in IKK2 (IKKβ) [140]. Interestingly, 
thousand and one-amino acid protein kinase 2 (TAOK2), 
another MAP3K, inhibits the TAK1-mediated activation 
of IKKα [141].

TAK1 plays a crucial role in HIV-1 infection; it 
increases HIV-1 replication by modifying NF-κB signaling. 
Viral protein R (Vpr), produced by HIV-1, stimulates the 
association between TAK1 and TAK1-binding protein 
3 (TAB3), as well as TAK1 polyubiquitination and 
phosphorylation. This in turn activates NF-κB and increases 
long terminal repeat (LTR)-dependent viral gene expression. 
Activation of HIV-1 LTR promoter by Vpr is reduced when 
TAK1 expression is knocked down [125]. Transmembrane 
glycoprotein gp41 (gp41CD) of both HIV and Simian 

Fig. 2  MAP3Ks in the NF-κB pathway. Canonical NF-κB pathway: 
TAK1 phosphorylates and activates the NEMO-IKKα-IKKβ com-
plex, and the activated IKKβ targets IκB for proteasomal degradation, 
thereby translocating p50-RelA to the nucleus and inducing NF-κB 
transcription. Non-canonical NF-B pathway: NIK phosphorylates and 

activates IKKα, and then recruits IKKα to p100, which then phos-
phorylates and degrades p100 by the proteasome. Finally, p52 bound 
to RelB is translocated to the nucleus to regulate the transcription of 
NF-κB. Through phosphorylation of the IKKα subunit, NIK also pro-
motes canonical NF-κB pathway activation
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immunodeficiency virus (SIV), which is crucial for viral 
replication, activates NF-κB via TAK1 [126]. Sterile α 
motif and histidine-aspartate domain-containing protein 1 
(SAMHD1), an HIV-1 restriction factor, prevents TAK1 
phosphorylation, thereby inhibiting the transcription of 
NF-κB and HIV-1 replication [142], in VSV glycoprotein-
pseudotyped single-cycle HIV-1. This demonstrates the 
restrictive role of SAMHD1 in preventing the viral protein 
activation of NF-κB.

NF-κB is crucial to the immunological response to 
HSV infection; however, the mechanism underlying the 
activation of NF-κB by HSV remains unclear. Alternative 
kinase activities cannot be ruled out; however, inactivation 
of TAK1, MAP3K1, or NIK mutants decreases NF-κB 
activation during HSV infection [134]. In addition, 
phosphorylation of the three MAP3Ks is elevated during 
HSV infection. Lu et al. [135] screened for the unique short 
(Us) region of HSV-2, revealing that HSV-2 Us2 activates 
NF-κB signaling. Specifically, Us2 interacts with TAK1 to 
activate TAK1 and downstream genes, thereby activating 
NF-κB. In mice, Us2 also increases the phosphorylation of 
TAK1, IKKβ, and IκB.

Severe acute respiratory syndrome-associated coronavi-
rus 2 (SARS-CoV-2), the cause of an active pandemic, stim-
ulates NF-κB and causes the release of numerous inflam-
matory factors, through its nucleocapsid (N) protein. TAK1 
and IKK complexes are attracted to and activated following 
the liquid-liquid phase separation of the N protein, which 
in turn triggers the transcription of NF-κB [128]. Another 
study showed that nonstructural protein 6 (NSP6) and open 
reading frame 7a (ORF7a) of SARS-CoV-2 interacted with 
TAK1 dependent on their own ubiquitination, and knockout 

of TAK1 eliminated NSP6 and ORF7a at the activation of 
NF-κB [129].

Several other viruses can modify the activation state 
of NF-κB via TAK1. Hepatitis B virus (HBV) mRNA is 
translated into hepatitis B surface antigen (HBsAg), which 
specifically binds to TAK1 and TAB2 and prevents TAK1 
phosphorylation, thus inhibiting activation of the NF-κB 
signaling pathway and evading immune system detection 
[132]. After viral infection, upregulated TAP1 binds to 
TAK1 and prevents NF-κB signaling. TAK1 boosts NF-κB 
activation induced by the respiratory syncytial virus (RSV) 
[130]. Collectively, TAK1 regulates NF-κB signaling fol-
lowing viral infection, suggesting its potential as a viable 
therapeutic target for associated viral infections.

Viral infection is significantly impacted by NF-κB 
signaling, which is mediated by NIK. HIV-1 Tat protein 
promotes NF-κB activation and accelerates IκB degra-
dation through NIK [127]. RSV infection enhances NIK 
expression and promotes interactions among NIK, IKK, 
and p52, which strengthens NF-κB activation [131]. The 
reduction in nuclear accumulation of p52 and blocking 
of RSV processing of p100 by NIK knockdown indicates 
that NIK is crucial for RSV-induced NF-κB activation. In 
addition, nuclear localization of NIK is essential for HBV-
induced NF-κB activation [133]. Nuclear localization sig-
nal (NLS)-containing NIK is imported into the nucleus 
after IFN-γ treatment; however, NLS-free NIK remains 
in the cytoplasm, suggesting that IFN-γ suppresses 
NF-κB activation by promoting NIK accumulation in the 
nucleus. Latent infectious membrane protein 1 (LMP1) 
of the Epstein-Barr virus (EBV) activates NF-κB through 
its C-terminal activation domains 1 and 2 (CTAR1 and 

Table 3  Virus targeting key 
MAP3Ks in NF-κB signaling 
pathway

Viruses Virus protein MAP3Ks involved Signaling Function Ref.

RNA virus
 HIV Vpr TAK1 Inhibiting NF-κB signaling [125]

gp41 TAK1 Activating NF-κB signaling [126]
Tat NIK Activating NF-κB signaling [127]

 SARS-CoV-2 N TAK1 Activating NF-κB signaling [128]
NSP6 TAK1 Activating NF-κB signaling [129]
ORF7a TAK1 Activating NF-κB signaling [129]

 RSV Unclear TAK1 Activating NF-κB signaling [130]
Unclear NIK Activating NF-κB signaling [131]

 SIV gp41 TAK1 Activating NF-κB signaling [126]
DNA virus
 HBV HBsAg TAK1 Inhibiting NF-κB signaling [132]

NIK Activating NF-κB signaling [133]
 HSV-1 Unclear TAK1 Activating NF-κB signaling [134]

Unclear NIK Activating NF-κB signaling [134]
 HSV-2 Us2 TAK1 Activating NF-κB signaling [135]
 EBV LMP1 NIK Activating NF-κB signaling [136]
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CTAR2). First, CTAR1 specifically recruits TRAF3 and 
NF-κB via NIK- and IKKα-induced p100 processing. Sub-
sequently, CTAR2 preferentially recruits TRAF6, which 
activates the IKKα/β/γ complex after activating TAK1, 
and phosphorylates and degrades IκBα, eventually leading 
to NF-κB activation [136].

Therefore, NF-κB signaling is critically dependent on the 
regulatory mechanisms of MAP3Ks during the viral infec-
tion cycle. After infecting host cells, viruses manipulate 
MAP3K activity in various ways, thereby altering NF-κB 
signaling and affecting antiviral immunity. Exploring new 
therapeutic strategies targeting MAP3K to inhibit viral rep-
lication and disease pathogenesis requires elucidating virus-
MAP3K-NF-κB interactions.

MAP3K family: a potential target 
for antiviral therapies

MAP3Ks provide prospective therapeutic targets for the 
widespread diagnosis and treatment of viral infections 
owing to recent developments in our understanding of the 
function of MAP3Ks in controlling antiviral immune sig-
nals. According to this review, it is not difficult to find 
that MAP3Ks play a key role in HIV-1 virus infection. In 
addition, MAP3Ks-related inhibitors were shown to have 
the perfect mechanism for the treatment of HIV-1-related 
diseases. Therefore, targeting MAP3Ks may lead to the 
development of effective drugs against HIV-1 infection and 
related diseases, which we summarized in detail. Moreover, 
MAP3Ks have also been targeted for the treatment of other 
viruses with good results.

MAP3Ks as a therapeutic strategy for HIV‑1‑related 
diseases

The HIV-1 epidemic is a public health crisis in coun-
tries and regions worldwide, even though antiretroviral 
therapy has greatly reduced the infection rate of HIV-1 
and prolonged the lives of HIV-1 patients [143]. Some 
patients still show HIV-1-associated neurocognitive dis-
order (HAND), which greatly affects the quality of their 
lives. Studies have pointed out that HIV-1 proteins, gp120 
and Tat, activate Mixed lineage kinase 3 (MLK3) in neu-
rons, leading to the death of neurons and the production of 
inflammatory factors with neurotoxic effects. Furthermore, 
either kinase inactivation or the pharmacological inhibi-
tion of MLK3 activity protects neuronal survival, suggest-
ing that MLK3 activity may determine the development 
of HAND [144, 145]. Bodner et al. [146] first discovered 
that the first-generation MLK inhibitor CEP-1347 dose-
dependently protects hippocampal neurons from HIV-1 
gp120-induced neurotoxicity. However, Bodner et  al. 

studied only gp120, a neurotoxin, on a single hippocampal 
neuron; Sui et al. [144] further found that HIV-1 gp120 
and Tat can also cause microglial apoptosis by activating 
MLK3. Interestingly, CEP-1347 treatment also prevented 
the activation of gp120 and Tat in monocytes. In 2010, 
Eggert et al. [147] further verified the neuronal protec-
tive effect of CEP-1347 in models of NeuroAIDS. These 
results all suggest that inhibiting MLK3 is a potential 
strategy for the treatment of HAND. Regrettably, due 
to the structure of CEP-1347, it is not conducive to the 
penetration of the blood-brain barrier, which led to its 
failure to show efficacy during Phase II clinical trials 
for the treatment of Parkinson’s disease. In addition, the 
poor pharmacokinetic and metabolic characteristics have 
become evidence that CEP-1347 has no efficacy [148]. A 
novel MLK3 inhibitor, URMC-099, has been shown to 
protect microglia from phagocytosis, lowers inflammation 
induced by HIV-1 Tat protein, and reduces HAND-asso-
ciated symptoms [149] (Fig. 3A). In addition, it has also 
been shown that URMC-099 reverses HIV-1 Nef protein-
mediated sequestration of transcription factor EB in the 
cytoplasm, induces autophagy and lysosomal biogenesis, 
and encourages the accumulation of co-administered, 
nano-formulated antiretroviral medication in persistently 
infected macrophages [145] (Fig. 3B).

Chronic kidney disease is a common condition among 
patients with HIV-1, and HIV-1-associated nephropathy 
(HIVAN) rapidly leads to kidney failure. The ASK1 
inhibitor, GS-444217 significantly inhibits ASK1 and 
downstream MAPK activation. Treatment with GS-444217 
reduces HIVAN-associated damage and improves renal 
function. Therefore, targeting ASK1 is promising for the 
development of novel treatments against HICAN (Fig. 3C) 
[150].

MAP3Ks as a therapeutic strategy for other 
virus‑related diseases

The coronavirus disease 2019 epidemic is a global health 
challenge, and it is a long and complicated process to re-
develop drugs to market. Drug repurposing was mentioned 
as an effective solution against SARS-CoV-2 (Fig. 4) [151].

Vemurafenib and PLX-4720 are inhibitors of the B-Raf 
mutation V600 [152, 153]. Vemurafenib interacts with the 
nucleotide-binding domain of the cell surface protein BiP, 
thus limiting viral replication by neutralizing viral binding 
[154]. In contrast, in another study, vemurafenib caused a 
time-dependent increase in the expression of angiotensin-
converting enzyme 2 (ACE2), which may contribute to 
SARS-CoV-2 infection [155]. PLX-4720 interacts with 
receptor-interacting serine/threonine-protein kinase 1 
(RIPK1) during SARS-CoV-2 infection [153]. RIPK1 is 
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activated by nsp12 and regulates the expression of ACE2 
to promote viral transmission. SARS-CoV-2 enters the 
human body via the ACE2 receptor, and its high expres-
sion increases the body’s susceptibility to SARS-CoV-2. 
Sorafenib and another multikinase inhibitor, regorafenib, 
also exert antiviral efficacy [156, 157], and anti-SARS-
CoV-2 activity. Sorafenib can decrease the activity of the 
nidovirus RdRp-associated nucleotidyltransferase domain 
(NiRAN) of SARS-CoV-2 RdRp by interacting with the 
aspartate residue of the anticipated active site [158, 159]. 
Regorafenib represents a potential drug candidate for 
blocking the interaction between the viral receptor-binding 
domain S1 and ACE2 [160]. Another Raf inhibitor, Dab-
rafenib, was found to inhibit SARS-CoV-2 infection in vitro 
[161, 162]. Collectively, these drugs may be rapidly applied 
to the clinical treatment of SARS-CoV-2, but their specific 
mechanisms are still unknown.

EBV expresses latent membrane protein 1 (LMP1), and 
LMP1-transgenic mice exhibit hyperproliferation of onco-
genic cells, inflammation, or malignancies. Effective treat-
ment of EBV-related tumors requires an understanding of 
LMP1 network signaling [163, 164]. LMP1 activates TPL2 
via IKK2 and causes TPL2 phosphorylation, thus activating 
JNK. When treated with the TPL2 inhibitor, TC-S7006, the 
capacity of LMP1 to activate JNK is lost, leading to the death 
of LMP1-dependent cancer cells [164]. Therefore, TPL2 is a 
potential new target for EBV-induced cancers.

Acute respiratory distress syndrome (ARDS) and pneu-
monia may be caused by H5N1 viral infection, which is 
a highly pathogenic avian influenza A virus, that disrupts 
the alveolar epithelial barrier [165]. Specifically, the H5N1 
virus stimulates the expression of the E3 ubiquitin ligase 
Itch by activating TAK1 and downstream MAPKs. TAK1 
knockdown or the use of TAK1 inhibitors restores the 

Fig. 3  Schematic representation of a working model of drugs against 
HIV-1-related diseases. A Following HIV-1 infection, microglia acti-
vate and retract their branches. The action of HIV-1 viral proteins 
eventually leads to synaptic dendrite damage and cell death. B Fol-
lowing HIV-1 infection, HIV-1 Nef protein sequesters transcription 
factor EB (TFEB) in the cytoplasm and inhibits lysosomal biogenesis 
and autophagy, thus preventing nanoART from accumulating in the 

cells and eventually leading to viral replication. Both these phenom-
ena are suppressed by the administration of URMC-099. C Treatment 
with an ASK1 inhibitor recovers the fused podocyte foot process and 
elevated inflammatory cytokines levels, in the HIVAN mice model. 
MTORC1, the mechanistic target of rapamycin complex 1; LC3, light 
chain 3
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expression levels of occludin alveolar junction proteins, 
which were ubiquitinated and degraded [166]. Thus, TAK1 
suppression could provide a target for the development of 
anti-H5N1 viral infection measures [166].

MAP3Ks offer a therapeutic window for antiviral treat-
ment and MAP3K regulation is a possible antiviral thera-
peutic approach (Table 4). However, there are some issues to 
be addressed. RAF inhibitors have the potential to suppress 
SARS-CoV-2 infection; however, RAF-MAPK is a crucial 
component of the body’s perception of external pressure 
stimuli. TPL2 and TAK1 are essential for NF-κB signaling; 
however, their inhibition could compromise the immune sys-
tem and facilitate additional infections. Therefore, the negative 
effects of MAP3K inhibition require careful evaluation.

Discussion and perspectives

MAPKs, not just MAP3Ks, play an important role in regu-
lating IFN-I production. MAP4K1 inhibits IFN-I production 
by targeting TBK1/IKKε [175], while p38 MAPK reportedly 
inhibits STING activation by increasing phosphorylation of 
USP21 at Ser538, thus further controlling the IFN-I pathway 
[176]. JNK activation is crucial for the proper functioning of 
the IFN-I pathway [113, 177]. These findings underscore the 
importance of MAPKs in IFN-I production and could lead 
to the discovery of new antiviral targets.

MAP3Ks inhibitors are effective against HIV-1 infection and 
related diseases, and numerous MAP3Ks play vital roles against 
SARS-CoV-2 and other viruses. An in-depth understanding of 

Fig. 4  Schematic representation of two working models of anti-
SARS-CoV-2 drugs. A Inhibiting the virus–host combination pre-
vents viral invasion and achieves an antiviral effect. B Inhibiting rel-
evant targets of the transduction pathway of SARS-CoV-2 prevents 

viral invasion and achieves an antiviral effect. SBD, substrate-binding 
domain; NBD, nucleotide-binding domain; csBIP, cell surface bind-
ing immunoglobin protein
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the functions of MAP3Ks in the innate immune response is 
critical to prevent and treat virus-related illnesses. Targeting 
the MAP3K family of proteins is a promising therapeutic strat-
egy for treating viral infections and associated diseases. Future 
research should focus on determining the antiviral mechanisms 
of existing drugs and translate new research findings into anti-
viral drug development strategies. We believe that elucidating 
MAP3Ks-virus interactions will resolve the current challenges 
and improve human health; this is supported by the comprehen-
sive list references reviewed here.
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