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Abstract Cold spray is an additive manufacturing and

coating process in which powder particles are accelerated

to supersonic speeds without melting them and then deposit

on a surface to form a layer of a coating. Process param-

eters and materials affect the characteristics of manufac-

tured parts and therefore must be chosen with care.

Machine learning (ML) techniques have been specifically

applied in additive manufacturing for tasks such as pre-

dicting and characterizing porosity. Machine learning

algorithms can learn how a variation in the input spray

parameters affects annotated output data, such as experi-

mentally measured part properties. In this work, a dataset

was developed from experiments reported in published

academic papers, to train ML algorithms for the porosity

prediction of cold spray manufactured parts. Data cleaning

steps, such as null value replacement and categorical fea-

ture handling, were applied to prepare the dataset for the

training of different ML models. The dataset was split into

training and testing portions, and floating feature selection

and hyperparameter optimization were performed using

parts of the training set. A final evaluation of all trained

models, using the test portion of the dataset, showed that a

prediction accuracy with an average deviation of 0-2%

porosity of the predicted values compared to the true values

can be achieved.
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Introduction

Cold spray (CS) is a solid-state additive manufacturing and

coating process, in which powder particles are accelerated

to supersonic speeds, after which they are deposited on a

surface without melting. The underlying bonding mecha-

nisms are local metallurgical bonding and mechanical

bonding which are caused by localized plastic deformation

between the particles and/or the substrate. The plastic

deformation and therefore the formation of a cold spray

deposit rely largely on the particle kinetic energy before

impact (Ref 1).

A vast array of more than 30 process parameters are

responsible for determining the characteristics of the

manufactured parts, such as the temperature and pressure

of the accelerating gas, spray nozzle geometry, distance of

the spray nozzle to the sprayed surface, and ultimately, the

motion path of the spray nozzle. Further, the characteristics

and conditions of the spray powder material and the sub-

strate material also affect the properties of the final man-

ufactured parts (Ref 2, 3). Due to this complexity, the

optimization of the CS process poses significant

challenges.

The resulting level of porosity is a critical property of a

cold-sprayed deposit as it is directly related to coating or

deposit quality and performance. For some applications, it

can be desirable and intentional to achieve a high level of

porosity, whereas in other cases a highly dense deposit is

required. Figure 1 shows two cross-sectional microscope

images of CP titanium samples with a low porosity of

0.7%, achieved with a gas pressure of 49 bar and a gas

temperature of 1000 �C (a) and a higher porosity of 5.0%

achieved with a gas pressure of 50 bar and a gas temper-

ature of 880 �C (b).

An example of an application for porous cold-sprayed

deposits is orthopedic implants made of titanium. A porous

structure permits bone tissue ingrowth and provides a

reliable fixation at the bone implant interface. Sun et al.

(Ref 4) were able to cold spray a titanium coating with a

porosity of 48.6% on a titanium substrate suitable for the

aforementioned application.

For other applications a porous coating microstructure is

detrimental. For example, when applying a protective

surface coating, a porous coating may inadequately protect

the underlying material if it is exposed to a corrosive

environment, leading to corrosion damage of the structure

(Ref 5). Further, the mechanical properties of metal parts

are adversely affected by porosity. Therefore, both the total

porosity and pore size of load bearing components must

both be kept to a minimum (Ref 6).

The porosity of a cold-sprayed coating or deposit is

highly sensitive to both material characteristics and pro-

cessing parameters (Ref 7). Table 1 provides examples of

relevant cold spray process parameters and their reported

effects on the resulting porosity. It should be noted that the

following identified relationships are specific to their
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particular study conditions and parameters, and as such,

these relationships may not have been verified to hold more

generally.

While the changing of individual CS process parameters

has observable effects, many of these parameters have

complex interdependencies. For instance, the reported

contradictory trends in studies by Zahiri et al. (Ref 15) and

Marrocco et al. (Ref 19), where one observes increased

porosity with larger powder particle size while the other

reports the opposite, can be attributed to variations in

Fig. 1 Cross-sectional

microscope images of CP

titanium samples with low

porosity (a) and high porosity

(b), manufactured at Titomic

Ltd. (Melbourne, Australia)

Table 1 Parameters affecting the porosity in cold spray

Parameter Parameter Effect on porosity Type of study Powder material Morphology Reference

Nozzle traverse speed Increase Increase Experimental CP titanium Spherical Ref 8

Nozzle traverse speed Increase Increase Experimental CP titanium Irregular Ref 9

Coating/deposit thickness Increase Increase Experimental Ti-6Al-4V Spherical Ref 10

Particle impact velocity Increase Decrease Experimental CP titanium Spherical Ref 11

Particle impact velocity Increase Decrease Experimental CP titanium Irregular Ref 12

Particle impact velocity Increase Decrease Simulation Ti-6Al-4V Spherical Ref 13

Particle impact temperature Increase Decrease Experimental CP titanium Spherical Ref 11

Particle impact temperature Increase Decrease Experimental CP titanium Irregular Ref 12

Particle impact temperature Increase Decrease Simulation Ti-6Al-4V Spherical Ref 13

Powder feed rate Increase Increase Experimental CP titanium Irregular Ref 14

Gas molecular weight Increase Increase Experimental CP titanium Irregular Ref 15

Gas pressure Increase Decrease Mathematical CP titanium No info Ref 16

Gas temperature Increase Decrease Mathematical CP titanium No info Ref 16

Gas temperature Increase Decrease Experimental 304 stainless steel Irregular Ref 17

Particle size Increase Increase Experimental CP titanium Spherical Ref 11

Particle size Increase Increase Experimental Copper Spherical Ref 18

Particle size Increase Increase Experimental CP titanium Irregular Ref 15

Particle size Increase Decrease Experimental CP titanium Irregular Ref 19

Particle size Increase Increase Experimental 316 stainless steel Spherical Ref 20

Spray angle* Increase Increase Experimental CP titanium Spherical Ref 21

Spray angle* Increase Decrease Experimental CP titanium Irregular Ref 9

Nozzle standoff distance Increase Increase Experimental CP titanium Irregular Ref 15

Nozzle standoff distance Increase Increase Mathematical CP titanium No info Ref 16

Substrate material Change No effect Experimental CP titanium Irregular Ref 12

Substrate temperature Increase No effect Simulation Ti-6Al-4V Spherical Ref 13

Substrate temperature Increase Decrease Experimental CP titanium Spherical Ref 8

Substrate roughness Increase No effect Experimental Al-Mg Irregular Ref 22

Particle surface reactivity Increase Increase Experimental CP titanium Angular Ref 23

*Normal: 90�.
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experimental conditions. Factors such as different cold

spray systems, accelerating gases, and the potentially non-

monotonic nature of relationships between spray and

material characteristics and porosity contribute to the

observed discrepancies.

In another example, Magarò et al. (Ref 24) observed that

the effect of the nozzle traverse speed on the mechanical

properties of stellite-6 coatings is more prominent when

low values of gas temperature and pressure are imposed,

whereas for the highest ones smaller differences are

noticeable.

These nuanced influences suggest that authors may

indeed measure different trends under distinct experimental

setups and that makes it challenging to optimally control or

optimize the process, to achieve specific final process

characteristics within manufactured parts or coatings.

Porosity in materials can be measured through various

methods, including image analysis, x-ray Microtomogra-

phy (XMT), and the Archimedes principle. Image analysis

technique involves the binarization of microscope images

of sample cross-sections with software like ImageJ and

determining porosity as the ratio between black and white

pixels. XMT employs x-ray imaging to capture detailed,

cross-sectional views of materials, providing insights into

their internal structures. The Archimedes principle involves

measuring the displacement of fluid when a sample is

submerged, offering a way to determine the volume and,

consequently, the porosity of the material (Ref 12, 13, 25).

Computational models offer an alternative approach to

determine the porosity without the need to manufacture

physical samples. Terrone et al. (Ref 26), Song et al. (Ref

13), and Weiller and Delloro (Ref 3) employed coupled

Eulerian–Lagrangian (CEL) frameworks to simulate mul-

tiple particle impact in CS and quantify the resulting

porosity in the material. Terrone et al. (Ref 26) focused on

multi-material titanium-copper and titanium-aluminum

combinations and on the prediction of coating porosity

after removal of a sacrificial aluminum or copper phase,

varying volume fractions of these sacrificial materials. The

porosity was assessed through a simulated chemical etch-

ing process, selectively removing sacrificial materials

connected to the deposit surface and transforming those in

direct contact with the external environment into pores.

Song et al. (Ref 13) analyzed Ti-6Al-4V powder particle

impacts on Ti-6Al-4V substrates and found that the sub-

strate temperature had a negligible impact on deposit

porosity, which was mainly influenced by particle tem-

perature and velocity. Porosity, represented by the average

Eulerian volume fraction (EVF) void percentage, was

determined by analyzing a cubic volume within the deposit

and counting void elements.

Weiller and Delloro (Ref 25) simulated the impact of a

combination of aluminum and alumina particles on an

aluminum alloy substrate. To assess the porosity level in

the simulation results, a method based on the calculation of

successive convex hulls was employed to avoid user-de-

pendent sampling volume choice that might result in non-

representative or too small volumes for the porosity eval-

uation in the deposit. Comparing the porosity predictions

with x-ray microtomography (XMT) results revealed

notable differences, which were suspected to be due to

different volume fraction sizes analyzed in simulation and

experiments. An increase in the fraction volumes generated

in the simulation to match the sizes of those in the exper-

iments was expected to improve the prediction accuracy,

but it would lead to prohibitive computational costs.

The mentioned models share common limitations, as

they are tailored to specific use cases, restricting their

applicability to a broad range of spray scenarios. Further

the predicted porosity accuracy is influenced by mesh size

and analyzed volume fraction, with smaller mesh sizes and

larger volume fractions achieving higher accuracy but

increasing computational time, limiting the practical

usability of the models (Ref 13, 25).

Machine learning (ML) models offer an alternative data-

driven approach for predicting outcomes by learning from

examples, capable of handling multi-dimensional and

heterogeneous data to detect both linear and nonlinear

relationships (Ref 27). Multidimensionality refers to the

number of input and output parameters, and the hetero-

geneity refers to a high variability of data types of the

parameters in the dataset (Ref 28). ML models can deliver

fast prediction result within seconds [29, 30] and have been

successfully implemented in CS to predict process out-

comes (Ref 1-5).

Valente et al. (Ref 31) used a decision tree classifier ML

algorithm to classify the flowability of powders used in CS

from powder features such as area, perimeter, ellipse ratio,

and circularity. Testing the algorithm with unseen data led

to an accuracy of 77.31%. Their dataset only comprised 21

datapoints with 29 features.

Ikeuchi et al. (Ref 32) used a neural network (NN)

model to predict the shape of single-track profiles for cold

spraying titanium from the input variables spray angle,

traverse speed, and standoff distance. The model’s med-

iocre mean absolute percentage error (MAPE) of 8.342%

on the test data was attributed to an insufficient data

quantity. Therefore, in their following study they added

virtual input–output subsets generated by a Gaussian

function model to the measured profile shape data. This

technique enabled them to improve the prediction accuracy

compared to the previous model, and they achieved a

MAPE of 1.23% on the test data set (Ref 33).

Liu et al. (Ref 34) utilized a NN to predict multi-layer

profiles of cold-sprayed deposits on diverse substrate

morphologies. Inputs included stand-off distance, gun
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traverse speed, deposition cycle count, and 206 points from

the previous layer’s profile, while coating profile data

served as targets. The NN model achieved a relative error

(RE) within 10% when compared to experimental profiles.

Discrepancies were attributed to assumptions in the model,

not accounting for substrate abrasion and measurement

inaccuracies of the 3D coating profiler used to generate the

data (Ref 34).

Wang et al. (Ref 35) developed a NN model to predict

critical velocity using 10 material features as model input.

The 8 datapoints for training their models were taken from

the literature. While the developed NN model demon-

strated a high prediction accuracy of 96.45% when tested

with the property data of two new materials, it is important

to note that assessing the model’s performance with a

limited dataset of only two datapoints does not provide a

comprehensive validation of its predictive capabilities.

The examples show that the prediction accuracy of the

models is depending largely on the dataset size and quality

of the data. Further these dataset characteristics determine

the application range of the models.

This paper aims to develop for the first time a ML model

that can be applied to predict the porosity in cold spray

metal deposits using process parameters and spray powder

and substrate properties as inputs. The dataset necessary to

train ML algorithms for this task was developed from

experiments reported in published academic papers. With

this strategy, a larger pool of data can be generated, and a

larger universal applicability of the models can be

achieved, helping future users of the models to apply it for

a wide range of CS process scenarios. While this approach

offers the benefit of models with a wide application range,

there is a potential drawback associated with using litera-

ture data. The utilization of such data introduces a higher

level of uncertainty regarding its accuracy and quality,

which in turn may negatively impact the performance of

the model. For instance, as different authors reported dif-

ferent sets of parameters, in the resulting combined dataset

there were numerous parameters with incomplete data

available.

To exploit the advantage of a dataset generated from the

literature and to overcome its drawbacks, several data

preparation techniques were applied to pinpoint the most

effective ways to prepare a high-quality dataset. In

‘‘Machine Learning Algorithms‘‘ section of this paper, the

applied ML algorithms are described. ‘‘Data Preparation’’

section is about the extensive data preparation strategies

that were applied, including a parameter selection strategy,

missing value, and categorical feature handling strategies.

In ‘‘Method’’ section, methods of measuring the feature

importance, null value replacement accuracy, and predic-

tion accuracy are introduced. Finally, in ‘‘Results and

Discussion’’ section the results of the applied methods are

presented including a description of limitations and sug-

gestions for future works.

Machine Learning Algorithms

Machine learning is an artificial intelligence (AI) technique

that allows a computer to automatically learn from data and

make decisions or predictions without being explicitly

programmed [36]. Once an ML algorithm has been trained,

it is presented with a test data set to determine how well it

can identify the samples that it has never seen before [27].

In this work, the bagging ensemble method random

forest (RF) and the boosting ensemble methods extreme

gradient boosting (XGB) and categorical boosting (CatB)

were deployed on a dataset to make predictions of the

porosity in cold spray. A RF is an ensemble learning

method where multiple decision trees are trained on ran-

dom subsets of the training data with replacement. Each

decision tree makes predictions independently, and the

final prediction is determined by averaging the predictions

of all trees, resulting in improved accuracy and robustness

compared to individual decision trees (Ref 37).

XGB, introduced by Chen (Ref 38), is an advanced

boosting ensemble method. Specifically, XGB uses a more

regularized model formalization which can reduce the

sensitivity of predictions to individual observations.

Thereby, the risk of overfitting to the training data can be

reduced, and the overall performance of the model can be

improved. Further XGB focuses on the computational

power, by parallelizing the tree formation leading to speed

gains in the training of the model. Another advantage of the

XGB algorithm is that it can handle missing values in the

dataset and therefore does not necessitate the application of

missing value replacement methods (Ref 38).

CatB is a boosting variant developed by researchers at

Yandex (Ref 40) that stands out for its ability to handle

categorical values. This is achieved through an ordered

target encoding (OTE) technique. In OTE, each instance’s

category is replaced with the mean target value of instances

that come before it in the dataset. By avoiding reliance on

information from the entire dataset, the model is less likely

to overfit the training data, enhancing its generalization to

new, unseen data. CatB also applies an ordering principles

to the development of the tree structure and the calculation

of the residuals, known as ordered boosting, which leads to

a further mitigation of the risk of overfitting (Ref 39).

The mathematical details of the RF, XGB and CatB

algorithms can be found in Breiman (Ref 37), Chen (Ref

38), and Prokhorenkova (Ref 39), respectively.

J Therm Spray Tech

123



Data Preparation

Here, the data for training and testing the ML models were

generated from the information provided in cold spray

academic papers about process parameters and the associ-

ated part properties. The inclusion of instances to the

dataset was constrained to non-heat treated, as-sprayed

samples that were produced with a one-component metal

powder type. The information provided by each paper

varied significantly leading to a non-negligible number of

missing values in the data set. Due to the high number of

missing values for some of the parameters, a minimum of

35% completeness was set as a threshold for inclusion to

the dataset. The completeness of a parameter was derived

as the ratio of non-null count of the respective parameter to

the total number of experiments. Therefore, from 35 papers

242 porosity measurements and data about 14 relevant

process parameters that were used to produce the respec-

tive samples were included in the dataset. The percentage

of completeness for the entire dataset was 84%. Figure 2

illustrates the structure of the dataset. The vertical axis

represents the parameters of the dataset (such as gas tem-

perature, gas pressure, etc.), and the horizontal axis rep-

resents the experiments reported in an academic paper.

Therefore, each field in this matrix represents a specific

parameter value that was used in the respective experiment

reported in the paper. In some cases, the information about

certain parameters was not shared in the article, leading to

a missing value in the data matrix. The difference between

fields with information content and fields with missing data

is indicated in Fig. 2. Black fields represent parameters

with information content, white fields represent missing

data. Table 2 gives an overview of the 14 parameters and

the extent of missing data.

Parameter Selection

The success of a machine learning project is highly

dependent on the selection of parameters. Considering the

available dataset with n = 14 parameters and the option to

choose from k = {1,..., 14}, there are a total of 16,383

possible combinations of parameters.

Number of combinations ¼
X14

k¼1

n!

n� kð Þ! � k! ðEq 1Þ

where n: elements to choose from k: elements chosen.

To reduce the number of models to be tested, only

selected parameter combinations were tested. In this case, a

floating dataset selection was constructed, with a set of

variables selected to correspond with a varying range of

variable data completeness. Table 3 shows the resulting

configurations (0-10) of the dataset.

The initial configuration 0 is a dataset including the

parameters powder material, substrate shape, process gas

type, and gas pressure. For each following configuration (1-

10), one additional new parameter was added (see param-

eters from Table 2). The order in which the new parameters

were added was depending on the non-null count of the

respective parameter (see Table 2, columns ‘non-null

count’). Parameters with a high non-null count were added

first. With this method, a range of dataset configurations

was created. Starting with configurations without missing

values (configurations 0, 1, 2), each following configura-

tion (configurations 3-10) exhibits an increasing number of

missing values.

Adding more parameters can contribute to the accuracy

of the predictions of a machine learning algorithm if there

is a strong correlation between the respective parameter

and the target parameter (Ref 40).

On the other hand, in this case the inclusion of a

parameter leads to an increase in the number of null values

in the dataset and all gaps in the dataset had later to be

replaced using a null-value replacement strategy.

Depending on how close the null-value replacements are to

the unknown true values, this can result in a lower accuracy

of the predictions by the model (Ref 41).

Handling of Missing Values

The validity of the application of missing data handling

strategies for an incomplete dataset requires meeting cer-

tain assumptions about the reason for missingness. These

reasons are referred to as the missing data mechanisms

(Ref 42). A value of a variable X1 is said to be missing

completely at random (MCAR) if the probability that X1 is

Fig. 2 Structure of dataset developed from academic papers. Black fields represent available information, whereas white fields represent missing

data
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missing is not related to a specific value of X1 or the

observed values of other variables Xn (Ref 42). That means

that the missing observations are just a random subset of all

observations and there is no systematic difference between

the missing and observed data. The missing observations of

an explanatory variable X1 are called missing at random

(MAR) if the likelihood that the values of X1 are missing

depends on the observed values of another variables Xn but

not values of the variable X1 (Ref 42). In other words, the

missingness of a field can be explained by the values in

other columns, but not from that column. Missing data are

said to be missing not at random (MNAR) if the likelihood

that a value of a variable X1 is missing is related to the

missing values of X1. When data are MNAR, almost all the

standard statistical techniques are no longer applicable (Ref

42). For the available dataset, none of the above-mentioned

missing data mechanisms can be ruled out with 100%

certainty. Indeed, MCAR is estimated as the most likely

missing data mechanism, due to the apparent random dis-

closure of information about spray parameters by the

authors of the academic papers included in the dataset.

Configurations 0-2 do not contain any missing values

and thus do not require the application of a null-value

replacement strategy. For configuration 3-10, the addition

of parameters comes along with the inclusion of null values

in the dataset. To handle the missing values in the datasets

(configuration 3-10), different null-value replacement

strategies were applied.

The complete case analysis handles the missing values

by deleting the rows having null values. That means

instances with missing values are omitted from the dataset.

The advantage of this method is that there is no data

replacement required, and therefore, inaccurate data

replacements are avoided. On the other hand, it leads to a

loss of information in the dataset. This strategy works best

if the data are MCAR, as in this case an analysis using only

complete cases will not be biased (Ref 42).

Table 4 shows that from configuration 0-10 more

parameters are included into the dataset; indeed, the range

of each numerical parameter and the number of types of

each categorical parameter are decreasing, leading to a

model with a smaller application range.

The mean/mode strategy is a univariate imputation

technique, which means that it only uses the column with

missing values for imputing values in that column. For

numeric data, the mean of each parameter was calculated,

and for categorical data the mode for each parameter was

determined on the training data set. Missing values in each

row of the training data set were then replaced by the mean

or mode of the respective parameter. This is an approxi-

mation which can increase the model bias. Indeed, the loss

of the data can be avoided which can lead to better results

compared to the removal of instances with missing values

(Ref 42).

K-nearest neighbor (k-NN) imputation algorithms are

efficient methods to fill in missing data where each missing

value in a data row is replaced by a value obtained from

related cases in the whole data set (Ref 43). It belongs to

the multivariate imputation techniques. In contrast with the

univariate imputation techniques, other variables in the

data are factored in to make better predictions about the

potential true value of a missing value. K-nearest neighbor

imputation algorithms are applicable in any of the three

missing data mechanisms, as long as there is a relationship

between the variable with the missing value and the other

variables (Ref 6).

Table 2 Overview of the

parameters of the dataset

developed from experiments

reported in academic papers

Parameter category Parameter Unit Non-null count Parameter type

Powder Powder material … 242 Categorical

Powder morphology … 207 Categorical

Avg. particle size (volume mean) lm 111 Numerical

Substrate Substrate material … 236 Categorical

Substrate shape … 242 Categorical

System Cold spray system … 149 Categorical

Nozzle properties Nozzle type … 97 Categorical

Nozzle/robot movement Traverse speed mm/s 179 Numerical

Spray angle � 242 Numerical

Standoff distance mm 231 Numerical

Powder feeder Powder feeder rate g/min 164 Numerical

Process gas Process gas type … 242 Categorical

Gas pressure MPa 242 Numerical

Gas temperature �C 242 Numerical

Avg. = average.
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A k-NN-imputed value is either a value that was actually

measured for another record in a database (1-NN) or the

average of measured values from k records (k-NN) (Ref

43). The algorithm works by calculating the Euclidian

distance from the row with the missing value to all the

other corresponding row elements (Ref 6). Based on the

calculated Euclidian distance, the k-NN finds a set of k

nearest neighbors and then replaces the missing observa-

tions for a given parameter by the average of its neighbors’

observed values.

Euclidian distance

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
weight � distance from present coordinatesð Þ2

q

ðEq 2Þ

where weight: total # of coordinates / # of present

coordinates

Multivariate imputation by chained equations (MICE) is

a multivariate imputation technique that is used under the

assumption that the missing data are MCAR or MAR.

Implementing MICE when data are MNAR could result in

biased results (Ref 44).

This technique focuses on one missing variable at a

time. Once the focus is placed on one variable, MICE uses

all the other variables in the data set to predict missing

values in that variable. The prediction is based on a

regression model that uses the currently focused missing

variable as the dependent variable and all other variables as

independent variables (Ref 44).

Handling of Categorical Features

A categorical feature is one that has two or more cate-

gories, but there is no intrinsic ordering to the categories.

To use categorical features in a dataset to train a model,

they first must be transformed into numerical features.

Converting categorical data into numerical data can be

done by integer encoding. In this procedure, each category

of a categorical variable is assigned an integer value, for

example, for the categorical variable ‘powder material’ the

category CP titanium is 1 and the category copper is 2, etc.

The problem with integer encoding is that the assigned

numbers represent a natural ordered relationship, and the

machine learning algorithms could assume that higher

numbers are more important than lower numbers. There-

fore, for categorical variables where no such ordinal rela-

tionship exists, the integer encoding is not sufficient (Ref

45).

In one hot encoding (OHE) for each category of a cat-

egorical feature, one binary attribute (which can have the

Table 4 Parameter range for dataset configuration 0-10 for numerical parameters (top) and categorical parameters (bottom)

Train data sets Range

Con.

0

Con. 1 Con. 2 Con. 3 Con. 4 Con. 5 Con. 6 Con. 7 Con. 8 Con. 9 Con. 10

x

Numerical parameters:

Gas pressure [MPa] 0.5-7 0.5-7 0.5-7 0.5-7 0.5-5 0.75-7 0.75-5 0.75-5 0.5-5 0.5-5 0.5-4.14

Spray angle [�] 90-125 90-125 90-125 90-125 90-125 90-125 90-125 90-125 90-125 90

Gas temperature [�] 20-1100 20-1100 20-1100 20-1100 20-1100 20-1000 50-1000 50-1000 50-800

Standoff distance [mm] 10-80 15-80 15-80 20-80 20-80 20-80 25-80

Traverse speed [mm/s] 1.7-3730 1.7-3730 1.7-3730 25-1000 5-1000

Powder feeder rate [g/

min]

1.7-120 1.7-120 3.5-48 3.5-20

Avg. particle size [lm] 29-41

Categorical parameters:

Process gas type 3 3 3 3 3 3 3 3 2 2 2

Powder material 7 7 7 7 7 6 5 5 5 3 2

Substrate shape 2 2 2 2 2 2 2 1 1 1 1

Substrate material 6 6 6 6 6 5 4 3

Powder morphology 8 6 6 2 2 2

Cold spray system 5 3 2

Nozzle type 5 4

y

Porosity [%] 0-43 0-43 0-43 0-43 0-43 0-43 0-43 0-25.3 0-20.1 0-20.1 0-20.1

Avg. = average; Con. = configuration.
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value 0 or 1) is created. Therefore, it can be avoided that

the machine learning model assumes a natural ordering

between the categories. Table 5 gives an example of the

one hot encoded categorical variable ‘Powder material’. In

this case, instance 1 is a CP titanium sample, instance 2 is a

copper sample, and instance 3 is a tantalum sample (Ref

45).

The downside of this method is, that with every cate-

gory, the feature space gets expanded, increasing the

complexity of the model. Here, the OHE feature handling

methods was applied. Further, the CatB machine learning

algorithm uses the integrated categorical feature handling

method OTE (see section machine learning algorithms),

which was also used in this study.

Training Data and Testing Data

To separate the existing datasets (configurations 0-10) for

the training and testing procedure, the datasets were split

into a training and testing portion. Therefore, two different

strategies were applied. For the complete case analysis, the

datasets were split into training and testing sets in an 80:20

ratio. For the missing data replacement strategies, the data

without null values were used as the testing dataset and the

data with missing values were used as the training dataset.

The latter strategy was selected to allow for a comparison

of the applied null value replacement strategies.

Method

The goal of this study was to find the optimal data set

configuration, null value replacement strategy, categorical

feature handling method, and machine learning algorithm

with optimal hyperparameters to achieve the model with

the best prediction capacity. Figure 3 shows the examined

combinations of these impact factors.

Prediction Accuracy

The root mean squared error (RMSE) is a common per-

formance metric that gives a good idea of the accuracy of a

model given the range of the output values. A small RMSE

means the model can make predictions with a high accu-

racy (Ref 46).

It is defined as:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

m

Xm

i¼1

yp � y
� �2

s
ðEq 3Þ

where yp: predicted output value for test set input values, y:

corresponding output value from test set (target), m:

number of test sets.

Several authors reported measurement ranges for the

percentage of porosity for each examined cold spray

sample (Ref 12, 15, 19, 47). The average of those reported

measurement ranges is 1.72% porosity. Therefore, the

target accuracy of a machine learning model aiming to

predict the porosity in cold spray was chosen to be in a

similar range of 2% porosity.

For each setup described in Table 3, a hyperparameter

optimization for the respective applied machine learning

algorithm was conducted. A ‘‘one at a time’’ approach and

a randomized search were applied to find the best hyper-

parameter combinations for each setup. In both cases, a

10-fold cross-validation based on the RMSE as a perfor-

mance indicator was performed on the training data set of

the respective configuration. The ‘‘one at a time’’ approach

is a systematic approach, where every hyperparameter is

tackled one at a time, using the best results for subsequent

iterations (Ref 48). For the randomized search, which is

based on inputting all the hyperparameter ranges at once,

the number of iterations was set to 60. With 60 iterations,

95% of the time, the best 5% sets of parameters can be

found.

With this approach, more than 6000 models with dif-

ferent setups and hyperparameter combinations were

evaluated on the training data. From this pool, the hyper-

parameter-optimized models for each setup were evaluated

using the test data set of the respective data set

configuration.

Feature Importance

The data set configuration 0-10 differs due the fact that

they include different parameters (see Table 3), which can

affect the models performances. To find out about which

features have the most prominent effect on the porosity, a

feature importance study was conducted. Indeed, it is

assumed that the applied data preparation strategies alter

the structure of the dataset. Therefore, an analysis of the

effect of the impact factors mentioned in Fig. 3 on the

feature importance was also conducted. Here, the Shapley

value approach was selected for this analysis.

Table 5 Example for the application of the OHE strategy for the

transformation of the categorical features ‘powder material’ into

numerical features

Instance # Copper CP titanium Tantalum

1 0 1 0

2 1 0 0

3 0 0 1
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The concept of Shapley values was originally developed

in Game Theory and is applied to estimate the contribution

of each player to the output of a game. The Shapley value

for a player is determined by calculating the expected

marginal contribution of the player to the game’s output

(i.e., value). The expected marginal contribution is defined

as the average contribution of a player across all possible

permutations or coalitions of players. All the marginal

contributions of a player are weighted by the probabilities

that they make the contribution. The weighted contribu-

tions are summed over all the coalitions that the player can

join. Therefore, a player’s individual contribution and the

interactions between players are considered (Ref 49, 50).

In ML Shapley values can be used to gain an under-

standing of the relationship between the prediction of the

model and the components of the data instance that the

model used to generate that prediction. Therefore, the value

of the game is the model prediction and the feature values

are the players (Ref 51).

The Shapley value Ui for the local importance (i.e.,

influence of a feature on the prediction made by a model

for a specific instance) of the ith feature can be calculated

as follows (Ref 51):

Ui ¼
X

S�Fn if g

Sj j! Fj j � Sj j � 1ð Þ
Fj j! fS[ if g xS[ if g

� �
� fS xSð Þ

� �

ðEq 4Þ

where |S|: size of the subset before ith feature is added, |F|:

number of features, fS[ if g xS[ if g
� �

: prediction made by the

model with ith feature is included, fS xSð Þ: prediction made

by the model with ith feature is NOT included,
Sj j! Fj j� Sj j�1ð Þ

Fj j! :

the weight for combinations for this occurrence,

S � Fn if g: all possible subsets without ith feature, S [ if g:
a subset with ith feature added.

To calculate the global feature importance over the

entire model, the average of the absolute Shapley values

for all the instances (i.e., the local feature importance for

each instance) is calculated (Ref 51).

When interpreting the Shapley values, it must be con-

sidered that they are not a measure of how important a

given feature is in the real world. It is a measure of how

important a feature is to the model. A model is not nec-

essarily a good representation of reality, as predictions can

be incorrect. The Shapley values essentially give the con-

tributions of the model features to a prediction that usually

deviates from the target variable. Therefore, no conclusion

that goes beyond the model should be made (Ref 51).

Null Value Replacement Accuracy

Univariate and multivariate null value replacement tech-

niques have been applied to handle missing values in the

dataset. Subsets consisting of only complete instances of

the data configurations 3-10 were used to assess the dif-

ferent null value replacement strategies. Therefore, null

values were randomly inserted into these datasets. The

percentage of null values was chosen to be equivalent to

the percentage of null values in the dataset configurations

that were used to train the machine learning models. The

univariate replacement strategies did not necessitate the

conversion of the categorical variables into numerical

Fig. 3 Overview of the dataset configurations, applied data preparation strategies and machine learning algorithms tested

J Therm Spray Tech

123



variables. Indeed, for the application of the multivariate

null value replacement strategies a conversion of the cat-

egorical features into numerical features was required. For

the conversion, the OHE strategy was used. Consequently,

the percentage of data completeness varies depending on

which type of null value replacement strategy was applied.

Table 6 shows the percentage of completeness for both the

univariate replacement strategy and for multivariate

replacement strategies datasets.

The random insertion of null values was repeated ten

times for each dataset to allow for a statistically relevant

assessment of the replacement strategies. Subsequently, the

univariate (mean, mode) and multivariate (KNN and

MICE) replacement strategies were applied on each dataset

to replace the missing values. Due to the different scales of

the parameters of the datasets, a standard scaler was

applied to each value of the datasets (original complete

datasets and datasets with replaced missing values) scaling

each parameter to unit variance. The standard score of a

sample x is calculated as (Ref 52):

z ¼ x� uð Þ=s ðEq 5Þ

where u: feature mean, s: feature standard deviation.

With standardized values in the dataset, a comparison of

the different applied null value replacement strategies for

each dataset configuration 3-10 using the RMSE was

possible. In this case, the RMSE was calculated as:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

m

Xm

i¼1

inserted value� true valueð Þ2
s

ðEq 6Þ

where m: number of missing values.

Results and Discussion

In this section, the result of the application of the methods

introduced in ‘‘Method’’ section is discussed. An evalua-

tion of the hyperparameter optimized models of each setup

was performed on the test dataset. The features which have

the biggest effect on the porosity in cold spray were

identified with the help of the Shapley value approach. The

accuracies of the applied null value replacement strategies

were determined. Finally, limitations of the approach and

suggestions of future works are discussed.

Evaluation of Hyperparameter-Optimized Machine

Learning Models

For each setup in Fig. 3 a hyperparameter optimization was

performed as described in chapter 4.1, followed by an

evaluation of the hyperparameter optimized models using

the test dataset. Figure 4 gives an overview of the perfor-

mance of all the hyperparameter-optimized models on the

test dataset using the RMSE as a performance indicator.

Figure 4 shows that most of the model’s predictions

deviate 3-4% porosity on average (denoted by the RMSE

class (3,4]) from the true percentage porosity values.

Indeed, 12 of the developed models are in the target range

of 0-2% porosity RMSE of their predictions and are

therefore within the specified target prediction accuracy.

This means that these models can predict the percentage of

porosity in a cold-sprayed part with a deviation of 0-2%

porosity on average.

Table 7 shows the setup of these models and their per-

formance on the testing data and the training data in detail.

In most of the cases, the test error is less than the

training error indicating a possible sampling bias in the

test. This means that the respective test dataset possibly

does not reflect the realities of the environment in which

the model was trained. On the other hand, a much better

performance on the training set as compared to the testing

set would indicate an overfitting of the model to the

training data. Comparing the results for the complete case

analyses and the application of null value replacement

strategies, it must be considered that for the former the

training and testing set size decreased with the inclusion of

parameters to the dataset (Table 8). This dataset shrinkage

only occurred for the complete case analysis as in this case

instances with missing values were removed from the

dataset.

This dataset shrinkage must be considered when evalu-

ating the prediction accuracy of the models on the testing

dataset. The evaluation of the models using the testing

datasets with a higher number of testing samples provides

more reliable results, whereas the evaluation of the models

with a very small test dataset is less conclusive. Therefore,

the use of a model that was tested with a larger test dataset

is preferred in the case of similar evaluation results. It is

noticed that all models for which the complete case strat-

egy was applied were trained with a small dataset (19-52

samples) and therefore tested with a small dataset (5-13

Table 6 Null value percentage

of dataset configurations 3-10
for univariate and multivariate

replacement strategies

Strategy Con. 3 Con. 4 Con. 5 Con. 6 Con. 7 Con. 8 Con. 9 Con. 10

Univariate 0.99 0.99 0.98 0.95 0.92 0.89 0.85 0.82

Multivariate 0.99 0.99 0.95 0.95 0.94 0.88 0.78 0.77

Con. = configuration.
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samples) as well. On the other hand, it is noticeable that

models trained with a dataset prepared using a missing

value replacement strategy have a lower number of

parameters for each dataset. As can be seen from Table 6,

these datasets have lower percentages of missing values.

Therefore, there is reason to believe that the missing han-

dling replacement strategies were effective only when

dealing with a low percentage of missing values.

Figure 5 presents a comparative analysis of predicted

and actual porosity values derived from the respective test

datasets for two models, one employing a complete case

strategy (Table 7 Nr. 3) and the other utilizing a null value

replacement strategy (Table 7 Nr. 7). The actual porosity

values are the real measurements of porosity taken from the

test samples, serving as the true reference for porosity in

this analysis. The closer the points are to the red 45� line in
each plot, the more accurate was the prediction of the

respective model. The predictions of both models come

close to the actual porosity values of the test samples.

Indeed, in Fig. 5(a) a large evaluation gap in the test dataset

can be observed between ca. 4% and 12.5% porosity. This

may be due to the small test set size used for models

trained with a dataset with many parameters that was

prepared using the complete case strategy. Figure 5(b) does

not exhibit an as big evaluation gap, due to the larger test

set that was used to evaluate the model trained with the

dataset for which a missing value replacement strategy was

applied.

Table 9 shows the average deviation of predicted and

real porosity values of the test data samples in different

porosity ranges. Model #7 performs best in the porosity

region from 1 to 10%, whereas the predictions for parts

with a high porosity deviate more significantly from the

real porosity values. Model #3 performs best in the porosity

Fig. 4 Performance of hyperparameter-optimized models for each

setup using the RMSE as a performance indicator

Table 7 Overview of all hyperparameter-optimized models with a RMSE of\ 2%

# Data set con. Null value replacement Categorical feature handling ML algorithm RMSE testing data RMSE training data

1 8 Complete case OHE XGB 1.61 0.83

2 10 Complete case OHE XGB 1.54 3.11

3 8 Complete case OHE CatB 1.34 0.49

4 9 Complete case OHE CatB 1.77 0.61

5 10 Complete case OHE CatB 1.65 0.01

6 1 Univariate OHE CatB 1.79 2.24

7 2 Univariate OHE CatB 1.61 1.73

8 0 Multivariate—KNN OHE CatB 1.82 2.61

9 4 Multivariate—MICE OHE CatB 1.98 2.64

10 9 Complete case OTE CatB 1.78 2.07

11 10 Complete case OTE CatB 1.57 3.10

12 10 Complete case OHE RF 0.79 2.77

Con. = configuration.

Table 8 Change of training and testing set size depending on the

dataset configuration

Dataset Con. Train data Test data

0 193 49

1 193 49

2 193 49

3 188 48

4 180 45

5 155 39

6 116 30

7 91 23

8 52 13

9 42 11

10 19 5

Con. = configuration.
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region from 1 to 3%. Due to the small test set size, there

were no samples in the porosity region from 3 to 10%;

therefore, the performance of model #3 in this region could

not be evaluated.

Feature Importance Analysis Using the Shapley

Value Approach

The Shapley value approach was applied to test the effect

of different dataset configurations on the feature impor-

tance. Figure 6 shows the Shapley values of every feature

for every sample for a CatB algorithm trained with a

configuration 10 dataset. It uses the Shapley values to show

the distribution of the impacts each feature has on the

model output. The color represents the feature value (red:

high, blue: low, gray: categorical). For example, low values

of the feature ‘Gas pressure’ demonstrate a strong positive

(increasing) effect on the resulting porosity, whereas high

values of this feature have a negative (decreasing) effect on

the porosity.

Calculating the Shapley value for a specific feature for

every sample in the dataset and averaging the absolute

values lead to the feature importance of the entire model.

Figure 7 shows the mean absolute Shapley value calculated

Fig. 5 Comparison of predicted target values versus actual target values. a Conf. 8—complete case—OHE—CatB, b Conf. 2—Univariate—

OHE—CatB

Table 9 Differences between predicted target values and actual target values for testing portion per bin

# Data set con. Null value replacement Categorical feature handling ML algorithm Bin-wise performance

[0-1%] (1-2%] (2-3%] (3-10%] [ 10%

3 8 Complete Case OHE CatB 1.60 0.70 0.74 … 1.23

7 2 Univariate OHE CatB 1.60 0.50 0.83 0.66 2.55

Fig. 6 Shapley value distribution of a CatB algorithm trained with a

configuration 10 dataset
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for every sample and every feature of a CatB algorithm

trained with the configuration 10 dataset.

Therefore, for this model it can be concluded that the

most important features in the model are the gas pressure,

gas temperature and the Cold spray system, whereas less

important features are the nozzle standoff distance, the

spray angle, and the substrate shape. This approach was

taken a step further by calculating the average of the mean

absolute Shapley values of all tested models. Table 10

shows the average of the mean absolute Shapley values for

every feature.

A comparison of the average mean absolute Shapley

values from Table 10 with the mean absolute Shapley

values of the CatB model trained with the configuration 10

dataset (Fig. 7) shows that there are differences in the

importance of single features across the different models.

For instance, the feature cold spray system is the third most

important feature for the CatB model trained on the con-

figuration 10 dataset, whereas this feature is the third least

important feature across all the tested models. Table 11

summarizes the average mean absolute Shapley values

depending on the applied machine learning algorithm. The

lower part of the table shows a ranking of the features

depending on the respective average mean absolute Shap-

ley value. As a conclusion, there are only minor differences

in how the choice of the machine learning algorithm affects

the importance of the single features.

Table 12 summarizes the difference of the average mean

absolute Shapley values as per different applied null value

replacement strategy. When considering the feature rank-

ings in the bottom half of the table, it appears that there are

only minor differences between the univariate (Mean,

mode) and the multivariate (KNN, MICE) replacement

strategies. However, there is a major difference evident

between those strategies, the complete case analysis, and

the XGB strategy, for the features of spray angle, powder

feeder rate, and particle size. Therefore, the selection of the

null value replacement strategy significantly affects the

resulting feature importance of the models.

Table 13 compares the two different applied categorical

feature handling strategies—OHE and OTE—for a com-

plete case analysis and a univariate replacement strategy.

In both cases, the complete case analysis and the univariate

replacement strategy, it is apparent that the categorical

feature strategy also has a major impact on the determined

feature importance of the respective models. Major dif-

ferences can be observed for the features powder material,

spray angle, standoff distance, traverse speed, powder

feeder rate, cold spray system, nozzle type, and average

particle size.

Altogether, it is apparent that drawing a conclusion from

the Shapley values to the effect of a feature on the porosity

is not advisable, as the applied data processing steps (null

value replacement strategy and categorical feature han-

dling) have a major impact on the structure of the data and

the Shapley values.

Indeed, for the features of substrate shape and gas

temperature a similar ranking was observed across all

different analyses. The substrate shape is constantly ranked

as a feature with a low impact on the porosity, whereas the

gas temperature is constantly ranked as a highly important

feature. The feature substrate shape is a two-category

feature for which the feature category ‘‘flat’’ (240 instan-

ces) was highly overrepresented compared to the feature

category ‘‘round’’ (two instances) which is the reason for

the low impact of this feature on the porosity. Therefore, in

any case the developed models should only be applied for

Fig. 7 Mean absolute Shapley values of all features of a CatB

algorithm trained with a configuration 10 dataset

Table 10 Average mean absolute Shapley values across all models

Feature Shapley value

Average STD

Gas temperature 2.39 0.86

Gas pressure 1.40 0.55

Avg. particle size 1.18 1.05

Traverse speed 0.61 0.57

Process gas type 0.53 0.51

Powder feeder rate 0.51 0.44

Standoff distance 0.32 0.24

Substrate material 0.22 0.27

Spray angle 0.21 0.29

Powder material 0.19 0.38

Powder morphology 0.13 0.25

Cold spray system 0.11 0.28

Nozzle type 0.04 0.10

Substrate shape 0.00 0.00

Avg. = average.
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the porosity prediction of ‘‘flat’’ sprays. The high signifi-

cance of the gas temperature on the porosity is in line with

experimental studies (Ref 17) and can, due to consistent

results across all models, be assumed as valid.

Evaluation of Different Null Value Replacement

Strategies

Following the description of the method in ‘‘Null Value

Replacement Accuracy’’ section, an evaluation of the null

value replacement strategies was conducted. Table 14 gives

an overview of the accuracy of the null value replacements

of each applied strategy for each dataset configuration

expressed through the RMSE.

From those results, it can be concluded that the Uni-

variate replacement strategy and the KNN-replacement

strategy led to comparable results in terms of accurately

replacing missing values. The clearly best result was

achieved using the MICE replacement strategy on dataset

configurations with a lower number of parameters (dataset

configurations 3 and 4).

Table 15 gives an overview of the RMSE for the MICE

replacement strategy applied on dataset configuration 3

without the application of the standard scaler for different

parameters. Without the standard scaler, an interpretation

of the deviation between the true values and the imputed

values for each parameter is possible.

On the categorical parameters and the numerical

parameter ‘spray angle,’ the MICE strategy performed

well. Indeed, the performance on the numerical parameters

‘Gas temperature’ and ‘Gas pressure’ is unsatisfactory.

Limitations of the Approach and Future Works

A major downside of the reported approach is the limited

control over the available data. For instance, the input

parameters particle velocity and particle temperature are

two main factors that affect the porosity level of a cold

spray deposit [21, 53]. These parameters were not included

in the development of the models reported here. This is

because these parameters were not measured and reported

together with the porosity in a sufficient quantity of reports.

A possible solution could be the development of a model

for the prediction of the particle velocity and/or particle

temperature that could be used as an intermediate model to

the existing porosity prediction models. This indeed is out

of the scope of this work.

This study explores various dataset configurations with

different input parameters. Configurations with fewer

parameters, such as configuration 4, have the drawback of

not considering variations in parameters excluded from the

dataset, such as powder morphology, traverse speed,

powder feeder rate, cold spray system, nozzle type, and

average particle size (refer to Table 3). This may lead the

model to learn incorrect relationships between input and

output data.

On the contrary, certain input parameters exert a more

pronounced impact on porosity than others. Removing

irrelevant or redundant features from the dataset, thereby

reducing model complexity, serves as a strategy to coun-

teract overfitting. Hence, in this study, different dataset

configurations were tested and evaluated to find a good

balance between model complexity and overfitting.

Table 11 Comparison of the average mean absolute Shapley values

for each applied machine learning algorithm

Shapley value ML algorithm Avg.

XGB RF CatB

Avg. Std. Avg. Std. Avg. Std.

Powder material 0.19 0.36 0.17 0.32 0.21 0.75 0.19

Substrate shape 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Process gas type 0.57 0.52 0.55 0.54 0.48 0.48 0.53

Substrate material 0.24 0.30 0.18 0.19 0.24 0.28 0.22

Gas pressure 1.52 0.56 1.25 0.47 1.42 0.58 1.39

Spray angle 0.22 0.20 0.23 0.45 0.18 0.18 0.21

Gas temperature 2.65 0.66 2.87 0.65 1.80 0.82 2.44

Standoff distance 0.43 0.28 0.24 0.15 0.29 0.24 0.32

Powder

morphology

0.15 0.29 0.09 0.27 0.14 0.26 0.13

Traverse speed 0.86 0.71 0.57 0.56 0.42 0.27 0.62

Powder feeder rate 0.55 0.35 0.65 0.64 0.37 0.23 0.53

Cold spray system 0.12 0.19 0.07 0.26 0.15 0.27 0.11

Nozzle type 0.03 0.05 0.04 0.09 0.06 0.14 0.04

Avg. particle size 1.47 1.20 1.20 1.01 0.92 0.84 1.20

Rank XGB RF CatB Avg.

rank

Powder material 10 10 9 10

Substrate shape 14 14 14 14

Process gas type 5 6 4 5

Substrate material 8 9 8 8

Gas pressure 2 2 2 2

Spray angle 9 8 10 9

Gas temperature 1 1 1 1

Standoff distance 7 7 7 7

Powder

morphology

11 11 12 11

Traverse speed 4 5 5 5

Powder feeder rate 6 4 6 5

Cold spray system 12 12 11 12

Nozzle type 13 13 13 13

Avg. particle size 3 3 3 3

Avg. = average; Std. = standard deviation.
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The most effective solution would be to generate a

firsthand dataset with comprehensive knowledge of the

experimental procedure. Generating a first-hand dataset

and employing it for the development of a predictive ML

model could be viable if a smaller set of parameters was

varied. While this would decrease the effort required for

data generation, it would also limit the model’s applica-

bility to diverse spray scenarios.

Another point for discussion involves the porosity levels

reported in the papers, which were measured using two

different techniques. 90% of the porosity samples were

measured using image analysis following a metallographic

polishing of cross sections of the samples. With this

method, factors such as inconsistent sample preparation,

inconsistent image quality, choice of thresholding and fil-

tering method, and subjectivity in selecting regions of

interest can contribute to inconsistent results. The other

10% of the samples were measured using the Archimedes

method. Here the results can be affected by inconsistent

surface cleaning of the samples, incomplete penetration of

the liquid into the pores, and insufficient drying of the

samples. Therefore, both methods are highly susceptible to

operator bias. Altogether, this is expected to reduce the

consistency of the porosity measurement results in the

dataset and therefore negatively affects the prediction

accuracy of the models trained with the dataset. This is a

Table 12 Comparison of the average mean absolute Shapley values for each applied null value replacement strategy

Shapley value Null replacement strategy Avg.

Complete Case analysis Mean-mode KNN MICE XGB strategy

Avg. Std. Avg. Std. Avg. Std. Avg. Std. Avg. Std.

Powder material 0.27 0.48 0.15 0.32 0.14 0.25 0.13 0.29 0.25 0.45 0.16

Substrate shape 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Process gas type 0.31 0.30 0.61 0.56 0.62 0.56 0.51 0.55 0.41 0.35 0.41

Substrate material 0.23 0.38 0.20 0.21 0.22 0.21 0.20 0.21 0.26 0.34 0.18

Gas pressure 1.22 0.87 1.37 0.32 1.42 0.26 1.37 0.46 1.88 0.56 1.21

Spray angle 0.55 0.50 0.12 0.14 0.10 0.11 0.10 0.11 0.33 0.14 0.20

Gas temperature 1.75 0.94 2.99 0.52 2.73 0.50 2.66 0.46 1.96 0.20 2.01

Standoff distance 0.38 0.34 0.45 0.30 0.29 0.18 0.28 0.26 0.52 0.33 0.32

Powder morphology 0.10 0.18 0.07 0.14 0.12 0.24 0.15 0.26 0.17 0.25 0.10

Traverse speed 0.82 1.21 0.71 0.26 0.34 0.13 0.60 0.29 1.23 0.54 0.62

Powder feeder rate 0.44 0.37 0.44 0.25 0.43 0.15 0.66 0.28 0.29 0.09 0.38

Cold spray system 0.23 0.65 0.05 0.12 0.05 0.07 0.17 0.30 0.20 0.28 0.12

Nozzle type 0.06 0.22 0.02 0.03 0.04 0.07 0.07 0.10 0.03 0.06 0.04

Avg. particle size 0.03 0.03 0.93 0.22 2.68 0.46 2.17 0.33 0.40 0.00 1.03

Rank Complete case analysis Mean-mode KNN MICE XGB strategy Avg.

rank

Powder material 8 9 9 11 10 9

Substrate shape 14 14 14 14 14 14

Process gas type 7 5 4 6 5 5

Substrate material 10 8 8 8 9 9

Gas pressure 2 2 3 3 2 2

Spray angle 4 10 11 12 7 9

Gas temperature 1 1 1 1 1 1

Standoff distance 6 6 7 7 4 6

Powder morphology 11 11 10 10 12 11

Traverse speed 3 4 6 5 3 4

Powder feeder rate 5 7 5 4 8 6

Cold spray system 9 12 12 9 11 11

Nozzle type 12 13 13 13 13 13

Avg. particle size 13 3 2 2 6 5

Avg. = average; Std. = standard deviation.
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disadvantage that can only be truly overcome by devel-

oping a model that was trained by a dataset that was gen-

erated by one person or a small group of people using the

exact same method. One drawback of this practice indeed

is that generating an equivalent volume of data would be

significantly more challenging.

Due to the presence of categorical features, such as

process gas type, powder, and substrate material type, etc.,

different categorical feature replacement strategies have

been applied in this study. Another way of transforming the

categorical values into numerical values would have been

to use material properties such as density, yield strength, or

melting point. These parameters are proved to indirectly

Table 13 Comparison of the

average mean absolute Shapley

values for each applied feature

handling strategies

Shapley value Complete case analysis Univariate replacement strategy

OHE OTE OHE OTE

Avg. Std. Avg. Std. Avg. Std. Avg. Std.

Powder material 0.23 0.39 1.51 0.90 0.15 0.40 1.12 0.36

Substrate shape 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Process gas type 0.27 0.25 0.50 0.28 0.53 0.46 0.54 0.18

Substrate material 0.23 0.32 1.45 0.68 0.22 0.22 0.68 0.31

Gas pressure 1.17 0.78 0.31 0.19 1.32 0.40 1.54 0.55

Spray angle 0.35 0.24 0.73 0.36 0.17 0.15 0.12 0.12

Gas temperature 1.20 0.58 1.16 0.43 2.53 0.48 0.96 0.41

Standoff distance 0.53 0.38 0.25 0.17 0.32 0.20 0.10 0.06

Powder morphology 0.12 0.15 0.79 0.59 0.07 0.11 0.43 0.17

Traverse speed 0.64 0.34 0.29 0.23 0.43 0.09 0.29 0.18

Powder feeder rate 0.63 0.29 0.28 0.15 0.42 0.16 0.17 0.11

Cold spray system 0.11 0.22 0.83 0.68 0.04 0.11 0.85 0.10

Nozzle type 0.14 0.36 0.21 0.13 0.02 0.03 0.34 0.06

Avg. particle size 0.01 0.00 0.15 0.00 0.70 0.00 0.21 0.00

Rank Complete

case

analysis

Complete

case

analysis

Univariate

replacement

strategy

Univariate

replacement

strategy

OHE OTE OHE OTE

Powder material 8 1 10 2

Substrate shape 14 14 14 14

Process gas type 7 7 4 6

Substrate material 9 2 8 5

Gas pressure 2 8 2 1

Spray angle 6 6 9 12

Gas temperature 1 3 1 3

Standoff distance 5 11 7 13

Powder morphology 11 5 11 7

Traverse speed 3 9 5 9

Powder feeder rate 4 10 6 11

Cold spray system 12 4 12 4

Nozzle type 10 12 13 8

Avg. particle size 13 13 3 10

Avg. = average.
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affect the porosity through their influence on the critical

velocity and actual particle velocity (Ref 54-56). Indeed,

the values for those parameters were rarely measured or

reported together with the porosity. Therefore, this

approach was rejected.

Finally, it is crucial to ensure that any input data used

with the trained models fall within the ranges of the

training data to achieve a prediction accuracy similar to

that demonstrated in the manuscript. This requirement

applies to both directly included parameters in the model

and those indirectly influencing it. For example, a model

trained with dataset configuration 10 includes particle size

as an input parameter and will adjust its output based on

changes in the particle size input parameter, among others.

To achieve an accuracy comparable to that reported in the

manuscript, the model should only be applied to input

parameters within the range of the training dataset.

For a model trained with a configuration 9 dataset, the

particle size is not directly included as a parameter.

Therefore, it will not respond to a change of the particle

size in the input parameters. Indeed, the particle size should

also only be varied within the value range of the training

set. Selecting an average particle size outside this range

may result in a prediction accuracy different from that

stated in the manuscript.

Conclusion

In this study, a dataset was generated from the information

provided in cold spray academic papers regarding process

parameters and the associated part properties. Due to the

structure of the available data, several data pre-processing

methods were applied to prepare the data for the training

and testing of machine learning algorithms. The goal was

to develop a machine learning model that can accurately

predict the porosity of a cold-sprayed part with an average

prediction error of less than 2% porosity when applied

within the input parameter ranges of the training data. The

assessment of multiple model setups led to the following

conclusions:

(1) The application of null value replacement strategies

and categorical feature handling strategies presum-

ably affects the structure of the dataset and the

importance of single features for the predictions of

the models.

(2) In all tested models, the feature gas temperature was

ranked as a highly influential feature for the porosity

prediction of a cold-sprayed part.

(3) The tested null value replacement strategies fail to

accurately replace all the missing values in the

datasets. In the best case with the MISE strategy, the

average deviation of replaced missing values for

‘Gas pressure’ and ‘Gas temperature’ to the true

values was 0.93 MPa and 130.58 �C, respectively.
This is still a high value given that the range for both

parameters for the given dataset is 6.5 MPa and

1080 �C, respectively.
(4) With 72 out of 180 models evaluated with the testing

dataset, an average deviation from the predicted

porosity to the true porosity of 3-4% was achieved.

This is a sufficient accuracy if the model is used to

‘‘classify’’ parts into dense and porous parts. Indeed,

Table 14 Comparison of the accuracy of the null value replacement strategies applied on standard scaled datasets using the RMSE

Dataset configuration RMSE Univariate replacement RMSE KNN replacement RMSE MICE replacement

3 1.03 0.84 0.49

4 1.05 1.06 0.51

5 0.96 1.01 0.76

6 1.03 1.00 0.85

7 0.73 1.03 0.94

8 0.83 0.85 0.78

9 0.98 0.89 0.79

10 1.05 0.94 0.78

Table 15 Application of the MICE replacement strategy for a configuration 3 dataset—without the application of a standard scaler

Categorical parameters Gas pressure, MPa Gas temperature, �C Spray angle, �

RMSE 0.13 0.93 130.58 0.0

Number of replaced values 89 5 4 4a
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the accuracy would be insufficient to distinguish

between fully dense materials.

(5) With 12 of the models evaluated using a testing

dataset, the targeted prediction accuracy of less than

2% porosity prediction error was successfully

achieved. Indeed, 8 out of those 12 models were

developed using only the complete instances in the

dataset. It must be considered that the validation of

these models against the testing dataset becomes less

conclusive due to the occurring shrinkage of the

testing datasets.

(6) 4 out of the 12 models that achieved and RMSE of

less than 2% were trained with a dataset prepared

using missing value replacement strategies. The fact

that those models were also trained with datasets

with a low number of parameters and therefore a low

number of missing values led to the conclusion that

the application of the applied missing value replace-

ment strategies is only effective in the case of a low

percentage of missing values in the dataset.
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54. T. Schmidt, F. Gärtner, H. Assadi, and H. Kreye, Development of

a generalized parameter window for cold spray deposition, Acta
Mater., 2006, 54(3), p 729-742.
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