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Abstract Cold spray additive manufacturing is an

emerging solid-state deposition process that enables large-

scale components to be manufactured at high-production

rates. Control over geometry is important for reducing the

development and growth of defects during the 3D build

process and improving the final dimensional accuracy and

quality of components. To this end, a machine learning

approach has recently gained interest in modeling addi-

tively manufactured geometry; however, such a data-driven

modeling framework lacks the explicit consideration of a

depositing surface and domain knowledge in cold spray

additive manufacturing. Therefore, this study presents

surface-aware data-driven modeling of an overlapping-

track profile using a Gaussian Process Regression model.

The proposed Gaussian Process modeling framework

explicitly incorporated two relevant geometric features

(i.e., surface type and polar length from the nozzle exit to

the surface) and a widely adopted Gaussian superposing

model as prior domain knowledge in the form of an explicit

mean function. It was shown that the proposed model could

provide better predictive performance than the Gaussian

superposing model alone and the purely data-driven

Gaussian Process model, providing consistent overlapping-

track profile predictions at all overlapping ratios. By

combining accurate prediction of track geometry with

toolpath planning, it is anticipated that improved geometric

control and product quality can be achieved in cold spray

additive manufacturing.
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Introduction

Cold spray is a coating technology in which powder par-

ticles are accelerated to 500-1000 m/s to achieve metal-

lurgical bonding without in-flight melting. This solid-state

deposition offers unique advantages, such as the absence of

melting-induced microstructure changes, a high deposition

rate with a narrow nozzle diameter and the possibility of

depositing oxygen-sensitive materials without a protective

atmosphere (Ref 1-3). Due to these characteristics, cold

spray has recently gained interest as additive manufactur-

ing technology and is often referred to as cold spray

additive manufacturing (CSAM) (Ref 4-6). CSAM has
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considerable potential for large-scale, high-production rate

manufacturing and repair on existing surfaces in the aero-

space industries (Ref 3, 7).

However, geometric control must be improved for fur-

ther development of CSAM technology toward commercial

applications. As has been pointed out in other high-pro-

duction rate additive manufacturing (HPRAM) processes,

such as wire arc additive manufacturing (WAAM) (Ref

8, 9), poor geometric control poses many practical limita-

tions, including material wastage and geometry-induced

property variations (Ref 3, 6). Given the track-by-track

nature of HPRAM, a high-accuracy process model based

on overlapping-track profiles as the basic geometric unit

provides a promising solution to the geometry control issue

(Ref 10, 11). Previously, geometric profile modeling in

HPRAM was studied using two distinct approaches:

mathematical and data-driven modeling, with the former

dominating the overlapping-track profile context. In

CSAM, a mathematical Gaussian superposing model is

usually applied in which a single-track Gaussian function

shape is assumed due to the spatial distribution of powder

exiting the nozzle and numerically superposed at each

trajectory location (Ref 12-15). However, due to the

complex processes involved in CSAM (and HPRAM),

there is no agreement in the selection of a single mathe-

matical function model (e.g., triangular (Ref 16, 17) and

trapezoidal (Ref 18) functions also used in CSAM).

Furthermore, a suitable mathematical function model

varies, depending on process parameters and their combi-

nation (Ref 19) and coating materials (Ref 10). A data-

driven modeling approach has been extensively explored in

the recent studies of CSAM geometric modeling due to its

superior predictive and continuous learning capabilities for

better model performance (Ref 9, 20-22). However, this

approach is still poorly explored for overlapping-track pro-

file modeling. Importantly, unlike the single-track modeling

case, a data-driven overlapping-track model should incor-

porate the explicit information of a depositing surface to

account for the interaction with the existing deposition (Ref

23-25). This explicit approach is particularly important

because deposition onto complex, non-planar surfaces is

frequently seen in practice (e.g., repair applications (Ref

26, 27)), and the learning capability of data-driven modeling

can handle such complex, and various deposition scenarios

as new and unseen circumstances are encountered in man-

ufacturing processes. Another aspect needed for a data-dri-

ven overlapping-track model is the greater level of physical

insights observed in the mathematical counterparts (e.g.,

Gaussian distribution of jetted powder in CSAM (Ref 12-

14)). As observed in our previous purely data-driven mod-

eling study (Ref 20), incorporating domain knowledge can

avoid unusual and inconsistent model prediction and con-

tribute to better predictive performance.

This study uses a surface-aware data-driven modeling

approach to predict an overlapping-track profile in CSAM,

using a Gaussian Process Regression (GPR) model due to

its superior training capability with fewer data (Ref 28, 29)

and better predictive accuracy over neural networks in

relevant fields (Ref 30). The significance of this study is

threefold. Firstly, we integrate two relevant geometric

features to incorpotate surface awareness in the proposed

modeling framework; these features are surface type and

the projected polar length to the point of impact that

defines depositing surface conditions and influence

deposited track profiles. Secondly, we adopt a mathemati-

cal Gaussian superposing model as an explicit mean

function of the proposed GPR model. This modeling

approach introduces an approximated underlying physical

representation to leverage as prior domain knowledge that,

in turn, achieves the increased level of physical insight as

compared to a purely data-driven GPR model. Thirdly, we

perform the comparative study among mathematical

Gaussian superposing, purely data-driven GPR and pro-

posed GPR approaches in overlapping-track profile mod-

eling and demonstrate that the proposed approach can

outperform the mathematical and purely data-driven

counterparts. For simplicity, this study focuses on the case

of two side-by-side tracks and only applies the predictive

model to the 2nd overlapping-track profile.

Materials and Methods

This study selected three experimental process variables to

prepare the representative overlapping-track profiles:

overlapping ratio (OR), traverse speed and standoff dis-

tance. Herein, OR follows the definition by Chen et al. (Ref

31) and represents the ratio of overlap from 0 to 1 between

the two adjacent profiles to the width of a single track.

Hence, a higher OR indicates a larger overlapping region

between the two adjacent profiles. A full factorial design of

experiments method was adopted in this study to determine

the values of the experimental process variables for the

preparation of each experimental condition.

Table 1 lists the level values for each experimental

process variable, leading to the fabrication of 36 overlap-

ping-track profiles in the full factorial framework. Addi-

tionally, 12 overlapping-track profiles were prepared to

ensure the coverage of further interactions between the

process variables using a randomly selected combination of

the process variables within the defined variable space of

Table 1. The default random number generator assisted this

random selection in MATLAB version R2018a. The

complete list of each experimental condition for a total of

48 overlapping-track profiles is shown in the Supplemen-

tary Information. Additionally, we provide the schematic
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diagram in Fig. 1 to visualize the major procedures for

model development to be presented in this section.

Sample Preparation

A commercial Impact Innovations 5/11 cold spray gun,

mounted on and guided by a 6-degree-of-freedom ABB

IRB4600 robot, was used to prepare all experimental

CSAM samples in this study. The cold spray nozzle was an

OUT1 tungsten carbide de Laval type with a 6.2-mm exit

diameter. A gas-atomized, commercial purity ASTM

grade-2 titanium powder feedstock was used in this study.

The powder had a particle size distribution of

D10 = 19 lm, D50 = 34 lm and D90 = 45 lm, measured

by laser diffraction. Nitrogen was used as the working gas

with preheat temperature of 600 �C at a pressure of 5 MPa.

The powder feedstock was fed into the stagnation zone at a

2.12 kg/h rate. The substrate was a commercial purity

ASTM grade-2 titanium strip with 6 9 30 9 200 mm

dimensions. The substrate surface was prepared by: pro-

cessing with a milling machine, grinding with a P120-SiC

emery paper and cleaning with ethanol before the experi-

ments. Using ABB RobotStudio version 6.08, it was

ensured that the spray path was sufficient to allow the robot

trajectory and traverse speed to stabilize before reaching

the edge of a substrate.

The geometric measurement of each sample profile was

performed at five random locations using a LEXT

OLS4000 confocal laser scanning microscope and

scanControl 2950-100 laser scanner with a z-axis mea-

surement precision of 12 lm. The in-built filtering methods

were applied: flat surface filtering in LEXT OLS4000 and

Table 1 The levels of process

variables in the experimental

design matrix for preparing

overlapping-track profiles in

cold spray additive

manufacturing

Level Overlapping ratio Traverse speed, mm/s Standoff distance, mm

1 0.3 25 30

2 0.5 100 40

3 0.7 200 50

4 0.9 … …

Fig. 1 A schematic diagram showing the overall major procedures and data processing workflow for the proposed overlapping-track profile

modeling
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average filtering with a filter size of 7 in scanControl

Configuration Tool version 6.0, followed by a local

regression method using a weighted linear least square and

second-order polynomial model in the Curve Fitting

Toolbox, MATLAB version R2018a. This method allows

for the fitting of track profiles by minimizing the square of

residual errors. The five filtered profiles were then averaged

to represent each sample profile. In addition to 48 over-

lapping-track profiles, a single-track profile was prepared

following the same method described above at each unique

combination of traverse speed and standoff distance in

Table S2 in the Supplementary Information (i.e., 21 single-

track profiles in total). These single-track profiles repre-

sented constituent profiles fabricated during the first tracks

and were used to prepare the data that represented the

geometric information of a depositing surface for over-

lapping-track cases as detailed in Section ‘‘Modeling

strategy and training.’’

Modeling Strategy and Training

Figure 2 shows the illustration of a two-track overlapping

case in this study. To explicitly incorporate the information

about a depositing surface, two relevant geometric features

were used: (1) surface type (i.e., whether depositing on the

substrate or first-track profile, classified as - 1 or 1,

respectively) and (2) the polar length from the center of the

nozzle exit to a projected point on the surface before the

second-track deposition, as shown in Fig. 2. In addition,

polar angle and traverse speed were selected, giving four

input features in total for the proposed GPR model. The

polar length change at each polar angle in Fig. 2 was used

as the output for the proposed GPR model, as adopted in

(Ref 13, 25). The preparation of the input dataset was based

on the sampling of geometric points from the single-track

profiles at the same process conditions in Fig. S5-S6 in the

Supplementary Information. The output dataset was

obtained by subtracting these sampled polar lengths from

those of the overlapping-track profiles in Fig. S1-S4 in the

Supplementary Information. Herein, an assumption was

made that the first-track profile could be fabricated with

reasonably small geometric deviations using the precisely

controlled robotic system. The region of interest for geo-

metric point sampling was selected to ± 5 mm about the

tool center point, about 25 % larger than the largest width

of the fabricated single-track profile observed during the

sample preparation. This selection ensured that the dataset

contained relevant and meaningful information while

minimizing its size for computational efficiency. Conse-

quently, 151 geometric points were taken from each profile

Fig. 2 The proposed overlapping-track modeling schematic (Color figure online)
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case, with 1 point at the tool center point and the rest

equally distanced on both sides.

GPR is a nonparametric data-driven modeling approach,

offering advantages such as the effect of Occam’s razor for

overfitting avoidance with small datasets (Ref 32). Given

the feature vector, x, a GPR model can be fully defined by a

mean function, m(x), and covariance function, k(x,x’), as in

Eq. 1:

y xð Þ ¼ GP m xð Þ; k x; x0ð Þð Þ þ � ðEq 1Þ

The proposed GPR model incorporated prior domain

knowledge about the expected outcome of a modeled

process (i.e., the shape of a track profile) into a determin-

istic explicit mean function, h(x), in the modified form of

Eq. 1 (Ref 33, 34) as expressed in Eq. 2, where f(x) is the

data-driven GPR in Eq. 1 trained to learn the deviation

between approximate, h(x), and true outputs, y(x).

y xð Þ ¼ h xð Þ þ f xð Þ þ � ¼ h xð Þ þ GP 0; k x; x0ð Þð Þ þ �

ðEq 2Þ

Using an explicit mean function offers advantages over

the direct incorporation of domain knowledge into a mean

function, m(x), of Eq. 1, including computational efficiency

and predictive performance with limited data (Ref 32, 35).

The data-driven GPR model component, f(x), was set with

m(x) = 0 and Matérn 3/2 covariance function. The prior

domain knowledge can serve as an approximated solution

that the proposed GPR model provides, avoiding a large

and physically inconsistent predictive error from overfit-

ting with limited data observed in our previous studies (Ref

20, 21). A Gaussian superposing model, previously adopted

in (Ref 12, 13), was leveraged in this regard with its model

coefficients computed by a quadratic regression model.

This mathematical model formed expected overlapping-

track profiles that assumed particle build-up on the surface

to follow Gaussian distribution, following acceleration

through a de Laval nozzle with a circular cross-section (Ref

12-15). The details of building this previously proposed

Gaussian superposing model are presented in the Supple-

mentary Information.

All input and output features were normalized to [- 1 1]

to generalize different input scales. This data-driven f(x)

component was trained using Statistics and Machine

Learning Toolbox in MATLAB version R2018a. The

standard marginal log-likelihood maximization was used as

a training method with the default subset of regressors

approximation to avoid the computational burden of kernel

matrix inversion. The data-driven f(x) component was

retrained ten times to avoid the convergence to local

optima due to the initial values of hyperparameters. This

study adopted k-fold cross-validation with k = 5, as pre-

viously used in the relevant manufacturing field (Ref 36),

to evaluate the generalized predictive performance of the

proposed GPR modeling approach using a mean squared

error (MSE). For predictive performance comparison, this

study also developed a purely data-driven GPR model in

Eq. 1, following the above procedures for the proposed

GPR modeling approach.

Results and Discussion

The quality of experimental overlapping-track profiles was

validated against the previous CSAM studies through the

effect of the three process variables on geometric deposit

formation in Table 1. This validation was done to confirm

that consistent effects of the process variables were

observed and, therefore, ensure that the quality of the

experimental overlapping-track profiles was sufficient to

generate relevant and meaningful datasets containing the

true representation of the CSAM process for the develop-

ment of data-driven models in this study that could be

implemented in practical applications.

Figure 3 shows the constituent single- and overlapping-

track profile of the selected profiles, as an illustration, by

varying: (a) traverse speed at 30-mm standoff distance,

(b) standoff distance at 25-mm/s traverse speed and (c) OR

at 25-mm/s traverse speed and 30-mm standoff distance.

Note that all experimental constituent single- and over-

lapping-track profiles are shown in Fig. S1-S6 in the

Supplementary Information.

Fig. 3 The quality validation of experimental overlapping-track

profiles through the effect of varying: (a) traverse speed (25 mm/s,

100 mm/s and 200 mm/s), (b) standoff distance (30 mm, 40 mm and

50 mm) and (c) overlapping ratio (0.3, 0.5, 0.7 and 0.9) (Color

figure online)
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Figure 3a shows that the effect of traverse speed was

negatively correlated to both the width and height of the

constituent single-track profiles, as previously observed in

(Ref 6, 12). In contrast, standoff distance was positively

and negatively correlated with the width and height,

respectively, consistent with another CSAM study (Ref

37). In Fig. 3b, standoff distance was found to have a lesser

influence on deposit geometry formation due to the dis-

tance values chosen in this study lying within an optimum

range as far as deposition efficiency is concerned, as shown

in (Ref 38). In Fig. 3c, an observed trend at low ORs was

that the shape of a constituent first-track profile was rather

retained, with the peak height of the resulting overlapping-

track profile being similar. The same trend was identified

up to OR = 0.5 in the recent CSAM overlapping modeling

study (Ref 18). Beyond this OR, the two adjacent track

profiles tended to combine and even form a higher single-

peak overlapping profile at OR = 0.9. Figure 3c shows that

the height of the resulting overlapping profile at OR = 0.7

and 0.9 was higher than that of a constituent first-track

profile, and the peak height shifted toward the overlapping-

track profile side. These trends were seen in the previous

cold spray studies (Ref 12, 18). The results in Fig. 3 con-

firm the quality of the fabricated experimental CSAM

profiles and therefore the resulting dataset for data-driven

modeling in this study.

The data-driven GPR component, f(x), mapping the

deviation between the approximate, h(x), and true polar

length change, y(x), was built and iteratively evaluated

within the cross-validation framework, resulting in the

predictive performance on independent testing datasets

with an MSE of 0.003573. The individual prediction results

of f(x) are plotted in Fig. 4a, showing the linear fit with

R2 = 0.9299 to the normalized target outputs.

The proposed GPR model, y(x), in Eq. 2 incorporating

the explicit mean function, h(x), and data-driven GPR

component, f(x), above, was shown to achieve the nor-

malized predictive performance with an MSE of

0.0002183. The resulting mean and maximum absolute

percent error, MAPE and MXAPE, respectively, were

found to be 0.5748% and 6.910%, with each prediction

result being plotted in Fig. 4b and showing R2 = 0.9988.

These results were sufficient in comparison with other

data-driven modeling studies in HPRAM (e.g., MXAPE of

4.29% in WAAM (Ref 39) and R2 = 0.99575 in CSAM

(Ref 25)).

Furthermore, the proposed GPR models were evaluated

and compared against other modeling approaches, includ-

ing the mathematical Gaussian superposing model and

purely data-driven GPR models. Herein, the Gaussian

superposing model was based on the optimal coefficients

found through the curve-fitting method and listed in

Table S3 in the Supplementary Information, but not on the

coefficients computed by the quadratic regression model

for forming the explicit mean function, h(x), in the pro-

posed GPR models. The resulting model was referred to as

the curve-fitted Gaussian superposing model and prepared

to compare the proposed GPR modeling approach against

the best possible predictive performance achievable within

the previously proposed mathematical framework (Ref

12, 13).

The prediction results of each modeling approach are

summarized in Table 2. Compared with the curve-fitted

Gaussian superposing model, both the purely data-driven

GPR and proposed GPR models showed better predictive

performance; the former achieved 33.8% and 19.1%

improvements, while the latter outperformed with 73.7%

and 64.1% improvements in MAPE and MXAPE, respec-

tively. This observation supports the effectiveness of

explicitly incorporating depositing surface information (or

surface awareness) into the modeling framework in com-

plex HPRAM processes. Among the data-driven modeling

approaches, the proposed GPR model outperformed overall

with 60.3% and 55.7% improvements in MAPE and

MXAPE, respectively. Notably, the upper 25% quartile

was more than twice narrower than the purely data-driven

GPR. This result could be due to incorporating physical

insights as the explicit mean function in the proposed GPR

model, avoiding large physically inconsistent predictions

even in the data-scarce regime of CSAM processes (e.g.,

around peak regions of track profiles as observed in our

previous study [20, 21]).

Figure 5 shows the four selected overlapping-track

profiles in CSAM as an illustration of each OR stated in

Table 1: (a) OR = 0.3, (b) OR = 0.5, (c) OR = 0.7 and

(d) OR = 0.9. Note that all the prediction results by each

model are shown in Fig. S1-S4 in the Supplementary

Information. The proposed GPR models showed reason-

ably accurate profile predictions at all ORs in Fig. 5 and

particularly performed better than the purely data-driven

GPR models at high ORs. This observation supported the

results in Table 2, showing the mitigated effect of the data

scarcity issue around high-profile regions, particularly at

high ORs, observed in our previous study (Ref 20, 21).

Compared to the curve-fitted Gaussian superposing model,

the proposed GPR models showed better predictive per-

formance at all ORs in Fig. 5, especially in the overlapping

regions. This observation may be attributed to the proposed

data-driven modeling approach capturing complex physical

phenomena related to deposition in these regions in CSAM.

One example of that complexity is a sharpening of the track

profile observed when it grows in height—a shape descri-

bed as ‘‘triangle-like.’’ This shape results from reduced

deposition efficiency onto sloped surfaces and lower par-

ticle impact velocity at the peripheries due to the interac-

tion between the gas jet and the deposit surface (Ref 16).
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Fig. 4 The results of normalized predictions vs. target outputs: (a) the

data-driven GPR component,\ i[ f(x)\ /i[ , computing the devi-

ations from actual polar length changes with a mean squared error of

0.003573 and (b) the proposed GPR model,\ i[ y(x)\ /i[ ,

incorporating\ i[ f(x)\ /i[ and explicit mean func-

tion,\ i[ h(x)\ /i[ , with a mean squared error of 0.0002183

(Color figure online)

Table 2 Summary of prediction

results in absolute errors for the

second-order overlapping-track

profiles. The results were

obtained from the mathematical

Gaussian superposing model,

purely data-driven GPR models

and the proposed GPR models.

R2 values are also listed

Absolute error, % Gaussian superposing model Purely data-driven GPR Proposed GPR

Mean 2.189 1.449 0.575

Minimum 1.3950�10�4 0.5395�10�4 0.2255�10�4

Lower Q 0.3828 0.2687 0.0609

Median 1.140 0.801 0.233

Upper Q 2.548 1.846 0.682

Maximum 19.26 15.59 6.91

R2 0.9813 0.9909 0.9988

Fig. 5 The experimental

overlapping-track profiles of

four selected samples as

illustrative cases (black) plotted

with the corresponding

prediction results of the curve-

fitted Gaussian superposing

model (blue), purely data-driven

GPR model (green) and the

proposed GPR model (red):

(a) Sample 17 (OR = 0.3),

(b) Sample 18 (OR = 0.5),

(c) Sample 19 (OR = 0.7) and

(d) Sample 20 (OR = 0.9), all at

the traverse speed of 100 mm/s

and the standoff distance of

30 mm. The sample IDs

correspond to those listed in

Table S1 in the Supplementary

Information (Color

figure online)
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This result was seen in previous CSAM modeling studies,

demonstrating that a mathematical superposing model

would not be adequate in every case (Ref 12, 20, 37, 40).

The curve-fitted Gaussian superposing model computed

a lower overlapping-track profile at low ORs in Fig. 5a and

b. These results demonstrated that a simple mathematical

function framework, not explicitly incorporating relevant

depositing surface information, failed to account for the

changes in deposition efficiency around the overlapping

regions. For example, the lower effective standoff distance

and higher relative spray angle at the impact points

increased deposition efficiency at the overlapping regions

(Ref 6, 27). Therefore, the resulting experimental over-

lapping-track profiles were higher than the Gaussian

superposing model predicted.

In contrast, the Gaussian superposing model showed a

higher overlapping-track profile at high ORs, consistent

with the previous cold spray and CSAM studies (Ref

12, 13, 37). This observation may be related to the lack of a

handling capability for deposition efficiency changes in

CSAM. One potentially influential factor here was surface

roughness. It has been reported that deposition efficiency is

directly proportional to roughness (Ref 41). This effect

may combine with lower effective spray angles at high

ORs, cancelling the increased deposition efficiency due to

the rougher depositing surface and the shorter effective

standoff distance, leading to a smaller deviation at OR =

0.9 than OR = 0.7.

Conclusions

This study presented a data-driven modeling approach that

explicitly incorporated surface awareness and prior domain

knowledge to predict an overlapping-track profile in

CSAM. A comparative study was also performed between

the Gaussian superposing, purely data-driven and proposed

GPR models; the proposed GPR modeling approach

achieved more than 50% improvement than the counter-

parts in both MAPE and MXAPE with no significantly

inconsistent predictions. These results suggest that inte-

grating the geometrically relevant features and prior

domain knowledge was effective. Although this study

harnessed a widely adopted mathematical function model,

the proposed approach can be applied to any existing

models (e.g., purely data-driven ANN from our previous

CSAM study (Ref 20)) and extended to other HPRAM

processes with an appropriate alternative model, e.g., the

mathematical parabolic function model used in WAAM

(Ref 42). Harnessing such prior domain knowledge based

on the underlying physical phenomenon would help

maintain the predictive accuracy in the scenarios where the

available data are scarce (e.g., outside the parameter range

covered in the original dataset).

Although this study focused on a set gas temperature

and pressure, powder size distribution and morphology, the

proposed modeling approach applies to other cold spray

settings, provided a suitable dataset is available. To this

end, the study will be extended in future work with the

development of an appropriate online measurement system

such as (Ref 43) to allow for efficient in situ data collection

of the relevant geometric features under various parameter

combinations and for generalizing to 3D multi-track and

multi-layer cases. The proposed modeling approach is

expected to handle more complex deposition, repairing and

manufacturing scenarios which fully realize its strength

with explicit surface awareness. For example, incorporat-

ing polar lengths as inputs allows direct application to

complex surface topologies and off-normal spray angles,

and it is compatible with ray-casting methods for predict-

ing line-of-sight deposition. Further, the surface type

classification may account for deposition onto different and

multiple coating/substrate material combinations. The

resulting 3D model will then be combined with our recent

work on toolpath planning strategy to enable an industrially

acceptable level of geometric control through on-the-fly

parameter adjustment in real time to develop and imple-

ment CSAM technology (Ref 44).

Supplementary Information The online version contains

supplementary material available at https://doi.org/10.1007/s11666-

024-01733-3.
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