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Abstract: The recent rapid development of deep learning has laid a milestone in industrial image anomaly detection (IAD). In this pa-
per, we provide a comprehensive review of deep learning-based image anomaly detection techniques, from the perspectives of neural net-
work architectures, levels of supervision, loss functions, metrics and datasets. In addition, we extract the promising setting from indus-
trial manufacturing and review the current IAD approaches under our proposed setting. Moreover, we highlight several opening chal-

lenges for image anomaly detection. The merits and downsides of representative network architectures under varying supervision are
discussed. Finally, we summarize the research findings and point out future research directions. More resources are available at
https://github.com/M-3LAB/awesome-industrial-anomaly-detection.
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1 Introduction

We review the recent advances of deep learning-based
image anomaly detection since the rapid development of
deep learning can bring the capabilities of image anom-
aly detection into the factory floor. In modern manufac-
turing, image anomaly detection (IAD) is always per-
formed at the end of the manufacturing process and tries
to identify product defects. The price of a product is sig-
nificantly affected by the defect’s severity. In addition, if
the flaw reaches a certain threshold, the product will be
discarded. Historically, the majority of anomaly detec-
tion tasks are performed by humans, which suffers from
the following many disadvantages:

1) It is impossible to avoid human fatigue, resulting in
a false positive phenomenon (i.e., the ground truth is ab-
normal, while the human's judgment is normal).

2) Long and intensive work on anomaly detection may
cause health problems, such as visual impairment.

3) Locating anomalies requires a significant number of
employees, raising operational costs.

Thus, the goal of TAD algorithms is to reduce human
labour and improve productivity and product quality. Be-
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fore deep learning, the performance of IAD could not ful-
fil the demands of industrial manufacturing. Nowadays,
the deep learning method has received good results, and
most of these methods are more than 97% accurate. Still,
TAD has many problems when it comes to real-world use.
To comprehensively explore the effectiveness and applic-
able scenarios of the current methods, more careful ana-
lysis of TAD we conduct in this survey is necessary and
significant.

Table 1 demonstrates clearly the merits of our survey
in terms of dataset, metric, neural network architecture,
levels of supervision and promising setting for industrial
manufacturing. As a representative review that focuses
more on traditional methods, Czimmermann et al.[ll have
less discussion of deep learning methods, while our sur-
vey discusses deep learning in more depth. Firstly, our
study uses twice as many IAD datasets as Tao et al.?
Secondly, we analyze the performance of IAD using the
most comprehensive image level and pixel level metrics.
Nevertheless, Cui et al.Bl and Tao et al.Zl only employ
image level metrics, neglecting the anomalies localization
performance of IAD. Thirdly, our study develops a tax-
onomy based on the design of neural network architec-
ture with varying degrees of supervision. Finally, to
bridge the gap between academic research and real-world
industry needs, we review the current IAD algorithms un-
der industrial manufacturing settings.

As an emerging field, research on IAD must fully con-
sider industrial manufacturing requirements. The follow-
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Table 1 Related surveys and ours for IAD

Czimmermann  Tao Cui

Content et al.ll] et al.l2] et al.l3l Ours
IAD dataset - 9 7 20
IAD metric - 3 1 6
Neural network
X
architecture v v \
Levels of
X X
supervision v v
Industrial manufacturing % % X N

setting

ing is a summary of the challenging issues that need to be
investigated:

1) IAD dataset should be gathered from actual manu-
facturing lines, not labs. The public cannot access the
real-world anomalous dataset due to privacy concerns.
The majority of open-source IAD datasets generate anom-
alies from anomaly-free products. In other words, the ab-
normalities from open-source TAD datasets may not oc-
cur in actual production lines, which makes deploying
IADs in industrial manufacturing very challenging.

2) It is challenging to enable the creation of a unified
TIAD model in the absence of multiple domain IAD data-
sets. Recently, You et al.ll propose a unified TAD model
for multiple class objects. However, they disregard the
notion that commodities produced in the same plant
should be of the same sort. For example, an automaker
manufactures several types of workpieces but does not
produce fruit. Current popular IAD datasets, like MVTec
ADDB] and MVTec LOCOI, consist of numerous classes
but not multiple domains. To simulate a realistic manu-
facturing process, we must create a new IAD dataset col-
lected from multiple domains.

3) It is urgent to set up a uniform assessment for the
image-level and pixel level of IAD performance. The ma-
jority of IAD metrics shrink the anomalous mask (ground
truth) into the size of feature map for evaluation, which
inevitably reduces the precision of assessment. Moreover,
we discover that certain IAD methods perform well on
image AUROC but poorly on pixel AP, or vice versa.
Therefore, it is essential to develop a uniform metric for
assessment IAD performance at both image and pixel
level.

4) We should design a more efficient loss function that
can leverage both the guidance of labelled data and the
exploration of unlabelled data. In realistic manufacturing
scenario, limited number of anomalous samples are avail-
able. However, most of unsupervised IAD methods out-
perform semi-supervised IAD methods. By observing the
failure of semi-supervised IAD, we would call for more at-
tention to the feature extraction and loss function, which
can leverage both the guidance from labels efficiently and
the exploration from the unlabeled data. Regarding the
key problem mentioned above, improving feature extrac-
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tion from abnormal samples and redesigning deviation
loss function can fully use labelled anomalies and diverge
the feature space of abnormal samples from those of nor-
mal samples.

The paper categorizes various methods into several
paradigms, and clearly analyzes the advantages and dis-
advantages of various paradigms. It allows the reader to
understand the state-of-the-art quickly and provides a re-
liable guide for selecting the required algorithm for prac-
tical applications. More importantly, we have analyzed
the disadvantages of different paradigms and the current
main challenges. Subsequent researchers can quickly find
directions to push the field forward.

1.1 Contributions

The main contributions of this survey can be summar-
ized as following:

1) We provide an in-depth review of image anomaly
detection by considering the design of neural network ar-
chitecture with varying degrees of supervision.

2) It provides a comprehensive review of the current
TAD algorithms in different settings to bridge the gap
between the academic research and real-world industrial
manufacturing,.

3) It summarizes the main issues and potential chal-
lenges in IAD, which outlines the underlying research dir-
ections for future works.

The rest of this paper is organized as Fig.1. In Sec-
tions 2 and 3, we review IAD on the basis of the neural
network architecture with different levels of supervision.
Next, we review the recent advances of TAD under our
proposed setting from industrial manufacturing in Sec-
tion 4. We describe the popular dataset in Section 5 and
take a retrospective view of the metrics function in Sec-
tion 5. Then, we provide an analysis of the performance
of current IAD methods on various datasets in Section 6.
Finally, we provide future research directions for IAD in
Section 7.

2 Unsupervised anomaly detection

The majority of current research focuses on unsuper-
vised anomaly detection, based on the assumption that
the collection of abnormal samples incurs massive human
and financial costs. This indicates that only normal
samples are included in the training set, whereas both ab-
normal and normal samples are included in the test set.
Anomaly detection in industrial images is a subset of
problems with out-of-distribution (OOD). Before the rise
of deep learning, differential detection and filtering were
frequently used to detect anomalies in industrial images.
Following the release of the MVTec AD[l, methods for
anomaly detection in industrial images can be divided in-
to two categories: feature-embedding and reconstructed-
based. Currently, more AD techniques are based on fea-
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ture embedding.

2.1 Feature embedding based methods

2.1.1 Teacher-student architecture

The performance of these methods is outstanding, but
they depend on pre-trained models such as ResNet!”]
VGGB and EfficientNetl®). The selection of the ideal
teacher model is crucial. This type of instructional
strategy is summarized in Table 2. The structure of the
network and the method of distillation are the primary
distinctions between various techniques.

The teacher-student network architecture depicted in
Fig.2 is the most standard technique for detecting indus-
trial image anomalies. This method typically selects a
partial layer of a backbone network pre-trained on a
large-scale dataset as a fixed-parameter teacher model.
During training, the teacher model imparts to the stu-
dent model the knowledge of extracting normal sample
features. During inference, the characteristics of normal
images extracted from the test set by the teacher net-
work and the student network are comparable, whereas
the characteristics of abnormal images extracted from the
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test set are quite distinct. By comparing the feature maps
generated by the two networks, it is possible to generate
anomaly score maps with the same size. Then, by enlar-
ging the anomaly score map to the same proportion as
the input image, we can obtain the anomaly scores of
various input image locations. On the justification of this
model, it is possible to determine whether the test image
is abnormal.

Bergmann et al.ll0] are the first to use teacher-student
architecture for anomaly detection. The model is straight-
forward and effective, significantly outperforming other
benchmark methods. While STPM[2] and MKD[!1 both
use multi-scale features under different network layers for
distillation, they do so in different ways. In this instance,
the normal sample features extracted by the student net-
work are more similar to those extracted by the teacher
network, whereas the abnormal sample features are more
dissimilar. In addition, MKD finds that the lighter stu-
dent network structure performs better than the student
network structure identical to that of the teacher net-
work. Based on STPM, RSTPMU3 17 adds a pair of
teacher-student networks. During reasoning, the new
teacher network is placed behind the original teacher-stu-

Image anomaly detection
in industrial manufacturing

—

Unsupervised Supervised
anomaly detection anomaly detection
Section 2 Section 3

/\

\

Industrial manufacturing
settings
Section 4

.
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and experiments

Future directions
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=

Fig. 1

Framework of this survey

Table 2 A summary of teacher-student methods regarding loss function, pre-trained model, and highlights

Method Loss function Pre-trained Highlights
Uninformed The paper designs a basic approach to anomaly detection problems using a teacher-
J[10] Lo, compactness ResNet
students student model.
MKDI11] Lo VGG The paper uses multi-scale features and lighter networks for distillation.
STPMI(2 Lo ResNet The paper uses multi-scale features under different network layers for distillation.
STFPMI3] Lo ResNet The paper adds another teacher-student pair to get different feature reconstruction
results.
RD4ADI14] Cosine similarity ResNet The paper d.651gns the teacher-student model of reverse distillation in a similar way to
reconstruction.
IKDs] Context similarity ResNet The paper ad(.is .context similarity loss and adaptive hard sample mining module to
prevent overfitting.
ASTI16] La, log-likelihood EfficientNet The paper uses an asymmetric teacher-student network to make the representation of

anomaly more different.

@ Springer



J. Liu et al. / Deep Industrial Image Anomaly Detection: A Survey

Teacher network

Anomaly
map

Distillation
B

Student network
Fig. 2

dent network and is responsible for recreating the fea-
tures. When anomalous images are presented, the stu-
dent network typically reconstructs normal features that
can be distinguished from those of the teacher network.
RSTPM also includes a mechanism for transferring fea-
tures from the teacher network to the student network in
order to facilitate feature reconstruction. RD4AD[4 and
RSTPM share certain similarities in their learning. RST-
PM employs two pairs of teacher-student networks for
feature reconstruction, whereas RD4AD only employs one
pair of teacher-student networks. RD4AD proposes a
multi-scale feature fusion (MFF) block and one-class bot-
tleneck (OCB) to form an embedding, which is used to
eliminate redundant features at multiple scales so that a
single pair of teacher-student networks can perform fea-
ture reconstruction effectively. The abnormal image fea-
tures extracted by the teacher-student network of
RD4AD differ significantly during inference. ASTI!6] con-
cludes that the abnormal image features extracted by the
teacher-student model with the same structure are signi-
ficantly similar, so they propose an asymmetric teacher-
student architecture to address this issue. AST also intro-
duces a normalized flow to avoid this problem and pre-
vent estimation bias caused by the inconsistency of the
two network structures. Previous teacher-student archi-
tecture anomaly detection methods suffer from overfit-
ting as a result of inconsistency between neural network
capacity and knowledge amount. By incorporating the
context similarity loss (CSL) and adaptive hard sample
mining (AHSM) modules, informative knowledge distilla-
tion (IKD)[ hopes to reduce overfitting. CSL can assist
the student network in comprehending the structure of a
context-containing data manifold. The AHSM can con-
centrate on difficult samples containing a lot of informa-
tion.
2.1.2 One-class classification

One-class classification techniques rely more heavily
on abnormal samples. If the generated abnormal samples
are of poor quality, the method’s performance will be
severely compromised. As demonstrated in Table 3, with
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Normal feature from teacher network
Normal feature from student network
— Abnormal feature from teacher network
= Abnormal feature from student network
""" Distance of image feature from two networks

Architecture of teacher-student models

the exception of MemSeg/!8], the training of other meth-
ods relies on SVDD and cross-entropy loss. Consequently,
the performance of the vast majority of methods is mar-
ginally inadequate.

Anomaly detection can also be viewed as a one-class
classification (OCC) problem, which has inspired some re-
searches. As depicted in Fig. 3, the method finds a hyper-
sphere to distinguish normal sample features from abnor-
mal sample features during training. During inference, the
method determines whether the sample is abnormal based
on the relative position of the test sample's features and
the hypersphere. Since the training set does not contain
methods
samples artificially to improve the accuracy of the hyper-

abnormal samples, some create abnormal
sphere.

SVDDB4Y is a classic algorithm in the OCC problem,
PatchSVDD[9, DSPSVDD[2) and SE-SVDDE2U improve
it for industrial image AD. PatchSVDD! divides the im-
age into uniform patches and sends them to the model for
training, which significantly enhances the model’s ability
to detect anomalies. DSPSVDDI[2 designs an improved
comprehensive optimization objective for the deep SVDD
model that simultaneously considers hypersphere volume
minimization and network reconstruction error minimiza-
tion to extract deep data features more effectively. SE-
SVDD proposes a semantic correlation module (SCB) to
improve the representation of abnormal semantics and
the accuracy of anomaly localization by extracting multi-
level features.

MOCCA[22 employs multi-layer features for anomaly
detection. MOCCA, unlike SE-SVDD, uses an autoen-
coder to extract features and locates the boundary posi-
tion of normal features at each layer. Sauter et al.l23] at-
tempt to use the Xception network for classification and
obtain results comparable to SVDD. FCDDIB3 employs a
fully convolutional neural network for OCC. Since the rel-
ative positions of the features of each image layer do not
change during the convolution process, FCDD yields
more interpretable results than alternative methods.

PANDA[?] examines the migration method of pre-
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Table 3 A summary of one-class classification methods regarding loss function, pre-trained model, and highlights

Method

Loss function Pre-trained

Highlights

Patch SVDDI19]

Cross-entropy,

SVDD
DDSPSVDD20] L, SVDD VGG
SE-SVDDI21l SVDD ResNet
MOCCAL22] L, SVDD -

Sauter et al.[23]

Cross-entropy Xception[24]

The paper divides image into patches and sends them to SVDD for training.

DSPSVDD takes reconstruction error into model training.

The paper proposes a semantic correlation block (SCB) to represent abnormal
semantics information.

The paper extends a single boundary to a hard boundary and a soft boundary, it also
trains AE as feature exactor.

The paper uses Xception to train a classification network.
The paper introduces a method to avoid combating collapse in model adaption.

The paper presents a novel distribution-augmented contrastive learning to enhance the
representing ability of network.

The paper performs template matching on salient regions to detect anomalies.

This paper uses saliency detection to obtain object contours to assist anomaly

The paper uses salient object detection to segment the foreground and foreground to
obtain abnormal regions.

The paper applies “cut and paste” augmentation into binary anomaly classification.
The paper applies some dynamic local augmentation to generate negative samples.

The paper applies contrastive predictive coding (CPC) model to AD and gets an

anomaly score through pixel-wise loss.

SVDD, log- .

25 ) 26
PANDAL] likelihood DNzl
Sohnetallzn  Cross-entropy, ResNet

contrastive
Bai et al.[28] - -
Niu et al.[29] L, Lo - detection.

- Ly, Lo,

30 _

UISDIE log-likelihood
CutPastel31] Cross-entropy EfficientNet
Yoa ot al.[32] Cosine similarity, B

: contrastive
CPC-ADB3] InfoNCE -
MemSeg!!8] Ly, focal ResNet

The paper artificially creates anomalies in the foreground of products and makes
detecting artificial anomalies a segmentation task.

Training

Testing

Normal sample

Artificial abnormal sample

Abnormal sample

Fig. 3  Architecture of one-class classification models

trained features and introduces the early stopping mech-
anism to the OCC problem. In addition, Reiss and
Hoshen[3¢] investigate the issue of catastrophic forgetting
in PANDA. They propose a new loss function capable of
overcoming the failure modes of both center-loss and con-
trastive-loss methods and replacing Euclidean distance
with a confidence-invariant angular center loss for predic-
tion.

DisAug CLR[27 proposes a two-stage anomaly detec-
tion framework, in which the first stage hinders the uni-
formity of contrastive representations by means of a nov-
el distribution-enhanced contrastive learning. After com-
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parative learning, abnormal and normal sample represent-
ations are easier to distinguish. While the second stage
builds a one-class classifier using the representations
learned in the first stage. Yoa et al.32 present a novel dy-
namic local augmentation to generate negative image
pairs from a normal training dataset, which is effective
for anomaly detection. Contrastive predictive coding
(CPC)B7 model is utilized by de Haan et al.33 for anom-
aly detection and segmentation, which uses patch-wise
contrastive loss as anomaly score to localize anomalies.

In addition, inspired by saliency object detection/3840],
many methods apply saliency detection to anomaly detec-
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tion. Bai et al.[28] propose to use Fourier transform to de-
tect salient regions of images, and compare the salient re-
gions with templates to detect anomalies. Niu et al.[29 use
the method of salient object detection to obtain object
contours, thereby assisting the detection of outliers. Qiu
et al.BY propose a multi-scale saliency detection (MSSD)
method to separate the foreground and background to ob-
tain coarse anomaly regions, and refine the detected res-
ults on this basis. What's more, GradCAMU11], as a com-
mon method to obtain saliency maps, is also used in vari-
ous anomaly detection algorithms. Both CutPastel3! and
CAVGAM42 treat anomaly detection as a classification
problem, while GradCAM is used for pixel-level anomaly
localization.

CutPastel3!] is a representative example of an OCC
method for data augmentation. It generates abnormal im-
ages by cutting and pasting portions of normal images,
allowing the network to distinguish abnormal images. Ad-
ditionally, segmentation-based methods are useful. This
method puts more emphasis on pixel-level anomaly local-
ization. When the flow is known, Iquebal and Bukkapat-
naml43l demonstrate that the maximum posterior estima-
tion of image labels can be formulated as a continuous
max-flow problem. Then, anomaly segmentation is ac-
complished by obtaining flows iteratively using a novel
Markov random field on the image domain. The tech-
nique shows its adaptability using a dataset for metal ad-
ditive manufacturing anomaly detection/44. MemSegl!]
stores the features of normal images in a memory bank in
order to improve the segmentation network’s ability to
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distinguish abnormal regions. In order to prevent the in-
fluence of background factors, MemSeg only introduces
anomalies in external datasets in the foreground of items,
which is another reason for its excellent performance.
2.1.3 Distribution map

Distribution-map based methods necessitate a suit-
able mapping objective for training, and the choice of
mapping method impacts model performance. As shown
in Table 4, Normalizing flows (NF)-based methods pre-
dominate. As a generative model, NF has a strong map-
ping ability, and it has also demonstrated good perform-
ance in AD tasks.

Distribution-map based methods are very similar to
OCC-based methods, with the exception that OCC-based
methods concentrate on finding feature boundaries,
whereas mapping-based methods attempt to map fea-
tures into desired distributions. A common framework for
those methods is shown in Fig.4. This expected distribu-
tion is typically a multivariate Gaussian (MVG) distribu-
tion. This type of method first employs a strong pre-
trained network to extract the features of normal images,
and then maps the extracted features to the Gaussian dis-
tribution using a mapping module. This distribution will
be deviated from the features of abnormal images that
appear during the evaluation. The abnormal probability
can be calculated based on the level of deviation.

Tailanian et al.[45] propose a contrario framework that
applies statistical analysis to feature maps produced by
patch PCA and ResNet, which performs well on leather
samples, to detect anomalies in images. By fitting a mul-

Table 4 A summary of distribution-map based methods regarding loss function, pre-trained model, and highlights

Method

Loss function

Pre-trained

Highlights

Tailanian et
al.[45]

Rippel et al.[46]

Rippel et al.[47]

PCA

Cross-entropy

Mahalanobis
distance

Log-likelihood,

ResNet

ResNet,
efficientNet

EfficientNet

The paper uses PCA and ResNet to extract features and count their distribution.

The paper establishes a model of normality by fitting a multivariate Gaussian to
feature representations of a pre-trained network.

The paper generates a multivariate Gaussian distribution for the normal class and

mitigates the catastrophic forgetting in past research.

The model can predict the location of the patch and compare it with the actual location
to judge the abnormality.

The paper proposes the bidirectional and multi-hierarchical bidirectional pre-trained
feature mapping based on the vanilla feature mapping.

The paper introduces position encoding into PFM.

The paper aligns samples at image and feature levels to detect anomalies.

The paper is the first one to introduce normalizing flow into anomaly detection.
The paper uses information of multi-scale feature maps and improves DifferNet.

The paper introduces positional encoding into the conditional normalizing flow

The paper uses VIT to replace ResNet and achieve better result.

The paper introduces an alternate stacking of large and small convolution kernels in the
NF module to model global and local distribution.

PEDENet48] cross-entropy, -
regularization

PFM[49] Lo ResNet

PEFMI0] Lo ResNet

FYDB Lo ResNet

DifferNet[52) Log-likelihood ResNet

CS-Flowl(53] Log-likelihood ResNet
CFlow-ADI54] Log-likelihood ResNet ¢

ramework.

CAINNFlow/] Log-likelihood ViTbel

FastFlowl[57] Log-likelihood ResNet

AltUBS] Log-likelihood ResNet

The paper designs a module for normalizing flow based methods and improves their
performance.
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Fig. 4  Architecture of distribution-map based methods

tivariate Gaussian to the feature representations of a pre-
trained network, Rippel et al.l46] establish a model of nor-
mality. Nonetheless, the issue of catastrophic forgetting
remains unresolved. Based on the relationship between
generative and discriminative modeling, Rippel et al.l47]
generate a multivariable Gaussian distribution for the
normal class and prove the efficacy of this concept on
deep SVDD and FCDD, which mitigates the catastroph-
ic forgetting observed in previous research. PEDENet/48]
framework consists of a patch embedding (PE) network,
a density estimation (DE) network, and a location predic-
tion (LP) network. At first, the PE module is used to re-
duce the size of the features that the pre-trained network
has extracted. Then, using the DE module, which was in-
spired by the Gaussian mixture model, and the LP mod-
ule, the model can predict the relative position of the
patch embedding and, based on the difference between
the predicted result and the actual result during infer-
ence, decide if the image is abnormal. Pre-trained feature
mapping (PFM)“9 proposes bidirectional and multi-hier-
archical bidirectional pre-trained feature mapping to en-
hance the performance of vanilla feature mapping. In ad-
dition, Wan et al.l’% add position encoding to the PFM
framework and propose a novel position encoding en-
hanced feature mapping (PEFM)BY to further enhance
PFM. FYDD! introduces registration to industrial image
AD for the first time. FYD suggests a coarse-to-fine
alignment method that starts with aligning the fore-
ground of objects at the image level. Next, in the refine-
ment alignment stage, non-contrastive learning is used to
increase the similarity of features between all correspond-
ing positions in a batch.
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Normalizing flows (NF)P is a technique for construct-
ing complex distributions by transforming a probability
density via a series of invertible mappings. NF methods
extract features from normal images from a pre-trained
model, such as ResNetl” or Swin Transformer(6®, and
transform the feature distribution as a Gaussian distribu-
tion during the training phase. In the test phase, after
passing through NF, the features of abnormal images will
deviate from the Gaussian distribution of the training
phase, which is the most important principle for classify-
ing anomalies. DifferNet52 is the first research to use NF
to address the industrial image AD issue. By incorporat-
ing cross-convolution blocks within the normalizing flow
to assign probabilities, CS-Flow!®3] makes use of the con-
text within and between multi-scale feature maps to im-
prove DifferNet. CFlow-AD[54 adds positional encoding to
the framework for conditional normalizing flow to achieve
superior results. In addition, CFlow-ADB4 analyzes in
depth why the multivariate Gaussian assumption is a
reasonable priority in earlier models and why the more
general NF framework aims to converge to similar results
with less computation. FastFlow[57 introduces an altern-
ate stacking of large and small convolution kernels in the
NF module to model global and local distribution effi-
ciently. CAINNFlowl5] enhances the performance of the
model by introducing the attention mechanism CBAMI®!]
to the NF module. In techniques such as FastFlow and
CFlow-AD, the feature distribution center is not 0 and
their performance is unstable. Kim et al.2l propose a
simple solution AltUBI58] that uses alternating training to
update the base distribution of normalizing flow for an-
omaly detection in order to solve the problem. AltUB
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verifies the effect of CFlow-AD and FastFlow using Al-
tUB.
2.1.4 Memory bank

As illustrated in Table 5, memory-based methods reg-
ularly do not require the loss function for training, and
models are constructed quickly. Their performance is en-
sured by a robust pre-training network and additional
memory space, and this type of method is currently the
most effective in TAD tasks.

The primary distinction between memory bank-based
methods and OCC-based methods, is that memory-based
methods, such as SVDD, require additional memory space
to store image features. As shown in Fig.5, these meth-
ods require minimal network training and only require
sampling or mapping the collected normal image features
for inference. During inference, features of the test image
are compared to features in the memory bank. The ab-
normal probability of the test image is equal to the spa-
tial distance from the normal features in the memory
bank.

K nearest neighbors (KNN)[" is a widely used al-
gorithm for unsupervised anomaly detection, but it oper-
ates only at the sample level. Semantic pyramid anomaly
detection (SPADE)3 is inspired by KNN and utilizes
correspondences based on a multi-resolution feature pyr-
amid to obtain pixel-level anomaly segmentation results.
PaDim[™] employs multivariate Gaussian distributions to
construct a probabilistic representation of the normal
class. Consequently, the memory bank size is determined
solely by the image resolution and not by the size of the
training set. PaDiM requires the batch-inverse of the
multidimensional covariance tensor, which makes it chal-
lenging to scale up to larger CNNs due to the increased

111

feature size. To reduce the computational cost of the in-
verse by a factor of three, Kim et al.l62] generalize ran-
dom feature selection into semi-orthogonal embedding.

Meanwhile, self-organizing map for anomaly detection
(SOMAD)64 and GCPFI® enhance the storage of nor-
mal features. SOMAD preserves normal characteristics by
employing topological memory based on multi-scale fea-
tures. While GCPF transforms standard characteristics
into multiple independent multivariate Gaussian cluster-
ing.

PatchCorel68l is a significant advancement in industri-
al image AD that significantly raises the performance for
MVTec AD. Patchcore contains two special points. First,
the memory bank of patchcore is coreset-subsampled to
ensure a low inference cost while maximizing perform-
ance. Patchcore then determines whether the test sample
is abnormal based on the distance between the test
sample’s nearest neighbor feature in its memory bank and
other features. This process of reweighting makes patch-
core more robust. Since patchcore was proposed, numer-
ous improved methods have been developed on its found-
ation. Coupled-hypersphere-based feature adaptation
(CFA) is proposed by Lee et al.l®9 to obtain target-ori-
ented features. The center and surface of the hyper-
sphere in the memory bank are obtained through trans-
fer learning, and the positional relationship between the
test feature and the coupled-hypersphere can be used to
determine whether it is abnormal or not. FAPMI[ is
comprised of numerous patch-wise and layer-wise memory
banks located in various places. FAPM calculates the fea-
tures in different memory banks independently during in-
ference, which significantly accelerates inference speed. N-
pad[™ allows for the possibility of marginal misalignment

Table 5 A summary of memory bank based methods regarding loss function, pre-trained model, and highlights

Method Loss function Pre-trained Highlights
SPADEI63] - ResNet The paper uses multi-resolution feature to detect anomalies based on KNN.
Kim et al.162] B ResNet The paper reduces the computatlonal ct?st for the inverse of rr}ultl—dlmen51onal
covariance tensor so that bigger resolution image can be applied.
SOMADI64] B ResNet The paper maintains normal characteristics by using topological memory based on
multi-scale features.
GCPFI3) B ResNet The paper processes normal features into multiple independent multivariate Gaussian
clustering.
MSPRI66] Kmeans, cosine Nele The paper enhances network representation capabilities by learning patch position
similarity, SVDD relationships.
SPDI67] Foscglbhlfoosli\ln(zE, B Design a contrastive learning method to retrain ResNet to enhance the ability of defect
Lo representation.
similarity
PatchCorel8] - ResNet The paper introduces a core-set sampling method to build a memory bank.
CFAIb9) SVDD ResNet The paper improves patchcore so that image features are distributed on a hypersphere.
FAPMIT] B ResNet The paper pu.ts different position features of the image into different memory banks to
speed up retrieval.
Mahalanobis . S . . . - .
N-pad!7] distance, log- ResNet The paper allows for possible edge misalignment by estimating a nominal distribution

likelihood

for each pixel using the pixel’s neighborhood features.
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by estimating a per-pixel nominal distribution using
neighboring and target pixel features. In addition, anom-
aly scores are deduced using both Mahalanobis and Euc-
lidean distances between target pixels and the estimated
distribution. Similarly, Bae et al."}l model the cumulat-
ive histogram using location information as conditional
probabilities, and neighborhood information was used to
establish the normal feature distribution. Furthermore,
this work introduces the first refinement approach in the
anomaly detection and localization problem, using syn-
thetic anomalous images to improve the anomaly map
based on the input image, as well as using neighborhood
and location information to estimate the distribution.

By learning the embedding position information and
comparing the extracted features with the normal embed-
ding during inference, Tsai et al.[66] propose a method to
improve the network’s ability to represent data. It is also
based on the concept of self-supervised learning. Zou et
al.[67] use contrastive learning to train the backbone net-
work and propose a new data augmentation method
called SPD to push the network to differentiate between
two images with slight differences. In addition, they
demonstrate the representation capability of the back-
bone network using patchcorel68].

2.2 Reconstruction based methods

Reconstruction-based methods primarily self-train en-
coders and decoders to reconstruct images for anomaly
detection, which makes them less reliant on the pre-
trained model and increases their ability to detect anom-
alies. However, its image classification capability is poor
due to its inability to extract high-level semantic features.
As shown in Table 6, the loss functions of various meth-
ods are comparable. However, their performance varies
due to different reconstruction model paradigms and ab-
normal sample construction methods.
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Architecture of memory bank based methods

The structure of the reconstruction-based technique is
depicted in Fig.6. During the training process, normal or
abnormal images are sent to the reconstruction network,
and the reconstruction loss function is used to guide the
training of the reconstruction network. Finally, the recon-
struction network can restore the reconstruction image in
a manner similar to the original normal image. In the in-
ference stage, the comparison model compares the origin-
al image to the reconstructed image to generate a predic-
tion. In contrast to the variety of methods for feature em-
bedding, the majority of reconstruction-based methods
only differ in the construction of the reconstruction net-
work. Reconstruction-based methods outperform feature-
embedding methods at the pixel level due to their ability
to identify anomalies through pixel-level comparison. In
addition, the majority of reconstruction-based methods
are trained from scratch without employing robust pre-
trained models, which results in inferior performance
compared to image-level feature embedding.

2.2.1 Autoencoder

Autoencoder (AE) is the most prevalent reconstruc-
tion network for AD. Numerous other reconstruction net-
works also consist of encoder and decoder components.
Bergmann et al.[% investigate the influence of structure
similarity index measure (SSIM) and L3 loss on AE re-
construction and anomaly segmentation, providing nu-
merous suggestions for future research.

How to resolve the difference between the reconstruc-
ted image and the original image is the most foundation-
al principle. There are regularly differences in style
between the reconstructed image and the original image,
resulting in over-detection. Chung et al."8l present an
outlier-exposed style distillation network (OE-SDN) to
preserve the style translation and suppress the content
translation of the AE in order to avoid over-detection. As
the anomaly prediction, Chung et al.[’0l replace the differ-
ence between the original image and the reconstruction
image of AE with the difference between the reconstruc-
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Table 6 A summary of reconstruction based methods

Method Loss function

Pre-trained

Highlights

(1) Autoencoder model

Bergmann et al.[7] Lo, SSIM

Chung et al.l70] Lo, SSIM

UTADI™ L1, adversarial
DFRI™] Ly
ALTI™] Ly, perceptual,

adversarial

P-Net/[80] L1, adversarial

Collin and De I L
Vleeschouwerl81] 1r 52
Tao et al.[82] Lo

Hou et al.[83] L2, adversarial

EdgRecl?4] Lo, SSIM
PAEI8] Lo, cross-entropy
SMATIS6] Lo, SSIM
RIADIT Lo, MSGMS, SSIM
I3AD[8] Ly, adversarial
Bauer [89] Lo
Huang et al.[9%0] Lo, SSIM, GMS
DREAMI1] Lo, SSIM, focal
SGSF93] Lo, SSIM, focal
DSRI[% Lo, focal
NSAI9] Lo, cross-entropy
SSPCABI] Lo
SSMCTBI7 Lo

Dehaene et al.[98] Cross-entropy

Liu ot al.199] ) Attention
disentanglement
DGMIL00] Lo, log-likelihood
FAVAEN] Log-likelihood

Wang et al.[102] Lo, cross-entropy

VGG

VGG

VGG

VGG

The paper firstly takes SSIM as a loss to reconstruct image and detect anomalies.
The paper proposes two AEs and reduces style change during image reconstruction.

The paper uses two-stage reconstruction to generate high-fidelity images to avoid
reconstruction errors.

The paper proposes to reconstruct and compare at the feature level to detect anomalies.

The paper proposes an adaptive attention-level transition strategy and uses perceptual
loss to improve reconstruction quality.

The paper designs a new architecture for anomaly detection.

The paper adds skip-connection in reconstruction network and adds noise during
training to improve reconstruction sharpness.

The paper proposes a dense feature fusion module to assist reconstruction.
The paper uses memory to help reconstructing images.

The paper reconstructs from the gray value edge and preserves the high-frequency
information with skip-connection.

The paper gradually increases the resolution of the input image during training.

The paper masks and inpaints image by superpixel.

The paper proposes to inpaint and reconstruct images by patch.

The paper gradually masks the high anomaly probability areas and reconstructs them.

The paper proposes to reconstruct the anomalous area differently from the original
image.

Similar to I3AD, but the paper adds skip connections to reconstruction network.

The paper designs a method to generate abnormal images and uses U-Net[%2] to
distinguish anomalies after reconstruction.

The method utilizes the idea of saliency detection to generate more realistic anomalies
than DRAEM.

The paper generates abnormal samples in feature level and perform better than
DRAEM.

The paper generates abnormal samples by pasting parts of other normal samples, which
is the SOTA method without extra data.

The paper designs a “plug and play” self-supervised block to improve the reconstruction
ability of many methods.

This paper replaces the SE-layer in SSPCAB with transformer architecture.

The paper guides reconstruction using gradient descent with VAE.
The paper proposes to use disentanglement VAE to detect anomalies.

The paper proposes to use non-regularized objective functions for training VAE under
heterogeneous datasets.

The paper uses VAE to model the distribution of features extracted by its pre-trained
model.

The paper uses VQ-VAE to construct a discrete latent space and reconstructs images
based on the latent space.

(2) GAN model

SCADNI103] Lo, adversarial

AnoSegl!04] Ly, Lo, adversarial

OCR-GANM0S [, Lo, adversarial

The paper masks part of image and reconstruct image with GAN during training.

The paper generates abnormal samples through a GAN and detects anomalies with the
discriminator.

The paper uses the frequency decoupling module to decouple and reconstruct images.

(3) Transformer model

Lo, SSIM, log-

_ [106]
VT-ADL likelihood

The paper proposes a transformer-based framework to reconstruct images and detects
anomalies.
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Table 6 (continued) A summary of reconstruction based methods

Method Loss function Pre-trained Highlights
ADTRI107 La, cross-entropy EfficientNet The paper n.nakes it simple to 1dent1f?/ anomalies when reconstruction fails by
reconstructing features from pre-trained network.
AnoViT[108] Lo ViT The paper uses a pre-trained ViT to extract features and reconstruct images.
HaloAEN09] Lo, cross-entropy, vaa The paper introduces an auto-encoder architecture based on a transformer with
SSIM HaloNet.
InTrall1o] Lo, GMS, SSIM - The paper leverages more global information to repair images with transformer.
MSTUnet[t11 Lo, SSIM, focal - The paper uses Swin Transformer for inpainting masked images and detects anomalies.
MeTAL12] Ly, SSIM B The paper uses information fro.m ncighb‘or patches to inpainting images, better
accounting for local structural information.
UniADM Lo EfficientNet The paper trains all categories of products in one model.

(4) Diffusion model

AnoDDPMI113] Lo, log-likelihood -

[114] L, log-likelihood -

The paper is the first to apply diffusion model for industrial image anomaly detection.

The paper significantly speeds up the inference process of anomaly detection using
diffusion model.
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Fig. 6  Architecture of reconstruction based models

tion image of OE-SDN and the reconstruction image of
AE. Unsupervised two-stage anomaly detection
(UTAD)[I™ brings an IE-Net and Expert-Net to extract
and utilize impressions for anomaly-free and high-fidelity
reconstructions, thereby offering the framework inter-
pretable.

Reconstruction-based methods are nearly effective as
feature embedding methods when utilizing features at dif-
ferent scales. Similar to teacher-student architecture,
deep feature reconstruction (DFR)[™] method detects an-
omalous through reconstruction at the level of features.
DFR obtains multiple spatial context-aware representa-
tions from a network that has been pre-trained. Then,
DFR reconstructs features using a deep yet efficient con-
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volutional AE and detects anomalous regions by compar-
ing the original features to the reconstruction features.
Yan et al.l™ propose a novel multi-level image recon-
struction (MLIR) framework that forms the reconstruc-
tion process as an image denoising task at different resol-
utions. Thus, MLIR accounts for the detection of both
global structure anomalies and detail anomalies.
Modifying the structure of AE can also improve its ca-
pacity for reconstruction. Zhou et al.B% introduce P-Net
to compare the difference in structure between the origin-
al and reconstruction images. Collin and De Vleescho-
uwerl8!l include skip-connections between encoder and de-
coder to improve the reconstruction’s sharpness. In addi-
tion, they propose corrupting them with a synthetic noise
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model to prevent the network from convergently map-
ping identities, and they introduce the innovative Stain
noise model for this purpose. Tao et al.l82l also operate at
the feature level. They employ a dense feature fusion
module to obtain a dense feature representation of double
input in order to help reconstruction in the dual-Siamese
framework. Hou et al.[®3] also use skip-connections to en-
hance the quality of reconstruction. In addition to achiev-
ing expected results, they add a memory module to skip-
connections. Liu et al.B4 reconstruct the original RGB
image from its gray value edges, with the skip-connec-
tions in the model preserving the image's high-frequency
information to better guide the reconstruction. Progress-
ive autoencoder (PAE)®5 improves autoencoder recon-
struction performance through progressive learning and
modified CutPaste augmentation. During training, PAE
achieves progressive learning by gradually increasing the
input image's resolution.

Masking and repainting is an effective method for self-
supervised learning. The superpixel masking and inpaint-
ing (SMAI) technique was developed by Li et al.86/ SMAT
divides the image into multiple blocks of superpixels and
trains the inpainting module to reconstruct a superpixel
within a mask. SMAI performs masking and inpainting
superpixel-by-superpixel on the test image during infer-
ence, and then compares the reconstruction image to the
test image to distinguish abnormal regions. Iterative im-
age inpainting anomaly detection (I3AD) is a method
proposed by Nakanishi et al.88] that reconstructs partial
regions based on the anomaly map. I3AD improves recon-
struction quality by only reconstructing inpainting masks
over images, and only masking regions with a high prob-
ability of abnormality. SSM is conceptually similar to
I3AD. SSM adds skip-connections to the reconstruction
network and predicts the mask region as the training tar-
get. RIADB7 randomly masks a portion of the training
set image at the patch level and reconstructs it using a
U-Net encoder-decoder network®2l. During inference, RI-
AD combines multiple random masks and reconstruction
patches to generate a reconstructed image, which is then
compared to the original image. Multi-scale gradient mag-
nitude similarity (MSGMS) outperforms SSIM as an an-
omaly score, according to RIAD.

DRAEMWI is representative of reconstruction-based
techniques. DRAEM synthesizes abnormal images and re-
constructs them as normal by introducing external data-
sets, which greatly improves the reconstruction network'’s
generalization capacity. In addition, DRAEM feeds the
original image and the reconstructed image into the seg-
mentation network to predict abnormal regions, signific-
antly enhancing the model’s ability to segment anomal-
ous regions. Nevertheless, DRAEM is susceptible to fail-
ure when synthesizing near-in-distribution anomalies. In-
spired by saliency detection, Xing et al.[l propose the sa-
liency augmentation module (SAM) to generate more
realistic abnormal images than DRAEM, so as to achieve
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better results. DSR4 proposes an architecture based on
quantized feature space representation and dual decoders
to circumvent the requirement for image-level anomaly
generation. By sampling the learned quantized feature
space at the feature level, the near-in-distribution anom-
alies are generated in a controlled way. NSA! does not
use external data for data augmentation and adopts more
data augmentation methods, allowing it to outperform all
previous methods that learned without utilizing addition-
al datasets. In contrast to other methods that attempt to
reconstruct abnormal images into normal images,
Bauer® proposes reconstructing the abnormal areas of
the image so that they deviate from the original image's
appearance. This approach produces comparable results
to other methods.

In contrast to classical reconstruction-based methods,
Ristea et al.%l propose integrating reconstruction-based
functionality into a self-supervised predictive convolution-
al attentive block (SSPCAB). SSPCAB can be incorpor-
ated into models such as DRAEM and CutPaste to en-
hance those models. Self-supervised masked convolution-
al transformer block (SSMCTB)7 transforms the SE-lay-
er(11% in SSPCAB into a channel-wise transformer block
and achieves superior results.

VAE is a variant of AE, with the difference that the
intermediate variables of VAE are data from a normal
distribution. Naturally, VAE has superior interpretabil-
ity. Dehaene et al.[%l iteratively guide reconstruction us-
ing gradient descent with energy defined by the recon-
struction loss, thereby overcoming the tendency of VAE
to produce blurry reconstructions and preserving the nor-
mal high-frequency structure. The variational autoen-
coder is trained with an attention disentanglement loss
by Liu et al.®¥ Anomaly inputs in this VAE will result in
Gaussian-deviating latent variables during gradient back-
propagation and attention generation. This deviation can
be used to locate anomalies. According to Matsubara et
al.,[100] datasets are commonly heterogeneous rather than
regularized, and non-regularized objective functions are
more suitable for training VAE models on heterogeneous
datasets. FAVAE[0 employs VAE to model the distribu-
tion of features extracted by the pre-trained model, impli-
citly simulating richer anomalies and enhancing the mod-
el’s generalization. Wang et al.[102 use VQ-VAE to create
a discrete latent space, resample the discrete latent code
that deviate from the normal distribution, and recon-
struct the image using the resampled latent code. VQ-
VAE reconstructs images that are closer to the training
set’s normal images.

2.2.2 Generative adversarial networks

The stability of the reconstruction model based on
generative adversarial networks (GANSs) is not as good as
that of AE, but the discriminant network has a better ef-
fect on some scenes described as follows.

During training, semantic context based anomaly de-
tection network (SCADN)[%3] masks a portion of the im-
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age and reconstructs it with GAN. SCADN detects anom-
alies for inference by comparing the input image to the
reconstruction image. In addition to masking images,
AnoSegll™ utilizes hard augmentation, adversarial learn-
ing, and channel concatenation to generate abnormal
samples. AnoSeg then trains GAN to generate normal
samples. AnoSeg differs from the AE reconstruction mod-
el in that its objective function incorporates both recon-
struction loss and adversarial loss. OCR-GANI09] utilizes
the frequency decoupling (FD) module to decouple the
image into information combinations of different frequen-
cies, and then reconstructs and combines the information
of these different frequencies to yield reconstructed im-
ages. During inference, the model can identify a statistic-
ally significant difference between the frequency distribu-
tions of normal and abnormal images.
2.2.3 Transformer

Transformer has a higher capacity to represent global
information, which gives it the potential to surpass AE
and become a new reconstruction network foundation for
anomaly detection. Mishra et al.l06l propose a trans-
former-based framework to reconstruct images at the
patch level and employ a Gaussian mixture density net-
work to localize anomalous regions. You et al.l97 pro-
pose ADTR for reconstructing pre-trained features. Ac-
cording to them, the use of transformers prevents well-re-
constructed anomalies, making it easy to identify anom-
alies when reconstruction fails. Lee and Kangll%l intro-
duce a vision transformer-based encoder-decoder model
(AnoViT) and assert that AnoViT is superior to the
CNN-based L2-CAE in the issue of anomaly detection.
HaloAE[%] implements transformer into HaloNet[!16] and
facilitates image reconstruction by reconstructing fea-
tures to achieve competitive results on the MVTec AD
dataset. A common self-supervised learning method for
reconstruction-based anomaly detection is the reconstruc-
tion of masked images. However, traditional CNNs find it
difficult to extract global context information. In order to
accomplish this, Pirnay and Chaill’0 propose inpainting
transformer (InTra), which integrates information from
larger regions of the input image. InTra is representative
of trained-from-scratch methods. Masked Swin Trans-
former Unet (MSTUnet)1 is comparable to InTra, but
MSTUnet employs additional enhancements/!l”l when
simulating anomalies, thereby achieving superior results.
De Nardin et al.ll12l use the neighbor patch to recon-
struct the masked patch and also achieve a powerful re-
construction ability.
2.2.4 Diffusion model

Diffusion modell!18 is a recently popular generative
model that can also be utilized for reconstruction-based
anomaly detection. AnoDDPMI13] is, to the best of our
knowledge, the first to apply the diffusion model to indus-
trial image anomaly detection. In comparison to GAN-
based methods, AnoDDPM with simplex noise can also
capture large anomaly regions without the need for large
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datasets. When applying the diffusion model to anomaly
detection, Teng et al.l4 primarily make two improve-
ments. As a replacement metric for reconstruction loss, a
time-dependent gradient value of normal data distribu-
tion is used to measure the defects. In addition, they de-
velop a novel T-scales method to reduce the required
number of iterations and accelerate the inference process.

3 Supervised anomaly detection

Despite the fact that abnormal data is diverse and dif-
ficult to collect, it is still possible to collect abnormal
samples in real-world scenarios. Therefore, some re-
searches focus on how to train models for anomaly detec-
tion using a small number of abnormal samples and a
large number of normal samples.

Chu and Kitanill!9 propose a semi-supervised frame-
work for detecting anomalies in the presence of signific-
ant data imbalance. They assume that changes in loss
values during training can be used to identify abnormal
data as features. To achieve this, they train a reinforce-
ment learning-based neural batch sampler to amplify the
difference in loss curves between anomalous and non-an-
omalous regions. FCDDB is an unsupervised method
that synthesizes abnormal samples for training the OCC
model. This concept is transferable to other OCC meth-
ods. Venkataramanan et al.[42 propose a convolutional
adversarial variational autoencoder (CAVGA) with
guided attention that can be applied equally to cases with
and without abnormal images. In an unsupervised setting,
CAVGA is guided to focus on all normal regions of an
image by an attention expansion loss. CAVGA uses a
complementary guided attention loss in the weakly super-
vised setting to minimize the attention map correspond-
ing to abnormal regions of the image while focusing on
normal regions. BoZi¢ et al.[120] examine the influence of
image-level supervision information, mixed supervision in-
formation, and pixel-level supervision information on sur-
face defect detection tasks within the same deep learning
framework. Bozi¢ et al.['20] find that a small number of
pixel-level annotations can help the model achieve per-
formance comparable to full supervision. DevNet[12l] uses
a small number of abnormal samples to realize fine-
grained end-to-end differentiable learning. Wan et al.[122]
propose a logit inducing loss (LIS) for training with im-
balanced data distribution and an abnormality capturing
module (ACM) for characterizing anomalous features in
order to effectively utilize a small amount of anomalous
information. DRA[23] proposes a framework for learning
disentangled representations of seen, pseudo, and latent
residual anomalies in order to detect both visible and in-
visible anomalies.

Besides, a number of studies fail to account for the
unbalanced distribution of normal and abnormal samples
and rely primarily on abnormal samples for supervised
training. Sindagi and Srivastavall?{ investigate the do-
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main transfer problem of datasets for anomaly detection
in various settings. Dual weighted PCA (DWPCA) is an
algorithm proposed by Qiu et al.l'?%] for image registra-
tion and surface defect detection. An interleaved deep ar-
tifacts-aware attention mechanism (iDAAM) is proposed
by Bhattacharya et al.[l26] that propose to classify multi-
object and multi-class defects in abnormal images. Zeng
et al.l'?7 view anomaly detection as a subset of target de-
tection and design a reference-based defect detection net-
work (RDDN) to detect anomalies using template refer-
ence and context reference. Song et al.l!28] regard the ab-
normal part as the salient area of the image, and propose
an effective saliency propagation algorithm for anomaly
detection. Long et al.l'29 investigate defect detection in a
tactile image, which has obvious benefits for fabric struc-
ture defect detection in RGB images. In addition, there
are methods that refer to the concept of semantic seg-
mentation. To detect defects in infrared thermal volumet-
ric data, Hu et al.139 propose a hybrid multi-dimensional
space and temporal segmentation model. Ferguson et
al.131] use mask region-based CNN architecture to detect
and segment defects in X-ray images simultaneously.
There are also numerous modified models on anomaly de-
tection based on the object detection and semantic seg-
mentation model of natural images wunder full
supervision[132-134, There are also many weakly super-
vised object detection methods suitable for anomaly de-
tection[135-138], Here we will not discuss them one by one.

4 Industrial manufacturing setting

This section introduces the classification standards or
application settings that are more appropriate for indus-
trial scenes, namely few-shot anomaly detection, noisy an-
omaly detection, anomaly synthesis, and 3D anomaly de-
tection.

4.1 Few-shot anomaly detection

Few-shot learning is meaningful for data collection
and data labeling, which has a great influence on real-
world applications. On the one hand, by studying few-
shot learning, we can reduce the cost of data collection
and data annotation for industrial products. On the oth-
er hand, we can solve the problem from the perspective of
data and investigate what kind of data is most valuable
for industrial image anomaly detection. Few-shot anom-
aly detection (FSAD)[39. 140] jg still in its infancy. There
are two settings in FSAD. The first setting is meta-learn-
ingll4ll, In other words, this setting requires a large
amount of images as meta-training dataset. Wu et al.[!39]
propose a mnovel architecture, called MetaFormer, that
employs meta-learned parameters to achieve high model
adaptation capability and instance-aware attention to loc-
alize abnormal regions. RegAD[I4! trains a model for de-
tecting category-agnostic anomalies. In the test phase, the
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anomalies are identified by comparing the registered fea-
tures of the test image and its corresponding normal im-
ages. The second setting relies on the vanilla few-shot im-
age learning. PatchCorel68, SPADEI63] and PaDim(?™! con-
duct the ablation study on 16 normal training samples.
None of them, however, are specialized in few-shot anom-
aly detection. Hence, it is necessary to develop new al-
gorithms that concentrate on native few-shot anomaly de-
tection tasks.

Recently, researchers extended the zero-shot anomaly
detection (ZSAD) setting beyond the FSAD setting. The
goal of ZSAD is to leverage the generalization power of
large models to solve anomaly detection problems without
any training, thus completely eliminating the cost of data
collection and annotation. MAEDAY[42 uses a pre-
trained masked autoencoder (MAE)!4] to tackle the
problem. MAEDAY randomly masks parts of an image
and restores them using MAE. If the reconstructed re-
gion is different from the region before masking, this re-
gion is considered as anomalous. WinCLIP[44] utilizes an-
other large model called CLIP!43 for ZSAD. Basically,
WinCLIP uses the image encoder of CLIP to extract im-

113

age features. Given the textual descriptions such as “a
photo of a damaged object”, WinCLIP uses the text en-
coder of CLIP to extract the features of these descrip-
tions, and then calculates the similarity between text fea-
tures and image features. If the similarity is high, the im-
age is “a photo of a damaged object”, otherwise the im-
age is normal. MAEDAY and WinCLIP demonstrate that
zero-shot anomaly detection is a promising research direc-

tion.
4.2 Noisy anomaly detection

Noisy learning is a classical problem for anomaly de-
tection. By studying anomaly detection under noisy
learning, we can avoid the performance loss caused by la-
beling errors and reduce false detection in anomaly detec-
tion. Tan et al.l%6] employ a novel trust region memory
update scheme to keep noise feature point away from the
memory bank. Yoon et al.l'47l use a data refinement ap-
proach to improve the robustness of one-class classifica-
tion model. Qiu et al.[48 propose a strategy for training
an anomaly detector in the presence of unlabeled anom-
alies, which is compatible with a broad class of models.
They create labelled anomalies synthetically and jointly
optimize the loss function with normal data and synthes-
is abnormal data. Chen et al.'49 introduce an interpol-
ated Gaussian descriptor that learns a one-class Gaussi-
an anomaly classifier trained with adversarially interpol-
ated training samples. However, the majority of the afore-
mentioned approaches have not been verified on real in-
dustrial image datasets. In other words, the effectiveness
of the existing anomaly detection methods may not be
suitable for industrial manufacturing.
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4.3 3D anomaly detection

3D anomaly detection can utilize more spatial inform-
ation, thereby detecting some information that cannot be
contained in RGB images. In some special lighting envir-
onments or for some anomalies that are not sensitive to
color information, 3D anomaly detection can demon-
strate its significant advantages. This research direction is
currently receiving significant attention in the academy.
Since the release of MVTec 3D-ADI0] dataset, several pa-
pers have focused on anomaly detection in 3D industrial
images. Bergmann and Sattlegger(1°) introduce a teacher-
student model for 3D anomaly detection. The teacher
network is trained to acquire general local geometric
descriptors by recreating local receptive fields. While the
student network is taught to match the local 3D
descriptors of the pre-trained teacher network. Horwitz
and Hoshenl!5! propose BTF, a method that combines
hand-crafted 3D representations (FPFH[52]) with the rep-
resentation method of 2D features (PatchCorel68]). Reiss
et al.[133] propose that the representational ability of self-
supervised learning is temporarily inferior to that of
handcrafted features for 3D anomaly detection. Neverthe-
less, self-supervised characterization still has great poten-
tial if large-scale 3D anomaly detection datasets are avail-
able. AST[6 employs RGB image with depth informa-
tion to enhance anomaly detection performance. However,
most of 3D TAD methods are specialized in RGB-D im-
ages, while the 3D dataset in real-world industrial manu-
facturing consists of point clouds, meaning current 3D
TAD methods cannot be directly deployed in industrial
manufacturing. Thus, there are still opportunities for 3D
TAD advancement.

4.4 Anomaly synthesis

By artificially synthesizing anomalies, we can improve
the performance of models with limited data. This re-
search is complementary to the few-shot research. Few-
shot learning studies how to improve the model when the
data is fixed, and this research studies how to artificially
increase the credible data to improve the model perform-
ance when the model is fixed. Both of them can reduce
the cost of data collection and labeling. There are many
unsupervised anomaly detection works that use data aug-
mentation to synthetic anomaly images and significantly
improve model performance. For examples, CutPastel31],
DRAEMP 1, MemSegl!!8] are representative methods.

In addition, some supervised methods use limited ab-
normal samples to synthesize more abnormal samples for
training. Liu et al.'>4 propose a model designed to gener-
ate defects on defect-free fabric images for training se-
mantic segmentation. While Rippel et al.l'5% use CycleG-
AND56] containing ResNet/U-Net as a generator as the
basic architecture to transfer defects from one fabric to
another. By improving the style transfer network,
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SDGANLD57 achieves better results than CycleGAN. Wei
et al.[1%8] propose a model named DST to simulate defect
samples. First, DST generates a blank mask area on a
non-defective image, then DST uses the masked histo-
gram matching module to make the color of the blank
mask area consistent with the overall color of the image,
and finally DST uses U-NET to perform style transfer to
make the generated image more realistic. Wei et al.[159]
propose a model named DSS, which uses conventional
GAN to reconstruct defect structures in designated re-
gions of defect-free samples, and then uses DST for style
transfer to blend simulated defects into the background.
Jain et al.l!6% try to use DCGAN, ACGCN and InfoGAN
to generate defect images by adding noise, which im-
proves the accuracy of classification. Wang et al.l'61] pro-
pose DTGAN based on StarGANv2, which adds front-
background decoupling and achieves a certain degree of
style control and uses the Frechet inception distance
(FIDI62]) and kernel inception distance (KID!63]) to eval-
uate the quality of image generation. Defect GAN64 also
believes that defects and normal backgrounds can be
layered, and that defects are foreground. DefectGAN gen-
erates defect foregrounds and their spatial distribution in
the form of style transfer. Although there is a consider-
able amount of research in this field, unlike other fields
that have well-established directions, there is still signific-
ant potential for further development.

5 Datasets and metrics

Datasets. Data is a crucial driving factor for ma-
chine learning, particularly for deep learning. Principally,
the difficulty of getting industrial photos hampers the ad-
vancement of image anomaly detection in industrial vis-
ion. Table 7 demonstrates that the number and the size
of TAD dataset are gradually increasing, but most of them
are not generated in a real production line. The prom-
ising alternative approach is to fully utilize the industrial
simulator to generate anomalous images, possibly redu-
cing the gap between academic research and the de-
mands of industrial manufacturing.

Metrics. Table 8 offers a comprehensive review of the
metrics in industrial image anomaly detection. The first
column denotes the name of the metric and the second
column denotes the level. In other words, if the level is
up, the larger the metrics value, the better the perform-
ance. If the level is down, the lower the metrics value, the
better the performance. The third column gives the de-
tail for each metric, especially on how the metric accur-
ately indicates the performance of image anomaly detec-
tion. From Table 8, it can be easily observed that most of
novel metrics are the variants of natural image segmenta-
tion and detection metrics, such as F1 score, AU-ROC or
AU-PR. However, these metrics can not correspond to
the performance of IAD because the tiny size of anom-
alies requires a greater weighting than the anomaly-free
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Table 7 Comparison of datasets for anomaly detection

Dataset Class Normal Abnormal Total Annotation level Real or synthetic
AITEX[165] 1 140 105 245 Segmentation mask Real
BTADI106] 3 - - 2830 Segmentation mask Real
DAGMI166] 10 - - 11 500 Segmentation mask Synthetic

DEEPPCBI167 1 - - 1500 Bounding box Synthetic
Eycandies!168] 10 13 250 2250 15 500 Segmentation mask Synthetic
Fabric dataset[169] 1 25 25 50 Segmentation mask Synthetic
GDXrayl!70] 1 0 19 407 19 407 Bounding box Real
KolektorSDD 1 347 52 399 Segmentation mask Real
KolektorSDD2[120] 1 2979 356 3335 Segmentation mask Real
MIAD71] 7 87 500 17 500 105 000 Segmentation mask Synthetic
MPDDI[172] 6 1064 282 1346 Segmentation mask Real
MTDI73] 1 - - 1344 Segmentation mask Real
MVTec ADBI 15 4096 1258 5354 Segmentation mask Real
MVTec 3D-ADUI7] 10 2904 948 3852 Segmentation mask Real
MVTec LOCO-ADISI 5 2347 993 3340 Segmentation mask Real
NanoTwicell75] 1 5 40 45 Segmentation mask Real
NEU surface defect databasell76] 1 0 1 800 1 800 Bounding box Real
RSDDI™] 2 - - 195 Segmentation mask Real
Steel defect detection!!78] 1 - - 18 076 Image Real
Steel tube dataset(179] 1 0 3408 3408 Bounding box Real
VisAl67] 12 9621 1200 10 821 Segmentation mask Real

Table 8 A summary of metrics used for anomaly detection

Formula

Metric/level

Remarks/usage

Precision (P) 1
Recall (R) 1
True positive rate (TPR) 1
False positive rate (FPR) |

Area under the receiver operating characteristic
curve (AU-ROC) 1

Area under precision-recall (AU-PR) 1

Per-region overlap (PRO)[!80] 4

Saturated per-region overlap (sPRO)[174] 4

F'1 score 1

Intersection over union (IoU)[181] 4

P =TP/(TP + FP)
R=TP/(TP + FN)
TPR =TP/(TP + FN)

FPR=FP/FP +TN)

/I(TPR) d(FPR)
0

1
JRGE
0

_ 1 PN Cyik
PRO = = Z; e

1 & A;NP
sPRO(P) = — Z min(———
m

i=1 Si

F1=2(P x R)/(P+ R)

ToU = (HNG)/(HUG)

True positive (TP), false positive (FP)

False negative (FN)

True negative (TN)

Classification

Localization, segmentation

Total ground truth number (N)/
Predicted abnormal pixels (P)/

Defect ground truth regions (C)/
Segmentation
Total ground truth number (m)/
Predicted abnormal pixels (P)/
Defect ground truth regions (A)/
Corresponding saturation thresholds (s) /

Segmentation

Classification

Prediction (H), ground truth (G)/

localization, segmentation
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regions. Hence, the validity of these metrics for TAD re-
mains to be explored.

6 Total performance analysis

Tables 9 and 10 show the statistical result of current
TIAD performance on MVTec AD. Fig.7 supports the res-
ults of Table 9: Even if different methods have similar
performance in image classification, there are still signific-
ant differences in pixel-level segmentation. We provide a
deep analysis of the performance of current IAD methods
and unlock meaningful insights as below:

1) Regarding the identification of image-level anom-
aly detection tasks, memory bank-based approaches are
the most effective neural network design. However, they
are inadequate at detecting pixel-level anomalies.

2) Ensemble learning can dramatically improve the
performance of state-of-the-art anomaly detection meth-
ods.

3) SSPCABDY can be seamlessly integrated into cut-
ting-edge methods and significantly enhance the perform-
ance of reconstruction-based methods.

4) The gap between few-shot IAD and vanilla IAD is
narrowing. In other words, we may utilize data distilla-
tion algorithms to lower the amount of the dataset used
for anomaly detection.

5) Without using ensemble learning, MemSeg/!8]
achieved the SOTA result on image-level anomaly classi-
fication, which is mainly due to the use of the U-Net[92]
framework. DRAEMDY also uses U-Net to outperform
other methods on pixel-level anomaly segmentation. The
effectiveness of MemSeg and DRAEM demonstrates the
superiority of the segmentation module in anomaly detec-
tion. Artificial supervision is usually inferior to real super-
vision, and segmentation models trained with artificial su-
pervision often perform worse. However, even when using
artificially generated anomalies as supervisory informa-
tion, these methods with segmentation modules still out-
perform other methods without segmentation modules on
classification and segmentation tasks. We can conclude
that the segmentation module is beneficial for anomaly
detection tasks.

6) AU-PR is more valuable than AU-ROC for seg-
mentation tasks[67. As shown in Table 10, reconstruction-
based methods outperform other methods on the pixel
AU-PR metric. As for Fig.7, the detection result of
DRAEM is closest to the ground truth. It results in
sharper edges and fewer false detection regions. We can
infer from statistical data and visualizations that recon-
struction-based methods are more suitable for segmenta-
tion tasks.

7 Future directions

We outline several intriguing future directions as fol-
lows:

@ Springer

Machine Intelligence Research 21(1), February 2024

1) We should build up a multi-modalities IAD data-
set. In actual assembly lines, RGB images are insufficient
to detect anomalies. Hence, we may employ additional
modalities information, such as X-ray and ultrasound, to
enhance anomaly detection performance.

2) Given that test samples are sequentially streamed
on the product line, most IAD methods are incapable of
making instantaneous predictions upon the arrival of a
new test sample. In industrial manufacturing, the infer-
ence speed of IAD should be addressed in addition to its
accuracy. Adopting multi-objective evolutionary neural
architecture search algorithms to find the optimal trade-
off architecture is thus a promising approach.

3) The majority of IAD methods use ImageNet pre-
trained models to extract the features from industrial im-
ages, which inevitably results in the feature drift issue.
Consequently, there is a pressing need to construct a pre-
trained model for industrial images.

4) Most anomaly detection methods focus on the un-
supervised setting. Although this setting can reduce the
cost of data labeling, it greatly curbs the development of
segmentation-based methods. Unsupervised methods and
supervised methods should complement each other, and
the main reason for the slow development of supervised
methods in recent years is the lack of a large number of
labeled data sets. Therefore, it is necessary to propose a
fully supervised anomaly detection dataset with pixel-
level annotations in the future.

5) Previously, we focused on developing data aug-
mentation method for normal images. However, we have
not made much effort on synthesizing abnormal samples
via data augmentation. In industrial manufacturing, it is
very difficult to collect a large number of abnormal
samples since most of the production lines are faultless.
Hence, more attention should be paid to abnormal syn-
thesis methods in the future, like CutPastel3], DRAEM!]
and MemSeg[18].

6) Current anomaly detection algorithms often focus
on detection accuracy, while ignoring the storage size and
efficiency of the models. This leads to high computation
costs and limits the application of anomaly detection to
the production end of enterprises. Therefore, it is neces-
sary to design lightweight but efficient anomaly detec-
tion models.

7) Currently, image anomaly detection algorithms can
be mainly categorized into two tasks: Industrial image an-
omaly detection and medical image anomaly detection.
Although medical images have more modalities than in-
dustrial images/!85-189 the two tasks share many similar-
ities in terms of data and experimental settings. However,
few studies have explored how to unify these two tasks.
One reason for this is the domain differences between
medical and industrial image datasets, and another reas-
on is the lack of a good baseline and benchmark for com-
parison. It would be very meaningful to establish a uni-
fied framework for both industrial and medical image an-
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FastFlow

Anomaly score

Fig. 7 Visualization of results from representative methods. Note that the visualization results are from the open-source code

reproduction.

omaly detection at the data or method level.

8 Conclusions

In this paper, we provide a literature review on image
anomaly detection in industrial manufacturing, focusing
on the level of supervision, the design of neural network
architecture, the types and properties of datasets and the
evaluation metrics. In particular, we characterize the
promising setting from industrial manufacturing and re-
view current IAD algorithms in our proposed setting. In
addition, we investigate in depth which network architec-
ture design can considerably improve anomaly detection
performance. In the end, we highlight several exciting fu-
ture research directions for image anomaly detection.
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