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Abstract
We study perturbations of Feller generators by ‘lower order terms’ with measur-
able coefficients. We investigate which properties of the original semigroup—such
as positivity, conservativeness and the Feller property—are passed on to the perturbed
semigroup. We give several examples and discuss applications in the theory of mar-
tingale problems and stochastic differential equations with measurable coefficients.

Keywords Feller semigroup · Perturbation · Lévy-type operator ·Measurable
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Mathematics Subject Classification 60G53 · 47A55 · 47G20 · 60J35 · 60H10

1 Introduction

Given two operators A and B, it is a classical question to ask how (and, in particular, on
which domain) the sum A+ B can be defined and which properties of A are preserved
under the perturbation B, see e.g. [3, 26].

In this article, we consider this problem in the context of Feller semigroups and
generators. We are interested in constructing Feller generators with measurable lower
order terms, and this means that the perturbation does not take values in the space of
continuous functions. In consequence, classical perturbation results from the theory
of strongly continuous semigroups do not apply.

Let (T (t))t≥0 be a Feller semigroup, that is, a sub Markovian, strongly continuous
semigroup on the space C∞(Rd) of continuous functions vanishing at infinity. If the
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domain of the (infinitesimal) generator A contains the test functions C∞c (Rd), then the
Courrège–vonWaldenfels theorem, see e.g. [6, Thm. 2.21], shows thatA := A|C∞c (Rd )

is a Lévy-type operator, i.e. an integro-differential operator of the form

A f (x) = b(x)∇ f (x)+ 1

2
tr(Q(x)∇2 f (x))

+
∫
Rd\{0}

( f (x + y)− f (x)−∇ f (x) · 1(0,1)(|y|)) ν(x, dy).

(1.1)

Here (b(x), Q(x), ν(x, ·))x∈Rd is the (infinitesimal) characteristics consisting of the
drift coefficients b = (b j ) : Rd → Rd , the diffusion coefficients Q = (qi j ) :
Rd → Rd×d and the jumping kernels ν : Rd →M+(Rd). We note that any of these
characteristics may vanish. In particular, it may happen that Q ≡ 0.

We are interested in the following questions: If a Lévy-type operator B is a lower
order perturbation of A, then under which conditions is (a realization of) A + B the
generator of a semigroup, and which properties does the perturbed semigroup inherit
from the original semigroup (T (t))t≥0? Is the martingale problem for A + B well-
posed? Classical perturbation results can be used to tackle these questions if B maps
D(A) into C∞(Rd), which in particular implies that the infinitesimal characteristics
of B depend continuously on x . In this article, we investigate perturbations B whose
characteristics depend merely measurably on x . Allowing for discontinuous charac-
teristics of B leads to a number of issues and subtleties. To give an example: If B
maps D(A) into C∞(Rd), then the sub-Markovianity of the perturbed semigroup can
be verified using the positive maximum principle; this does not work any longer if B
has discontinuous coefficients, i.e. if we need to work on the spaceBb(R

d) of bounded
measurable functions rather than C∞(Rd).

In fact, establishing the sub-Markov property of the perturbed semigroup turns
out to be a rather delicate point. At the same time, being sub-Markovian is crucial
for applications in the theory of stochastic processes, which we are interested in.
To establish sub-Markovianity, we will use an approximation argument which is of
independent interest, e.g. it can be used to prove continuous dependence of solutions
of certain martingale problems on the coefficients (see Theorem 6.3). Let us mention
that our questions can be formulated equivalently in the context of pseudo-differential
operators. Namely, the Lévy-type operator A can be seen as a pseudo-differential
operator

A f (x) = −
∫
Rd

q(x, ξ)eix ·ξ f̂ (ξ) dξ, f ∈ C∞c (Rd), x ∈ Rd , (1.2)

where f̂ (ξ) = (2π)−d
∫
Rd f (x)e−i x ·ξ dx is the Fourier transform of f , and

q(x, ξ) := −ib(x) · ξ + 1

2
ξ · Q(x)ξ

+
∫
Rd\{0}

(1− eiy·ξ + iy · ξ1(0,1)(|y|)) ν(x, dy) (1.3)
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is the so-called the symbol of A. We study under which conditions the pseudo-
differential operator with the symbol q(x, ξ)+ p(x, ξ) gives rise to a Feller semigroup
if the symbol p(x, ξ) of the perturbation B depends merely measurably on x .

If the symbol—or, equivalently, the characteristics—of a Lévy-type operator satis-
fies suitable smoothness conditions, then general results from symbolic calculus show
that the closure of (A,C∞c (Rd)) is the generator of a Feller semigroup, see e.g. [17, 21].
Under the milder assumption that the coefficients are Hölder continuous, the situation
is already much more complicated and there is an immense literature on the question
whether the Lévy-type operatorA gives rise to a Feller semigroup, see e.g. [6, 17, 20,
21, 33] for a survey.None of these results applies in our framework sincewe are dealing
with discontinuous coefficients. For the particular case that the diffusion coefficient Q
is uniformly (strictly) elliptic, there are general results in the literature which allow for
discontinuous coefficients, see e.g. [20, Thm. 2.1.43] and also [56, 57] for processes
on bounded domains. Moreover, the well-posedness of the (A,C∞c (Rd))-martingale
problem is well studied in this case, cf. [55]. No such general results are available if
the operator has a vanishing diffusion component Q ≡ 0. There are some perturbation
results for martingale problems which allow for discontinuous coefficients, including
bounded perturbations [13, Section 4.10] and perturbations of Lévy generators e.g. in
[8, 23, 31, 45]. Note that already the existence of a solution to the martingale problem
can be highly non-trivial if the coefficients are discontinuous: While there are general
existence results for Lévy-type operators with continuous coefficients, cf. [17, Thm.
3.15], there are no such results for the discontinuous framework; see however [35]
and the references therein. Let us point out that the existence of (unique) solutions to
martingale problems associated with Lévy-type operators can be used to deduce the
existence of (unique) weak solutions to Lévy-driven stochastic differential equations
(SDEs)

d Xt = b(Xt−) dt + σ(Xt−) d Lt ,

see Sect. 7.4 for details. In particular, drift(-type) perturbations of Lévy processes (i.e.
σ ≡ 1) have been studied quite intensively, [8, 27, 28, 37, 46, 58] to mention just a
few classical and recent works.

We point out that our approach is basically operator theoretic and is based on a
Miyadera–Voigt type perturbation result from [42], where an infinite-dimensional sit-
uation was considered. Here, we focus on the finite dimensional situation (so that
the concept of a ‘Feller semigroup’ is available) and present results that are tailor-
made to be applied to integro-differential operators as considered above. However,
we point out that we do not, in general, assume that the generator A has a specific
form. Instead, we impose assumptions on the semigroup (T (t))t≥0 generated by A.
More precisely, we assume that this semigroup maps the space Bb(R

d) of bounded
and measurable functions to a space of Hölder continuous functions; in particular the
semigroup T (t))t≥0 enjoys the strong Feller property. We can now summarize our
main results from Theorem 5.4 and Theorem 6.2. For unexplained terminology, we
refer the reader to Sect. 2.
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Theorem 1.1 Let (T (t))t≥0 be a Feller semigroup with (strong) generator A such that
C∞c (Rd) is a core for A. Assume that there are ρ ∈ (0, 2) and ϕ ∈ L1(0, 1) such that

‖T (t) f ‖Cρ
b
≤ ϕ(t)‖ f ‖∞, t ∈ (0, 1), f ∈ Bb(R

d),

Let B̂ be a Lévy-type operator

B̂ f (x) = b(x)∇ f (x)+
∫
Rd\{0}

( f (x + y)− f (x)

−∇ f (x) · y1(0,1)(|y|)) μ(x, dy), (1.4)

where the drift b and the jumping kernels μ(x, dy) depend measurably on x ∈ Rd .
Assume that

sup
x∈Rd

(
|b(x)| +

∫
Rd

min{1, |y|β}μ(x, dy)

)
<∞

for some β ∈ [0, ρ) and that the compensated drift is zero in case that ρ ≤ 1. Then

(a) The bp-closure of A+ B̂ is the full generator of a Markovian Cb-Feller semigroup
S, i.e. S leaves Cb(R

d) invariant and S(t) f ⇀ f as t → 0 for every f ∈ Cb(R
d).

Moreover, S enjoys the strong Feller property;
(b) The (A + B̂,C∞c (Rd))-martingale problem is well-posed;
(c) If additionally the tightness condition

lim
R→∞ sup

x∈Rd
μ(x, {y ∈ Rd; |y| ≥ R}) = 0

holds, then S is aC∞-semigroup, i.e. S leavesC∞(Rd) invariant and its restriction
to that space is strongly continuous, and so S is a Feller semigroup.

The central assumption that ‖T (t) f ‖Cρ
b
≤ ϕ(t)‖ f ‖∞ can be verified inmany cases

so that Theorem 1.1 applies to a wide class of Feller generators A. In Sect. 7 we present
several classes of examples where it can be deduced from existing literature, that the
above assumption is satisfied. This includes uniformly (strictly) elliptic differential
operators (see Sect. 7.1), generators of certain Lévy processes (see Sect. 7.2) and
operators of variable order (see Sect. 7.3). In Sect. 7.4,we show that thewell-posedness
of the martingale problem in (b) yields existence and uniqueness results for Lévy-
driven SDEs.

Let us comment on the notion of the (infinitesimal) generator. In this article, we will
be mostly working with the so-called full generator, see Sect. 2.2 below. The reason is
that we will be dealing with Lévy-type operators with discontinuous coefficients. The
strong generator, which is often considered in the literature, is too restrictive for our
purpose; for example, in the situation of Theorem 1.1, the domain of the full generator
of the perturbed semigroup contains C∞c (Rd) while this is not true, in general, for the
strong generator. In particular, Theorem 1.1 allows us to construct (non-trivial) Feller
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semigroups whose strong generator has a small domain, in the sense that C∞c (Rd) is
not contained in its domain.

This article is organized as follows. In Sect. 2, we recall some notions concerning
kernel operators, semigroups and their generators. Here we also establish the con-
nection between cores of Feller generators and bp-cores of the corresponding full
generators; this is important for our applications to martingale problems. In Sect. 3 we
recall a perturbation result from [42] and prove our first main result (Theorem 3.4).
Section 4 concerns convergence results for perturbed semigroups, which is crucial for
establishing sub-Markovianity in Theorem 1.1. Sections 2–4 concern abstract state
spaces E rather than Rd and thus do not take the special structure of the operators A
in (1.1) into account. We point out that these abstract results could also be of interest
for different settings, e.g. if E is a domain in Rd or a Riemannian manifold (with or
without boundary).

The remaining Sects. 5–7 apply the abstract results to Lévy-type operators as in
(1.1). Section 5 concerns the actual perturbation result and Sect. 6 the corresponding
martingale problem. The concluding Sect. 7 contains examples and discusses appli-
cations in the theory of stochastic differential equations.

Moreover, there are two appendices which contain results that are used in the proof
of Theorem 5.4 and which we believe to be of independent interest.

2 Preliminaries

2.1 Kernel operators

Throughout, E is a locally compact Polish space.We endow E with its Borel σ -algebra
B(E). The notation C � E means that C is a compact subset of E . The spaces of
bounded and measurable resp. bounded and continuous functions on E are denoted
by Bb(E) and Cb(E) respectively whereas C∞(E) refers to the space of continuous
functions vanishing at ∞, i.e. of those continuous functions f : E → R such that
for every ε > 0 we find a compact set C � E with | f (x)| ≤ ε for all x ∈ E\C . We
denote by C�

b(Rd) the classical Hölder spaces on Rd , see e.g. [60, Def. 1, p. 4].
A kernel on E is a map k : E ×B(E) → R such that

(i) the map x 
→ k(x, A) is measurable for every A ∈ B(E);
(ii) k(x, ·) is a (signed) measure for every x ∈ E ;
(iii) supx∈E |k|(x, E) <∞, where |k|(x, ·) denotes the total variation of k(x, ·).
If k(x, ·) is a positive measure for every x ∈ E , then k is called a positive kernel; if
every k(x, ·) is a probability measure, k is a Markovian kernel.

With every kernel k on E we can associate a bounded linear operator K on Bb(E)

by setting

(K f )(x) :=
∫

E
f (y) k(x, dy), f ∈ Bb(E), x ∈ E . (2.1)

We call an operator K of this form a kernel operator on Bb(E). It turns out that a
bounded, linear operator on Bb(E) is a kernel operator if, and only if, K is continu-
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ous with respect to the weak topology σ := σ(Bb(E),Mb(E)) induced by the space
Mb(E) of bounded signed measures on E (see e.g. [41, Prop. 3.5]). For sequences,
σ -convergence is nothing else than bp-convergence (bp is short for bounded and
pointwise), i.e. fn → f with respect to σ if, and only if, supn∈N ‖ fn‖∞ < ∞
and fn → f pointwise. Indeed, by dominated convergence, bp-convergence implies
σ -convergence; the converse follows from testing against Dirac measures and noting
that a σ -convergent sequence is norm-bounded by the uniform boundedness princi-
ple. We will write L(Bb(E), σ ) for the space of σ -continuous linear operators on E ,
i.e. kernel operators. Note that any such operator is automatically bounded. In what
follows, we write ⇀ to indicate convergence with respect to σ while we reserve→ to
indicate convergence with respect to the supremum norm. If K is a bounded operator
defined via (2.1) onCb(E) orC∞(E), then K is also called a kernel operator (onCb(E)

resp. C∞(E)); it can be extended in a unique way to a kernel operator on Bb(E). As
a consequence of Riesz’ representation theorem, every bounded operator on C∞(E)

is a kernel operator and can thus be extended to a kernel operator on Bb(E), see e.g.
[52, Cor. 21.12].

In applications, it is often of interest if a kernel operator on Bb(E) leaves one of
the spaces Cb(E) or C∞(E) invariant. Of particular interest is the case where a kernel
operator K mapsBb(E) into Cb(E). Such an operator is called strong Feller operator.
For our perturbation results, it will be important to know under which conditions a
kernel operator leaves the space

B∞(E) := {
f ∈ Bb(E) : ∀ε > 0 ∃C � E ∀ x ∈ E\C : | f (x)| ≤ ε

}
.

invariant. We present two results on this topic.

Lemma 2.1 Let K be a kernel operator with kernel k. Then KB∞(E) ⊂ B∞(E) if
and only if k(·, C) ∈ B∞(E) for every relatively compact set C.

Proof As K1C = k(·, C) and 1C ∈ B∞(E) for a compact set C , the stated condi-
tion is certainly necessary. To prove its sufficiency, consider a function f ∈ B∞(E)

with compact support S. We find a sequence of simple functions f̃n that converges
uniformly to f . If we set fn := f̃n1S , then also the sequence fn converges uniformly
to f and, moreover, for c �= 0 and every n ∈ N the set { fn = c} is relatively com-
pact. Thus, K fn ∈ B∞(E). As K fn → K f uniformly and since B∞(E) is closed
with respect to the supremum norm, K f ∈ B∞(E). The case of a general function
f ∈ B∞(E) follows from this by approximating f uniformly with a sequence of
measurable functions with compact support. ��

If the operator K is positive, then invariance of C∞(E) implies invariance of
B∞(E).

Lemma 2.2 Let K be a positive kernel operator. If KC∞(E) ⊂ C∞(E), then we
have KB∞(E) ⊂ B∞(E). If, in addition, K has the strong Feller property, then
KB∞(E) ⊂ C∞(E).
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Proof Let 0 ≤ f ∈ B∞(E). Given ε > 0, pick a compact set C such that | f (x)| ≤
ε/‖K‖ for x ∈ E\C . Then

0 ≤ f ≤ ‖ f ‖∞1C + ε

‖K‖1E\C

and, consequently,

0 ≤ K f ≤ ‖ f ‖∞k(·, C)+ ε.

Since KC∞(E) ⊂ KC∞(E), [21, Lem. 3.2.15] yields k(·, C) ∈ B∞(E) and thus
K f ∈ B∞(E) follows as ε > 0 was arbitrary. The addendum follows from the
identity C∞(E) = B∞(E) ∩ Cb(E). ��

The following example shows that the assertion of Lemma 2.2 fails to hold if K is
not a positive operator.

Example 2.3 Consider the kernel operator

(K f )(x) := f (0)− χ(x) f

(
1

|x |
)

, x ∈ R,

for a functionχ ∈ Cb(R)withχR\(−2,2) ≡ 1 andχ |(−1,1) ≡ 0. Clearly, K f ∈ C∞(R)

for any continuous f and so, in particular, KC∞(R) ⊂ C∞(R). On the other hand,
KB∞(R) ⊂ B∞(R) fails to hold as can be seen by considering e.g. f := 1[0,1]∩Q.

2.2 Semigroups, (pseudo)resolvents and generators

We now turn our attention to semigroups of kernel operators. A family T =
(T (t))t>0 ⊂ L(Bb(E), σ ) is called semigroup of kernel operators if

(i) T (t + s) = T (t)T (s) for all s, t > 0.
(ii) T is exponentially bounded, i.e. there are constants ω ∈ R, M > 0 such that

‖T (t)‖ ≤ Meωt . We say that T is of type (M, ω) to stress these constants.
(iii) for every f ∈ Bb(E), the map (t, x) 
→ (T (t) f )(x) is jointly measurable.

It is not difficult to see that if T is a semigroup of kernel operators of type (M, ω) then
for f ∈ Bb(E) and μ ∈ Mb(E) the map t 
→ 〈T (t) f , μ〉 is measurable. Moreover,
given λ ∈ C with Re λ > 0 there is an operator R(λ) ∈ L(Bb(E), σ ) such that

〈R(λ) f , μ〉 =
∫ ∞

0
e−λt 〈T (t) f , μ〉 dt (2.2)

for all f ∈ Bb(E) and μ ∈Mb(E).
This shows that, in the terms of [41, Def. 5.1], a semigroup of kernel operators is an

integrable semigroup on the norming dual pair (Bb(E),Mb(E)). It turns out that the
family (R(λ))Reλ>ω is a pseudo-resolvent, i.e. it satisfies the resolvent identity R(λ)−
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R(μ) = (μ− λ)R(λ)R(μ), cf. [41, Prop. 5.2]. For more details on pseudoresolvents
we refer to [62] and [12, Sect. III.4.a].

In general, the family (R(λ))Reλ>ω does not consist of injective operators, and so
it is not the resolvent of a (single-valued) operator. However, there is a multivalued
operator Â such that R(λ) = (λ− Â)−1 for Re λ > ω (see [16, Appendix A] for more
information concerning multivalued operators). We call Â the full generator of the
semigroup T . The full generator can be characterized equivalently as follows:

( f , g) ∈ Â ⇐⇒ ∀t > 0 : T (t) f − f =
∫ t

0
Ts g ds, (2.3)

cf. [41, Prop. 5.7]. In particular, our terminology is consistent with that used by Ethier–
Kurtz [13, Sect. 1.5]. The domain D( Â) of the multivalued operator Â is defined by
D( Â) := { f ; ∃g : ( f , g) ∈ Â}.

We now introduce additional properties of semigroups. If T is of type (1, 0), then T
is called a contraction semigroup of kernel operators. If T is a contraction semigroup
of kernel operators and every operator T (t) is positive, we say that T is sub-Markovian.
If additionally T (t)1E = 1E for all t > 0, then T is called Markovian.

We will call T a C∞-semigroup if T (t)C∞(E) ⊂ C∞(E) and the restriction of T
to C∞(E) is strongly continuous, i.e. for every f ∈ C∞(E)we have T (t) f → f with
respect to ‖ · ‖∞ as t → 0. A C∞-semigroup that is also sub-Markovian is called a
Feller semigroup.

We will call T a Cb-semigroup if T (t)Cb(E) ⊂ Cb(E) and if the restriction of T
to Cb(E) is stochastically continuous, i.e. T (t) f ⇀ f as t → 0 for f ∈ Cb(E). We
note that for sub Markovian semigroups, this continuity condition can be equivalently
characterized in terms of the associated kernels pt by asking that pt (x, B(x, ε)) → 1
as t → 0 for every x ∈ E and ε > 0, see [21, Lem. 3.2.17]. A Cb-semigroup that is
also sub-Markovian is called Cb-Feller semigroup.

Let us point out that the above-defined objects are compatible with the classical
notions. To wit: if T is a C∞-semigroup, then the operator R(λ) leaves the space
C∞(E) invariant for Re λ > ω and its restriction to that space is injective. Thus, the
restriction of (R(λ))Reλ>ω is the resolvent of a (single valued) operator A. Moreover,
A is the part of Â in C∞(E), i.e.

D(A) = {u ∈ C∞(E) : ∃ f ∈ C∞(E) s.t. (u, f ) ∈ Â}, Au = f .

Identifying A with its graph, we have A = Â ∩ (C∞(E) × C∞(E)). By general
semigroup theory, A coincides with the generator semigroup T |C∞(E), defined as
(norm-)derivative in 0.

Conversely, if we start with a strongly continuous semigroup on C∞(E), we may
extend it to Bb(E) as any bounded linear operator on C∞(E) is a kernel operator. In
fact, the extended semigroup is a semigroup of kernel operators in the sense defined
above (this follows from [41, Lem. 6.1]). If the semigroup is sub-Markovian, then the
extension is also stochastically continuous, see [19, Lem. 4.8.7].

We next discuss how to recover the full generator Â from the operator A. To that
end, we make use of operator cores. We recall that a subset D ⊂ D(A) is called a
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core for A if for every u ∈ D(A) we find a sequence (un) ⊂ D with un → u and
Aun → Au. To use cores in the context of multivalued operators, we employ the
notion of bp-convergence defined in Sect. 2.1. A set M ⊂ Bb(E) is called bp-closed
if with every bp-convergent sequence, it also contains its limit. The bp-closure of a set
M is the smallest bp-closed subset of Bb(E) that contains M . We use these notions,
mutatis mutandis, also in Bb(E) × Bb(E). We call a subset M ⊂ Â a bp-core if the
bp-closure of M equals Â.

Lemma 2.4 Let T be a C∞-semigroup with full generator Â and let A be the part of
Â in C∞(E). Let D be a core for A. Then {(u, Au) : u ∈ D} is a bp-core for Â.

Proof Let T be of type (M, ω) and fix λ > ω. As D is a core for A, the set (λ− A)D
is ‖ · ‖-dense in C∞(E). It follows that the bp-closure of (λ− A)D contains C∞(E)

and thus equals all of Bb(E) (see Proposition A.1).
Put S := {(u, λu− Au) : u ∈ D}. We note that Â, and hence also λ− Â, is σ -closed

and thus, in particular, bp-closed. As S ⊂ λ − Â it follows that the bp-closure S̄ is
a subset of λ − Â. Now define C := { f ∈ Bb(E) : ∃u s.t. (u, f ) ∈ S̄}. Then C is
bp-closed.

Indeed, Let ( fn) ⊂ C be bp-convergent to f . Pick un such that (un, fn) ∈ S̄. As
R(λ) = (λ− Â)−1, we see that (R(λ) fn, fn) ∈ λ− Â. It follows that un − R(λ) fn ∈
ker(λ − Â) = {0}, i.e. un = R(λ) fn . By the σ -continuity of R(λ), we have that
un⇀u := R(λ) f . This implies that (u, f ) ∈ S̄ whence f ∈ C , proving that C is
bp-closed as claimed.

AsC contains (λ−A)D, it follows thatC = Bb(E). But this entails that S̄ = λ− Â.
We have proved that λ− Â is the bp-closure of S which is equivalent to the claim. ��

3 Perturbation of (strong) Feller semigroups

We begin by recalling a result from [42] concerning the perturbation of semigroups
of kernel operators consisting of strong Feller operators. In this section (and also in
the following section), we work in an abstract framework, so that neither Â nor B̂ are
assumed to be integro-differential operators. Instead, we will use the following set of
assumptions.

Hypothesis 3.1 Let T be a Cb-semigroup of type (M, ω) that consists of strong Feller
operators. We denote by Â the full generator of the semigroup and write (R(λ))Reλ>ω

for the Laplace transform of T . Moreover, let B̂ : D(B̂)→ Bb(E) be a single-valued
linear operator with D( Â) ⊂ D(B̂) which satisfies the following assumptions:

(i) For t > 0 the operator B̂T (t), initially defined on D( Â), has an extension to an
operator in L(Bb(E), σ ) (which, by slight abuse of notation, we still denote by
B̂T (t));

(ii) B̂ R(λ) ∈ L(Bb(E), σ ) for one/all λ > ω;
(iii) the function (t, x) 
→ B̂T (t) f (x) is measurable for f ∈ Bb(E);
(iv) there is a function ϕ which is integrable in a neighborhood of 0 such that

‖B̂T (t)‖ ≤ ϕ(t) for t > 0.
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We now recall the following result from [42], which is a variant of the classical
Miyadera–Voigt perturbation theorem, see [12, Thm. III.3.14]. Note, however, that
neither of the semigroups T and S is strongly continuous in general, so that [12, Thm.
III.3.14] is not directly applicable.

Theorem 3.2 Assuming Hypothesis3.1 the operator Â+ B̂ (defined on D( Â) ⊂ D(B̂))
is the full generator of a Cb-semigroup S that consists of strong Feller operators. This
semigroup satisfies for t > 0 the Duhamel formula

S(t) f = T (t) f +
∫ t

0
S(t − s)B̂T (s) f ds. (3.1)

Moreover, we can develop S in its Dyson–Phillips series:

S(t) =
∞∑

n=0
Sn(t) where S0(t) = T (t) and Sn+1(t) f =

∫ t

0
Sn(t − s)B̂T (s) ds,

(3.2)

which converges in the operator norm. Here, all integrals have to be understood in
the weak Mb(E)-sense as in (2.2).

Proof See [42, Thm. 3.3]. ��
It is a rather obvious question whether the new semigroup S is a C∞-semigroup if

this is the case for T . Unfortunately, without further assumptions on B̂ this may fail.

Example 3.3 For E = R, consider the heat semigroup T , given by

(T (t) f )(x) := 1√
2π t

∫
R

exp

(
− (x − y)2

4t

)
f (y) dy (x ∈ R)

for f ∈ Bb(R). It is well known that T is a C∞-semigroup of strong Feller operators.
Now consider the operator B̂ : f 
→ f (0) · 1R. Then B̂ ∈ L(Bb(R), σ ) (whence
it satisfies Hypothesis 3.1, see [42, Ex. 3.4]). It follows that B̂T (s) f = c · 1R, for
some constant c = c(s, f ). Consequently, T (t − s)B̂T (s) f = c1R for all t ≥ s. If
0 < f ∈ C∞(R) then ct ( f ) := inf{c(s, f ) : 0 ≤ s ≤ t} > 0 for all t > 0 and we can
infer from the Dyson–Phillips expansion (3.2) that the perturbed semigroup S does not
leave C∞(R) invariant. Indeed, fixing t > 0, we see that S(t) f ≥ S1(t) f ≥ ct ( f )1R,
and the latter does not vanish at infinity.

Theorem 3.4 Assume in addition to Hypothesis 3.1 that T is a positiveC∞-semigroup.

(a) If D̂ is a bp-core for Â, then {(u, f + B̂u) : (u, f ) ∈ D̂} is a bp-core for Â+ B̂.
(b) If B̂T (t)B∞(E) ⊂ B∞(E) for every t > 0, then S is a C∞-semigroup.

Proof (a) Let D̂ be a bp-core for Â and denote by S̄ the bp-closure of the set {(u, f +
B̂u), (u, f ) ∈ D̂}. As Â+ B̂ is a full generator, it is σ -closed and thus in particular bp-
closed, and it follows that S̄ ⊂ Â+ B̂. Note that this entails that for (u, g) ∈ S̄ we have
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u ∈ D( Â). We now define W := {(u, g − B̂u) : (u, g) ∈ S̄}. Clearly, D̂ ⊂ W ⊂ Â.
We prove that W is bp-closed. To that end, let (un, gn − B̂un) be a sequence in W
(thus (un, gn) ∈ S̄) such that un bp-converges to u and fn := gn − B̂un bp-converges
to f . Then (un, fn) ∈ Ā bp-converges to (u, f ). By the bp-closedness of Â, we have
(u, f ) ∈ Â. Picking λ > ω, this is equivalent to u = R(λ)(λu − f ), and the same
equality holds with u/ f replaced by un/ fn . Using that B̂ R(λ) is σ -continuous by (ii)
in Hypothesis 3.1, we infer

B̂un = B̂ R(λ)(λun − fn)⇀B̂ R(λ)(λu − f ) = B̂u.

Setting g := f + B̂u, the sequence (un, gn) ⊂ S̄ bp-converges to (u, g). As S̄ is
bp-closed, (u, g) ∈ S̄ and thus (u, f ) ∈ W . Since D̂ is a bp-core for Â, it follows that
W = Â. But this is equivalent to S̄ = Â + B̂ and so {(u, f + B̂u), (u, f ) ∈ D̂} is
indeed a bp-core for Â + B̂.

(b) We first prove by induction that the operators Sn(t) appearing in the Dyson–
Phillips series (3.2) mapB∞(E) to C∞(E). In particular, they leave the spaceB∞(E)

invariant.
For n = 0 this follows from Lemma 2.2 and our assumption that T is a positive

C∞-semigroup that enjoys the strong Feller property.
Let us assume that, for some n ∈ N, we have already proved that Sn(t) maps

B∞(E) to C∞(E) for every t > 0. Fix f ∈ B∞(E) and t > 0. By our assumption,
we have B̂T (s) f ∈ B∞(E) for every s ∈ (0, t). By the induction hypothesis, Sn(t−s)
maps B∞(E) to C∞(E), whence Sn(t − s)B̂T (s) f ∈ C∞(E) for s ∈ (0, t). Since
C∞(E) is separable with dual spaceMb(E), the Pettis measurability theorem implies
that the function s 
→ Sn(t − s)B̂T (s) f is Bochner integrable which, in turn, implies
that Sn+1(t) f = ∫ t

0 Sn(t − s)B̂T (s) f ds ∈ C∞(E).
Note that the series in (3.2) converges for small t even in the operator norm.From this

it follows that for small t we have S(t) f ∈ C∞(E). As f was arbitrary, S(t)C∞(E) ⊂
C∞(E) for small t and hence, by the semigroup law, for all t > 0. The strong continuity
of the restriction of S to C∞(E) follows from that of T , the identity (3.1) and the
observation that the integral in that formula converges to 0 in operator norm as t 
→ 0.

��

4 Resolvent convergence of the perturbed operators

In this section, we will consider a sequence B̂n of perturbations that converges, in a
certain sense, to the operator B̂. We want to know under which assumptions and in
which sense the pseudoresolvents (λ − ( Â + B̂n))

−1 converge to (λ − ( Â + B̂))−1
as n →∞. Besides being interesting in its own right, such a convergence result will
also allow us to establish dissipativity and/or resolvent positivity for large classes of
operators with measurable coefficients. The strategy to use approximation to prove
positivity was already used in [14].

The key to prove our convergence result is the following Lemma.
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Lemma 4.1 Assuming Hypothesis 3.1, we have ‖B̂ R(λ)‖ → 0 as λ→∞. Moreover,
if λ is so large that ‖B̂ R(λ)‖ < 1, then

(λ− ( Â + B̂))−1 = R(λ)

∞∑
k=0

(B̂ R(λ))k,

where the latter series converges in operator norm.

Proof This relation is a consequence of the Dyson–Phillips series expansion for the
perturbed semigroup and standard in Miyadera–Voigt type perturbation theorems. A
proof can be found in [42, Lem. 3.8]. ��
Proposition 4.2 Assume Hypothesis 3.1 and let (B̂n, D(B̂n)) be an operator such that
Hypothesis 3.1 is also fulfilled with B̂ replaced by B̂n (but with the same semigroup
T ). Moreover assume that

(i) supn∈N ‖B̂n R(λ)‖ → 0 as λ→∞,
(ii) for every h ∈ Bb(E) and large enough λ we have B̂n R(λ)h⇀B̂ R(λ)h, and

(iii) whenever (hn) ⊂ Bb(E) satisfies hn⇀0, we have B̂n R(λ)hn⇀0 for large
enough λ.

In this case, for a large enough λ we have

(λ− ( Â + B̂n))
−1 f ⇀(λ− ( Â + B̂))−1 f (4.1)

for all f ∈ Bb(E).

Proof By assumption (i), we can pick λ0 sufficiently large that ‖B̂n R(λ)‖ ≤ 1/2 for
every n ∈ N and λ ≥ λ0. By Lemma 4.1, we have

(λ− ( Â + B̂n))−1 = R(λ)

∞∑
k=0

(B̂n R(λ))k . (4.2)

Now let f ∈ Bb(E) and ε > 0. We fix N ∈ N such that
∑∞

k=N+1 ‖(B̂n R(λ))k f ‖ ≤ ε

for all n ∈ N.
We prove that, for every k ∈ N, we have (B̂n R(λ))k f ⇀(B̂ R(λ))k f as n →∞.
For k = 1 this is exactly our assumption (ii). Assume that we know this convergence

to be true for some k ∈ N. We set gn := (B̂n R(λ))k f and g := (B̂ R(λ))k f . Then

(B̂n R(λ))k+1 f − (B̂ R(λ))k+1 f = B̂n R(λ)(gn − g)+ (B̂n R(λ)g − B̂ R(λ)g)⇀0.

Indeed, by the induction hypothesis gn− g⇀0 so that the first term converges weakly
to 0 by our assumption (iii), and the second term converges weakly to 0 by the case
k = 1.

Altogether, we find that
∑∞

k=0(B̂n R(λ))k f ⇀
∑∞

k=0(B̂ R(λ))k f . Given that the
operator R(λ) is σ -continuous, the representation (4.2) and Lemma 4.1 yield (4.1) ��
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If the operator R(λ) is positive (which is always the case in our main application)
we obtain stronger convergence results.

Corollary 4.3 In the situation of Proposition 4.2, assume additionally that R(λ) ≥ 0
is positivity preserving for large enough λ. Then the convergence in (4.1) is not only
with respect to σ , but even uniform on compact subsets of E.

Proof Fix f ∈ Bb(E) and put gn :=∑∞
k=0(B̂n R(λ))k f and g :=∑∞

k=0(B̂ R(λ))k f .
Fixingm ∈ N, we put hm := supn≥m |gn−g|.We have seen in the proof of Proposition
4.2 that gn⇀g and, consequently, hm ↓ 0 pointwise.

As R(λ) is positive, we find for n ≥ m

∣∣(λ− ( Â + B̂n))−1 f − (λ− ( Â + B̂))−1 f
∣∣ = |R(λ)gn − R(λ)g|
≤ R(λ)|gn − g|
≤ R(λ)hm .

The latter converges to 0 as m, hence n, tends to∞. However, as R(λ) is positivity
preserving this is even a monotone convergence and thus the convergence is uniform
on compact subsets of E by Dini’s theorem. ��

It is natural to ask whether the sequence of perturbed semigroups also converge. In
general, weak convergence of the resolvents does not imply weak convergence of the
corresponding semigroups, see [11] for a concrete example. In Sect. 6, we will use
the theory of martingale problems to establish a convergence result for semigroups
associated with Lévy-type operators.

We can also prove that certain features of the pseudoresolvents are stable under the
convergence described in Proposition 4.2.

Corollary 4.4 In the situation of Proposition 4.2, the following holds true.

(i) Let λ ∈ C with Re λ > 0 be in the resolvent set of Â + B̂n and assume that
‖(λ − ( Â + B̂n))−1‖ ≤ (Re λ)−1 for all n ∈ N. Then λ is in the resolvent set
of Â + B̂ and ‖(λ − ( Â + B̂))−1‖ ≤ (Re λ)−1. In this case, the semigroup S,
generated by Â + B̂, is contractive.

(ii) Suppose that for λ ≥ λ0 we have (λ + ( Â + B̂n))
−1 ≥ 0 for all n ∈ N. Then

also (λ+ ( Â + B̂))−1 ≥ 0 for λ ≥ λ0. In this case, the semigroup S generated
by Â + B̂ is positive.

Proof We put Fn(λ) := (λ− ( Â + B̂n))−1 and F(λ) := (λ− ( Â + B̂))−1 whenever
these are defined.

(i) The sequence Fn is an (operator-valued) holomorphic function that is, by assump-
tion, locally bounded on {Re λ > 0}. Fixing f ∈ Bb(E) and μ ∈ Mb(E), the same
is true for the scalar function ϕn : λ 
→ ϕn(λ) := 〈Fn(λ) f , μ〉. By Proposition 4.2,
for real λ that are large enough, ϕn(λ) converges to ϕ(λ) := 〈F(λ) f , μ〉. It follows
from Vitali’s theorem (see [2, Thm. 2.1]) that ϕ has a holomorphic extension to the
set {Re λ > 0} and ϕn converges locally uniformly to ϕ. As f and μ are arbitrary, it
follows from a vector-valued analytic extension theorem [2, Thm. 3.5] that F has an

123



85 Page 14 of 41 F. Kühn, M. Kunze

analytic continuation to {Re λ > 0} which proves that {Re λ > 0} is contained in the
resolvent set of Â + B̂. Moreover

|〈F(λ) f , μ〉| = lim
n→∞ |〈Fn(λ) f , μ〉| ≤ lim sup

n→∞
‖Fn(λ)‖‖ f ‖‖μ‖ ≤ 1

Re λ
‖ f ‖‖μ‖

for every Re λ > 0. This implies the estimate for the Laplace transform. As for the
contractivity of the semigroup, we note that for f ∈ Cb(E) and Mb(E) the orbit
t 
→ 〈S(t) f , μ〉 is continuous whence the (scalar) Post–Widder inversion formula
(see [1, Thm. 1.7.7]) yields

〈S(t) f , μ〉 = lim
n→∞

〈(n

t

)n(n

t
− Â − B̂

)−n
f , μ

〉
.

By the resolvent estimate, the absolute value of the right-hand side is at most ‖ f ‖‖μ‖
and it follows that S is contractive on Cb(E). But then it is also contractive onBb(E).

(ii) For 0 ≤ f ∈ Bb(E), 0 ≤ μ ∈M(E) and λ ≥ 0, we have

〈F(λ) f , μ〉 = lim
n→∞〈Fn(λ) f , μ〉 ≥ 0

as for λ ≥ λ0 we have Fn(λ) ≥ 0 for all n ∈ N . Since f and μ were arbitrary, this
proves F(λ) ≥ 0 for λ ≥ λ0. As above, we can infer positivity of the semigroup S
from this by means of the Post–Widder inversion formula. ��

5 Perturbation of strong Feller semigroups by Lévy-type operators

In this section, we work in the Euclidean setting, E = Rd , and consider perturbations
of strong Feller semigroups by a class of integro-differential operators. To that end, we
willmakemore concrete assumptions on our initial semigroup T which are tailor-made
for this situation.

Hypothesis 5.1 Assume that T = (T (t))t≥0 is a Cb-semigroup of type (M, ω) with
state space E = Rd that consists of strong Feller operators. Moreover, the following
conditions hold for some ρ > 0:

(i) T (t) f ∈ C
ρ
b (Rd) for all t > 0 and f ∈ Bb(R

d);
(ii) There is a function ϕ ∈ L1(0, 1) such that

‖T (t) f ‖Cρ
b
≤ ϕ(t)‖ f ‖∞

for all t ∈ (0, 1) and f ∈ Bb(R
d);

As before, we will denote the Laplace transform of our semigroup T by
(R(λ))Reλ>ω and the full generator of T by Â. For future reference, we note the
following consequence of Hypothesis 5.1.
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Lemma 5.2 Assume Hypothesis 5.1. Then, for every λ ∈ C with Re λ > ω, we have
R(λ) f ∈ C

ρ
b (Rd) for all f ∈ Bb(R

d) and

‖R(λ) f ‖Cρ
b
≤ C(λ)‖ f ‖∞, f ∈ Bb(R

d),

for a constant C(λ) with C(λ) → 0 as Re λ→∞. In particular, D( Â) ⊂ C
ρ
b (Rd).

Proof For r > 0 it follows from the exponential boundedness of the semigroup and
Hypothesis 5.1(ii) that

‖T (1+ r) f ‖Cρ
b
≤ ‖T (1)‖L(C

ρ
b ,Bb)‖T (r)‖ ‖ f ‖∞ ≤ Mϕ(1)eωr‖ f ‖∞.

Setting ψ(t) = ϕ(t) for t ∈ (0, 1) and ψ(t) = Mϕ(1)eω(t−1) for t ≥ 1, we get

‖T (t) f ‖Cρ
b
≤ ψ(t)‖ f ‖∞, t > 0, f ∈ Bb(R

d). (5.1)

Now fix f ∈ Bb(R
d) and x ∈ Rd . Since ‖T (t)‖ ≤ Meωt and t 
→ T (t) f (x) is Borel

measurable, the integral R(λ) f (x) = ∫
(0,∞)

e−λt T (t) f (x) dt exists as a Lebesgue
integral for any λ with Re λ > ω. If ρ ∈ (0, 1), then it is immediate from (5.1) and
the estimate

|R(λ) f (x)− R(λ) f (z)| ≤
∫ ∞

0
e−λt |T (t) f (x)− T (t) f (z)| dt

that ‖R(λ) f ‖Cρ
b
≤ C(λ)‖ f ‖∞, where C(λ) := ∫∞

0 ψ(t)e−λt dt . If ρ ≥ 1, then the
differentiation lemma for parameter-depend integrals, see e.g. [52, Thm. 12.5] or [37,
Prop. A.1], implies that x 
→ R(λ) f (x) is differentiable and

∂

∂xi
R(λ) f (x) =

∫ ∞

0
e−λt ∂

∂xi
T (t) f (x) dt

for all Re λ > ω. Thus, by (5.1), ‖R(λ) f ‖Cρ
b
≤ C(λ)‖ f ‖∞ with C(λ) as before. By

dominated convergence, C(λ)→ 0 as Re λ→∞. ��
We now introduce the integro-differential operator B̂ that we will consider as a

perturbation. We fix a function χ such that 1B(0,1) ≤ χ ≤ 1B(0,2) and put

B̂ f (x) = b(x) · ∇ f (x)+
∫
Rd\{0}

( f (x + y)− f (x)− y · ∇ f (x)χ(y)) μ(x, dy).

(5.2)

We make the following standing assumption.

Hypothesis 5.3 The function b : Rd → Rd and the kernel μ : Rd × B(Rd\{0}) →
[0,∞] satisfy
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(i) b is Borel measurable and bounded;
(ii) x 
→ ∫

Rd\{0} f (y) μ(x, dy) is Borel measurable for every f ∈ Cc(R
d\{0}).

(iii) There is a constant β ∈ (0, 2) such that

‖μ‖β := sup
x∈Rd

(∫
Rd\{0}

min{|y|β, 1}μ(x, dy)

)
<∞. (5.3)

Moreover, β is assumed to be strictly smaller than the constant ρ from Hypoth-
esis 5.1.

(iv) If ρ ≤ 1, then the compensated drift b(·)− ∫
Rd\{0} yχ(y) μ(·, dy) is identically

zero.

Occasionally we will additionally assume the following tightness assumption

sup
x∈Rd

μ(x, {|y| > R}) → 0 as R →∞. (5.4)

Let us comment briefly on these assumptions. Assumption (iii) implies that the
above operator B̂ is well-defined on C

ρ
b (Rd). To see this, let us first assume that

ρ > 1. Then, clearly, the local part b(·)∇ f (·) of B̂ is well-defined on this space. As
for the integral part, the elementary estimate

| f (x + y)− f (x)− y · ∇ f (x)χ(|y|)| ≤ 2‖ f ‖Cρ
b (Rd ) min{1, |y|ρ}

implies that ‖B̂ f ‖∞ ≤ 2‖μ‖β‖ f ‖Cρ
b
. In the case ρ ≤ 1, the additional assumption

(iv) entails that the operator B̂ simplifies to

B̂ f (x) =
∫
Rd\{0}

( f (x + y)− f (x)) μ(x, dy)

and we can argue similarly, making use of the Hölder continuity of f . The assumption
β < ρ yields that the operators B̂T (t) and B̂ R(λ) fulfill conditions (i)–(iv) of Hypoth-
esis 3.1, whenever the semigroup T satisfies Hypothesis 5.1. The tightness condition
(5.4) plays an important role in proving that the perturbed semigroup leaves the space
C∞(Rd) invariant. We note that (5.4) holds if the real part of the symbol

p(x, ξ) := −ib(x) · ξ +
∫
Rd\{0}

(1− eiy·ξ + iy · ξχ(|y|)) μ(x, dy)

of the operator B̂ is equicontinuous at ξ = 0, i.e.

lim|ξ |→0
sup

x∈Rd
|Re p(x, ξ)| = 0, (5.5)

see [50, (proof of) Thm. 4.4].
We can now formulate the main result of this section.
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Theorem 5.4 Assume Hypotheses 5.1 and 5.3. Then the following hold true.

(a) The operator Â + B̂ is the full generator of a Cb-semigroup S = (S(t))t≥0 of
strong Feller operators.

(b) If T consists of sub-Markovian operators then so does S.
(c) Assume additionally the tightness assumption (5.4), that T is a positive C∞-

semigroup and that the test functions C∞c (Rd) form a core for the generator A on
C∞(Rd). Then S is a C∞-semigroup.

Remark 5.5 In the situation of Theorem 5.4(b), the perturbed semigroup S is Marko-
vian if and only if the unperturbed semigroup T is Markovian. Indeed, we only need
to check if the semigroup is conservative, i.e. if the semigroup leaves the function 1

invariant. By Equation (2.3) this is the case if and only if the full generator maps 1 to
the zero function. As B̂1 = 0, we see that ( Â + B̂)1 = 0 is equivalent to Â1 = 0.

Example 5.6 Without the tightness assumption (5.4), it is not true in general that the
perturbed semigroup S is a C∞-semigroup even if this is the case for T . This can be
seen for example by considering in dimension d = 1 the kernelμ(x, ·) := δ−x , which
obviously does not satisfy (5.4). Choose b = 0 and let T be the heat semigroup. Then
B̂ f = f (0)1R − f and the perturbed semigroup S is (up to a rescaling by the factor
e−t ) the semigroup from Example 3.3, which is not a C∞-semigroup.

Corollary 5.7 Assume Hypotheses 5.1 and 5.3 and that T is a positive C∞-semigroup.
If C∞c (Rd) is a core for the generator A of T |C∞(Rd ), then {( f , A f + B̂ f ) : f ∈
C∞c (Rd)} is a bp-core for the full generator Â + B̂ of S.

Proof If C∞c (Rd) is a core for the generator on C∞(Rd), then, by Lemma 2.4,
{( f , A f ); f ∈ C∞c (Rd)} is a bp-core for Â. Thus, Theorem 3.4(a) shows that,
{( f , A f + B̂ f ); f ∈ C∞c (Rd)} is a bp-core for the full generator Â + B̂. ��

We now turn to the proof of Theorem 5.4.

Proof of parts (a) and (c) of Theorem 5.4 (a) Let us first prove prove that B̂ f ∈ Bb(R
d)

for f ∈ C
ρ
b (Rd). This is obvious for the local part of B̂ f so we focus on the

integral part. From Hypothesis 5.3(ii), it follows that for any Borel subset S of
Rd\{0} the map x 
→ ∫

Rd\{0} 1S(y) μ(x, dy) is measurable. But then so is x 
→∫
Rd\{0} 1R×S(x, y) μ(x, dy) for Borel sets R ⊂ Rd and S ⊂ Rd\{0}. An appli-
cation of the functional monotone class theorem, see e.g. [52, Thm. 8.15], yields
that x 
→ ∫

Rd\{0} g(x, y) μ(x, dy) is Borel measurable for any function g which is

B(Rd) ⊗ B(Rd\{0})-measurable and satisfies |g(x, y)| ≤ K min{1, |y|ρ} for some
constant K > 0. This readily gives that B̂ f is Borel measurable. Note that the dis-
cussion before Theorem 5.4 shows that, in fact, B̂ is a bounded linear operator from
C

ρ
b (Rd) to Bb(R

d).
We now verify Hypothesis 3.1, then part (a) immediately follows from Theorem

3.2. As for Condition 3.1(i), the boundedness of B̂T (t) follows fromHypothesis 5.1(i)
and the boundedness of B̂ proved above. To prove continuity in the weak topology,
let a bounded sequence ( fn)n∈N ⊂ Bb(R

d) be given such that fn → f pointwise.
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By Hypothesis 5.1(i), T (t) fn is bounded in C
ρ
b (Rd). By the Arzelà–Ascoli theoren,

passing to a subsequence, we may assume that T (t) fn converges locally uniformly to
some continuous function. By the σ -continuity of T (t) the sequence T (t) fn converges
pointwise to T (t) f , which implies that the only possible limit is T (t) f and it follows
that T (t) fn → T (t) f locally uniformly. Note that in the case where ρ > 1 we
also obtain that ∇T (t) fn → ∇T (t) f locally uniformly. From this, it is immediate
that the local part of B̂ fn converges pointwise to that of B̂ f . For the integral part
this convergence follows from dominated convergence, noting that, as a consequence
of the uniform boundedness in C

ρ
b (Rd), we find an integrable majorant of the form

C max{1, |y|ρ}.
The proof of Condition 3.1(ii) is similar, taking Lemma 5.2 into account. As for

Condition 3.1(iii), we note that (t, x) 
→ T (t) f (x) is Borel measurable for every
f ∈ Bb(R

d) and using a reasoning similar to that in the first part of this proof, it
follows that (t, x) 
→ B̂T (t) f (x) is Borel measurable.

Condition 3.1(iv) is an immediate consequence ofHypothesis 5.1(ii) and the bound-
edness of B̂.

(c) To prove this part, we use Theorem 3.4.We have to prove that B̂T (t)B∞(Rd) ⊂
B∞(Rd). We will only consider the case ρ > 1; for ρ ≤ 1 the reasoning is a bit
simpler because all terms involving the gradient vanish by Hypothesis 5.3(iv). Take
f ∈ C

ρ
b (Rd) ∩ Cc(R

d) and choose R > 0 such that the support of f is contained
in the ball B(0, R). Taking into account that we now assume the tightness condition
(5.4), we find for x ∈ Rd with |x | � R sufficiently large that

|B̂ f (x)| =
∣∣∣∣
∫

f (x + y) μ(x, dy)

∣∣∣∣ ≤ ‖ f ‖∞
∫
{|y|≥r}

μ(x, dy)
r→∞−−−→ 0.

Thus, B̂ f ∈ B∞(Rd).
Now let g ∈ C∞(Rd) be given. We denote the generator of T |C∞(Rd ) by A. As

C∞c (Rd) is a core, we find a sequence ( fn) ⊂ C∞c (Rd) such that gn := λ fn − A fn →
g, see [12, Ex. II.1.15]. It then follows that fn → f = R(λ)g ∈ D(A). By the
above, B̂ R(λ)gn = B̂ fn ∈ B∞(Rd). As B̂ R(λ) is ‖ · ‖∞-continuous, it follows
that B̂ f = B̂ R(λ)g = limn→∞ B̂ R(λ)gn = limn→∞ B̂ fn also belongs to B∞(Rd).
Consequently, B̂ f ∈ B∞(Rd) whenever f ∈ D(A).

As T (t)D(A) ⊂ D(A) for every t > 0, it follows that B̂T (t) f ∈ B∞(Rd) for
f ∈ D(A). But as D(A) is dense in C∞(Rd) and B̂T (t) is ‖ · ‖∞-continuous, this
remains valid for f ∈ C∞(Rd). ��

Remark 5.8 The statement of Theorem 5.4(c) remains valid also without the assump-
tion that C∞c (Rd) is a core for T |C∞(Rd ), provided we assume that b ∈ B∞(Rd;Rd).

To see this, pick a sequence φn ∈ C∞c (Rd) with 1B(0,n) ≤ φn ≤ 1B(0,2n) such
that supn ‖φn‖C2

b(Rd ) < ∞. Given f ∈ C
ρ
b (Rd) ∩ C∞(Rd), we put fn := f φn . Then

fn ∈ C
ρ
b (Rd) ∩ Cc(R

d) and fn is a bounded sequence that converges to f uniformly
onRd ; moreover, ∇ fn is bounded and converges to ∇ f locally uniformly in case that
� > 1.
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As b ∈ B∞(Rd;Rd) and the sequence ∇ fn is uniformly bounded, it is easy to see
that b∇ fn → b∇ f with respect to ‖ · ‖∞. Making use of the boundedness of ( fn) in
C

ρ
b (Rd) and the tightness assumption (5.4) we can prove that also the nonlocal part

converges with respect to ‖ · ‖∞. . In conclusion, B̂ fn → B̂ f with respect to ‖ · ‖∞.
As the proof of Theorem 5.4(c) shows that B̂ fn ∈ B∞(Rd), the same is true for its
uniform limit B̂ f . This proves that B̂ f ∈ B∞(Rd) for all f ∈ C

ρ
b (Rd) ∩ C∞(Rd)

which is enough to ensure that B̂T (t) maps C∞(Rd) to B∞(Rd).

To prove part (b) of Theorem 5.4, wewill employ the convergence result of Proposi-
tion 4.2. As this form of resolvent convergence is of independent interest, we formulate
a separate lemma.

Lemma 5.9 Assume Hypothesis 5.1 and let sequences (bn) and (μn) be given that
satisfy the assumptions in Hypothesis 5.3 for a common constant β ∈ (0,min{2, ρ}).
Denote the associated operators (see (5.2)) by B̂n. Moreover, we assume that b and ν

are functions such that

(i) bn(x) → b(x) and μn(x, ·) → μ(x, ·) vaguely for every x ∈ Rd ,
(ii) supn∈N

(‖bn‖∞ + ‖μn‖β
)

<∞ with ‖ · ‖β defined in (5.3).
(iii) supx∈K supn∈N μn(x, {|y| > R})→ 0 as R →∞ for K � Rd .

Then, denoting the operator associated with b and μ by B̂, we find

(λ− ( Â + B̂n))
−1 f ⇀(λ− ( Â + B̂))−1 f , f ∈ Bb(R

d),

for large enough λ.

Proof We give the proof only for ρ > 1. If ρ ≤ 1, then by Hypothesis 5.3(iv) all
terms involving the gradient vanish in the computations below; apart from that, the
reasoning is analogous.

Without loss of generality, we may assume β ≥ 1 (otherwise consider β̃ :=
max{1, β}). We first note that also the functions b and ν satisfy Hypothesis 5.3 (see
Lemma A.4), whence Theorem 5.4(a) yields that Â + B̂ and, for every n ∈ N, the
operator Â + B̂n is the full generator of a Cb-semigroup. The discussion following
Hypothesis 5.3 shows that the operator B̂n defines a bounded linear operator from
C

β
b (Rd) to Bb(R

d). Using our assumption (ii) above, we actually see that there is a
constant K > 0 such that

‖B̂ f ‖∞ + sup
n∈N

‖B̂n f ‖∞ ≤ K‖ f ‖
C

β
b (Rd )

, f ∈ C
β
b (Rd). (5.6)

We now check the assumptions of Proposition 4.2.

Assumption 4.2(i): By Lemma 5.2, we have

‖B̂n R(λ)‖ ≤ ‖B̂n‖L(C
β
b ,Bb)

‖R(λ)‖
L(Bb,C

β
b )
≤ K C(λ)→ 0

as λ→∞.
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Assumption 4.2(ii): In view of Lemma 5.2, it suffices to prove that B̂n f ⇀B̂ f for
every f ∈ C

ρ
b (Rd), so fix f ∈ C

ρ
b (Rd). Because of (5.6), it actually suffices to show

pointwise convergence. Since bn converges pointwise to b, it is clear that the local part
of B̂n f converges to the local part of B̂ f ; therefore we assume in the following that
the local part is zero. Write

B̂n f = I (r)
n f + J (r ,R)

n f + K (R)
n f ,

where

I (r)
n f (x) :=

∫
{0<|y|≤r}

( f (x + y)− f (x)− ∇ f (x) · y) μn(x, dy),

J (r ,R)
n f (x) :=

∫
{r<|y|<R}

( f (x + y)− f (x)−∇ f (x) · yχ(y)) μn(x, dy),

K (R)
n f (x) :=

∫
{|y|≥R}

( f (x + y)− f (x)) μn(x, dy),

for r ∈ (0, 1) and R ∈ (1,∞). We decompose the operator B̂ in the same way, and we
study the convergence for each of the terms separately. By an application of Taylor’s
formula,

sup
n∈N

|I (r)
n f (x)| ≤ ‖ f ‖Cρ

b (Rd ) sup
n∈N

∫
{|y|≤r}

|y|ρ μn(x, dy).

As ρ > β, it follows from (ii) that the right-hand side is finite and converges to 0
(uniformly in x) as r → 0. As ‖μ‖β < ∞, an analogous estimate holds for I (r) f .
Using

|K (R)
n f (x)| ≤ 2‖ f ‖∞

∫
{|y|≥R}

μn(x, dy)

and the corresponding estimate for K (R) f , assumption (iii) implies that |K (R)
n f (x)|+

|K (R) f (x)| → 0 uniformly in n ∈ N and x in compact subsets of Rd as R → ∞.
As f and ∇ f are continuous, the vague convergence μn(x, ·) → μ(x, ·) entails that
Jr ,R

n f (x) → Jr ,R f (x) for any constants r , R > 0 with μ(x, {|y| = r}) = 0 and
ν(x, {|y| = R}) = 0. Since there are for each fixed x at most countably many radii
with μ(x, {|y| = r}) > 0, we can let r → 0 and R →∞ along suitable sequences to
deduce that B̂n f (x) → B̂ f (x).

Assumption 4.2(iii): Making use of Lemma 5.2 again, we see that it suffices to prove
that B̂nun⇀0 for any sequence (un)n∈N with un⇀0 and supn∈N ‖un‖Cρ

b
<∞.

Fix such a sequence. Then supn∈N ‖B̂nun‖∞ < ∞ is immediate from (5.6) and it
only remains to prove pointwise convergence. Pick ρ′ ∈ (β, ρ). By Taylor’s formula,
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|B̂nun(x)| ≤ ‖bn‖∞|∇un(x)| + ‖un‖Cρ′
b (BR)

∫
{|y|≤R}

|y|ρ′ μn(x, dy)

+ 2‖un‖∞
∫
{|y|>R}

μn(x, dy)

for any R > 1; here BR is the closed ball around x with radius R. Using (ii), the fact
that ρ > 1 and that (bn)n∈N is bounded, we find that given ε > 0 there is some R � 1
such that

|B̂nun(x)| ≤ C‖un‖Cρ′
b (BR)

+ ε

for a finite constantC = C(R). In order to deduce that the left-hand side converges to 0,
we use the subsequence principle. As (un) is bounded in Cρ

b , by compact embedding,
there is a subsequence (un′′)n′′∈N which converges on the closed ball B[x, r ] with
respect to the Cρ′ -norm. Since we know that un → 0 pointwise, the Cρ-limit is also
zero and so

lim sup
n′′→∞

|B̂n′′un′′(x)| ≤ ε.

Hence, lim supn→∞ |B̂nun(x)| ≤ ε. As ε > 0 is arbitrary, we conclude that
B̂nun(x) → 0 for all x ∈ Rd .

Now Proposition 4.2 yields the claim. ��
We can now finish the proof of Theorem 5.4

Proof of Theorem 5.4(b) Let us first consider kernels μ satisfying

sup
x∈K

μ(x, {|y| > R})→ 0 as R →∞ for all K � Rd . (5.7)

Given b andμ as in Hypothesis 5.3, we write B̂b,μ for the operator defined via (5.2)
with these particular coefficients and Sb,μ = (Sb,μ(t))t≥0 for the semigroup generated
by the operator Â + B̂b,μ, which exists by part (a) of Theorem 5.4. Denote by F the
family of pairs (b, μ) for which the assertion holds, i.e.

F = {(b, μ) satisfying (5.7) and Hypothesis 5.3 : Sb,μis sub-Markovian}.

It follows from Lemma 5.9 and Corollary 4.4 that F is bp-closed. Therefore, it suffices
to show that (b, μ) ∈ F for any b ∈ Cc(R

d;Rd) and any μ ∈ Cc
(
Rd ,M+(Rd\{0}))

with ‖μ‖β < ∞ and (5.7). This is a consequence of the known fact that Cc(R
d;Rd)

is bp-dense in Bb(R
d;Rd), and an analogous result for measures which we establish

in Appendix A; see in particular Corollary A.6 (with g(y) := min{|y|β, 1}).
Fix b ∈ Cc(R

d;Rd) andμ ∈ Cc
(
Rd ,M+(Rd\{0}))with (5.7). Then, in particular,

Theorem 5.4(c) and Remark 5.8 show that Sb,μ is a C∞-semigroup; let us denote the
generator of the restriction of Sb,μ to C∞(Rd) by Lb,μ.
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It was seen in the proof of Theorem 5.4(c) that for f ∈ C
ρ
b (Rd)∩C∞(Rd) we have

B̂b,ν f ∈ B∞(Rd). Moreover, ‖μ‖β <∞ and (5.7) give

lim sup
R→∞

sup
x∈K

∫
{|y|>R}

μ(x, dy) = 0 lim
r→0

sup
x∈K

∫
{|y|≤r}

|y|2 μ(x, dy) = 0, (5.8)

for all K � Rd . This entails the continuity of B̂b,ν f , see Theorem B.1 (note that we
can assume without loss of generality that χ is smooth by modifying the drift term
accordingly). Hence, B̂b,μ f ∈ C∞(Rd).

Denoting by A the generator of the restriction of T to C∞(Rd), we may consider
L := A+ B̂b,μ, defined on D(A), as an operator on the space C∞(Rd). We note that
B̂b,μ R(λ)C∞(Rd) ⊂ C∞(Rd). and from this and Lemma 4.1 it follows that, for large
enough λ, the operator λ− L is surjective.

As is well known (see e.g. [13, Thm. 4.2.2]) a strongly continuous semigroup on
C∞(Rd) is sub-Markovian if and only if its generator satisfies the positive maximum
principle. By assumption, this is certainly true for A. However, if f ∈ D(A) satisfies
f (x0) = max{ f (x) : x ∈ Rd} ≥ 0, then f (x0 + y) − f (x0) ≥ 0 for all y ∈ Rd ;
if ρ > 1, we also see that ∇ f (x0) = 0. It follows from D(A) ⊆ C

ρ
b (Rd), cf.

Lemma 5.2, and the definition of the operator B̂b,μ and that B̂b,μ f (x0) ≤ 0. This
shows that L = A + B̂b,μ satisfies the positive maximum principle.

By [13, Thm. 4.2.2], L generates a sub-Markovian semigroup on C∞(Rd). How-
ever, Lb,ν is obviously an extension of L , so we must have L = Lb,ν and thus the
restriction of S to C∞(Rd) is sub-Markovian and so is then also S itself. This shows
that (b, ν) ∈ F and finishes the proof in this case.

To remove the tightness assumption (5.7), we consider the ‘small’ and the ‘large’
jumps created by μ separately. To that end, we put

μs(x, dy) := 1{|y|≤1}μ(x, dy) and μl(x, dy) := 1{|y|>1}μ(x, dy). (5.9)

We split the operator B̂ = B̂1 + B̂2 where, in the notation above, B̂1 = Bb,μs and
B̂2 = B̂0,μl . As μs(x, {|y| > 1}) ≡ 0, we can apply the above to infer that Â + B̂1 is
the full generator of a sub-Markovian semigroup. Noting that B̂2 is a bounded operator
and taking the special structure of this operator into account, the results of [13, Sect.
4.10] (see in particular Exercise 3 on p. 261) yield that also Â+ B̂ = Â+ B̂1 + B̂2 is
the full generator of a sub-Markovian semigroup. ��

6 Application: Martingale problems

We apply the results from the previous section to study perturbations of martingale
problems associated with Lévy-type operators. We do not strive for full generality; we
rather would like to illustrate how our results can be applied in this setting. We will
make the following assumptions which ensure that T and the perturbed semigroup
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S are Feller semigroups, provided the tightness assumption (5.4) is satisfied. Note,
however, that (5.4) is not assumed in this section.

Hypothesis 6.1 Assume that T = (T (t))t≥0 is a semigroup of kernel operators such
that

(i) T satisfies Hypothesis 5.1 for some constant ρ > 0,
(ii) T is a Markovian C∞-semigroup,

(iii) the test functions C∞c (Rd) are a core for the generator A of T |C∞(Rd ).

It follows from general theory (see, e.g., [48, Sect. 3.2]) that we can associate
Markov process (actually a Feller process) with càdlàg paths with the semigroup T ,
i.e. there is a Markov process whose transition semigroup equals T .

There is another connection between stochastic processes and (Feller) semigroups
via martingale problems. Let us briefly recall the relevant notions. ByD([0,∞);Rd)

wedenote the Skorohod space, i.e. the space of càdlàg functionsω : [0,∞) → Rd .We
equip D([0,∞);Rd) with the Skorohod topology, see [5, 13] for more information.
Given a (possibly multi-valued) operator L with domain D(L), a set D ⊂ D(L)

and a measure μ on Rd , a measure Pμ on D([0,∞);Rd) is called a solution to the
(L, D;μ)-martingale problem if (i) Pμ(ω0 ∈ A) = μ(A) for all Borel sets A ⊂ Rd

and (ii) the process

M ( f ,g)
t (ω) := f (ωt )− f (ω0)−

∫ t

0
g(ωs) ds, w ∈ D[0,∞),

is a martingale underPμ with respect to the canonical filtration (σ (ωs : s ≤ t))t≥0 for
any ( f , g) ∈ L with f ∈ D. In case that L is single valued on D, we have g = L f .

We say that uniqueness in law holds for the (L, D)-martingale problem if any two
solutions P1, P2 with the same initial distribution satisfy P1 = P2. The (L, D)-
martingale problem is well-posed if for every x ∈ Rd there exists a unique solution
Px to the (L, D, δx )-martingale problem.

If (Xt ) is a Markov process associated with the semigroup T , then its distribution
solves the ( Â, D( Â))-martingale problem for the full generator Â of T , see [13, Prop.
4.1.7]. Conversely, if the (L, D)-martingale problem is well-posed, then under each
measure Px , the canonical process (ωt )t≥0 is a Markov process [13, Thm. 4.4.2];
if (L, D) is, in a sense, ‘rich enough’ to determine a semigroup uniquely, then this
semigroup is the transition semigroup of the process, see [13, Thm. 4.4.2].

Theorem 6.2 Let (T (t))t≥0 be a semigroup satisfying Hypothesis 6.1 with full gener-
ator Â and denote by A the generator of T |C∞(Rd ). If B̂ is a Lévy-type operator

B̂ f (x) = b(x)∇ f (x)+
∫
Rd\{0}

( f (x + y)− f (x)−∇ f (x) · yχ(y)) μ(x, dy)

with b(x) and ν(x, dy) satisfying Hypothesis 5.3, then the (A + B̂,C∞c (Rd))-
martingale problem is well-posed.
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Proof By Theorem 5.4, there is a Markovian Cb-semigroup S = (S(t))t≥0 with full
generator Â + B̂. Corollary 5.7 shows that {( f , A f + B̂ f ) : f ∈ C∞c (Rd)} is a
bp-core for Â + B̂. Thus, by [13, Prop. 4.3.1], a measure Pμ on D([0,∞);Rd)

solves the (A + B̂,C∞c (Rd))-martingale problem if and only if it solves the ( Â +
B̂, D( Â + B̂))-martingale problem. It follows from [13, Thm. 4.4.1], applied with

L = D( Â), which includes C∞(Rd) and is thus separating, that uniqueness holds for
the ( Â+ B̂, D( Â+ B̂))-martingale problem and, hence, also for the (A+ B̂,C∞c (Rd))-
martingale problem.

It remains to establish the existence of solutions. Firstwe consider the particular case
that the tightness assumption (5.4) is additionally satisfied. In this case, Theorem 5.4
yields that S is actually a Feller semigroup and as is well known, see, e.g. [30, Theorem
4.10.3], this implies well-posedness for the martingale problem for the generator of
S|C∞ . In particular, there is a solution to the (A + B̂,C∞c (Rd))-martingale problem.
To remove the tightness condition, we proceed as in the proof of Theorem 5.4(b),
i.e. we write B̂ = B̂1 + B̂2 for a bounded operator B̂2 and a Lévy-type operator
B̂1, whose jumping kernels are supported in the unit ball, cf. (5.9). The existence of
a solution to the (A + B̂1,C

∞
c (Rd))-martingale problem is clear from the first part.

Since B̂2 is a bounded perturbation, existence of a solution to the martingale problem
for Â + B̂ = Â + B̂1 + B̂2 follows from [13, Prop. 4.10.2]. ��

We can now also prove continuous dependence of the solutions of our martingale
problem on the ‘coefficients’ b andμ. To that end, wemake the same assumptions as in
Lemma 5.9. As a direct consequence, we obtain a convergence result for semigroups,
which fits well to our earlier result on the resolvent convergence, cf. Proposition 4.2
and Corollary 4.3.

Theorem 6.3 Let (T (t))t≥0 be a semigroup satisfying Hypothesis6.1 for some constant
ρ > 0 and denote by Â its full generator. Let (bn)n∈N∪{∞} and (μn)n∈N∪{∞} satisfy
Hypothesis 5.3 for a common constant β ∈ (0,min{2, ρ}). Denote the associated
Lévy-type operators by B̂n for n ∈ N ∪ {∞}. Assume that

(i) bn(x) → b∞(x) and μn(x, ·) → μ∞(x, ·) vaguely for every x ∈ Rd ,
(ii) supn∈N

(‖bn‖∞ + ‖μn‖β
)

<∞ with ‖ · ‖β defined in (5.3).
(iii) supx∈K supn∈N μn(x, {|y| > R})→ 0 as R →∞ for K � Rd .

Then, if Pxn
n solves the (A + B̂n,C∞c (Rd), δxn )-martingale problem and Px∞ solves

the (A+ B̂∞,C∞c (Rd), δxn )-martingale problem for some sequence xn → x, we have
weak convergence P

xn
n → Px∞.

In particular, if Sn(t) and S∞(t) denote the perturbed semigroups with generator
Â + B̂n and Â + B̂∞, respectively, then Sn(t) f → S∞(t) f pointwise for every
f ∈ Cb(R

d).

Proof It was seen in the proof of Lemma 5.9 that under the assumptions above
B̂nu⇀B̂∞u for all u ∈ D( Â). Thus, if (u, f ) ∈ Â, we have (u, f + B̂nu) ∈ Â+ B̂n and
this converges in bp-sense to (u, f + B̂∞u). In particular, the sequence gn := f + B̂nu
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is uniformly bounded. By assumption,

M (u,gn)
t (ω) := u(ωt )− u(ω0)+

∫ t

0
gn(ωs) ds

is a Pxn
n -martingale. Combining [13, Thm. 3.9.4] and [13, Cor. 3.9.3], it follows that

the sequence (P
xn
n ) is tight. For an alternative argument yielding the tightness, see [35,

Corollary 3.9].
We will invoke the subsequence principle, see e.g. [5, Thm. 2.6], to prove that

P
xn
n → Px∞ weakly.
To that end, observe that as a further consequence of Lemma 5.9, we have

Rn(λ) f := (λ− ( Â + B̂n))
−1 f ⇀R∞(λ) f := (λ− ( Â + B̂))−1 f , f ∈ Bb(R

d),

for large enough λ. In fact, Corollary 4.3 implies that the convergence is actually
uniform on compact sets.

Take any subsequence of (P
xn
n )n∈N. By tightness, there is a further subsequence

converging to some measure, say,Q. For simplicity of notation, we denote the conver-
gent subsequence also by P

xn
n . For fixed f ∈ Bb(R

d), s ≤ t , 0 ≤ r1 < . . . < rk ≤ s
and h j ∈ Cb(R

d), define

�n(ω) :=
[

Rn(λ) f (ωt )− Rn(λ) f (ωs)−
∫ t

s
(λRn(λ) f − f )(ωr ) dr

] k∏
j=1

h j (ωr j ),

where n ∈ N ∪ {∞}. Since Rn(λ) f ∈ D( Â + B̂n) and P
xn
n solves the martingale

problem for Â+ B̂n , we find thatEP
xn
n

(�n) :=
∫

�n dPxn
n = 0 for all n ∈ N.We claim

that EQ(�∞) = 0. By the weak convergence, it holds that EP
xn
n

(�∞) → EQ(�∞).
If we can show that

lim
n→∞ |EP

xn
n

(�n −�∞)| = 0, (6.1)

then it follows that EQ(�∞) = limn EP
xn
n

(�n) = 0. To prove (6.1), we note that, by
the uniform boundedness of the resolvents, M := supn∈N ‖�n‖∞ + ‖�∞‖∞ < ∞.
By tightness, given ε > 0 we find K � D([0,∞);Rd) such that Pxn

n (K c) ≤ ε for
all n ∈ N. Note that R := supy∈K sups≤t |ωs | < ∞. So, by the locally uniform
convergence of the resolvents, we find some N ∈ N such that

|Rn(λ) f (ωr )− R∞(λ) f (ωr )| ≤ ε

for all n ≥ N , r ∈ [0, t] and y ∈ K . Thus, for some constant C > 0, we have

|EP
xn
n

(�n −�∞)| ≤ Cε + Mε
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for all n ≥ N . Hence,

lim sup
n→∞

|EP
xn
n

(�n −�∞)| ≤ (M + C)ε.

As ε > 0 was arbitrary, this finishes the proof of (6.1), and we getEQ(�∞) = 0. This
implies that

M ( f )
t (ω) := R∞(λ) f (ωt )−

∫ t

0
(λR∞(λ) f − f )(ωr ) dr , ω ∈ D([0,∞);Rd),

is a martingale with respect to Q for any f ∈ Bb(R
d). Noting that

{(R∞(λ) f , λR∞(λ) f − f ); f ∈ Bb(R
d)} = Â + B̂

and Q(ω0 ∈ A) = δx (A), this means that Q is a solution to the ( Â + B̂, D( Â), δx )-
martingale problemand thus, bywell-posedness,Q = Px∞. Hence, by the subsequence
principle, Pxn

n → Px∞ weakly. ��

7 Examples

Our perturbation results for Feller semigroups and martingale problems require two
sets of assumptions: one on the original semigroup T (cf. Hypothesis 5.1 resp. 6.1)
and one on the perturbation B̂ (cf. Hypothesis 5.3). The latter ensures that B̂ is indeed
a (lower order) perturbation of the generator of (T (t))t≥0 and involves the parameter
ρ ∈ (0, 2) from Hypothesis 5.1, which characterizes the regularizing properties of T .
Given this parameter ρ, the conditions on B̂ are typically easy to check, and so the
main work is to verify the assumptions on T ; in particular, to verify the regularity
estimate

‖T (t) f ‖Cρ
b
≤ ϕ(t)‖ f ‖∞, t ∈ (0, 1), f ∈ Bb(R

d),

for some function ϕ ∈ L1(0, 1). For a brief summary of some of our main results we
refer to Theorem 1.1. In this section, we present examples of semigroups satisfying
our assumptions and give some applications, e.g. in the theory of stochastic differential
equations.

7.1 Differential operators

Let A be a second order differential operators on Rd of the form

A f (x) := tr(Q(x)∇2 f (x)) (7.1)

for Q(x) = (qi j (x)) ∈ Rd×d . Our next result gives conditions which ensure that the
associated semigroup satisfies the assumptions of our main results.
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Proposition 7.1 Assume that the coefficients qi j are bounded, Hölder continuous, sym-
metric (i.e. qi j = q ji ) and uniformly (strictly) elliptic in the sense that there exists a
constant η > 0 such that

d∑
i, j=1

qi j (x)ξiξ j ≥ η|ξ |2, x, ξ ∈ Rd .

Then the semigroup T associated with (7.1) satisfies Hypotheses 5.1 and 6.1 with
arbitrary ρ ∈ (0, 2), and so Theorem 1.1 is applicable (with any ρ ∈ (0, 2)).

Proof First of all, we note that there is a Markovian Feller semigroup T associated
with (7.1); this follows from [9, Thm. V.5.11], see also [13, Thm. 8.1.6]. Moreover,
the second step of the proof of [9, Thm. V.5.11], with (0.40) replaced by (0.41) and
(0.42) from the Appendix of [10], actually shows that

‖T (t) f ‖C2
b(Rd ) ≤ ct−1‖ f ‖∞, f ∈ Bb(R

d). (7.2)

Since also ‖T (t) f ‖∞ ≤ ‖ f ‖∞ and the Hölder space Cγ

b (Rd), γ ∈ (0, 2)\{1}, is a real
interpolation space betweenCb(R

d) andC2
b(R

d), see [59, Thm. 2.7.2.1], an application
of a classical interpolation theorem [59, Sec. 1.3.3] yields that ‖T (t) f ‖Cγ

b (Rd ) ≤
Mt−ρ/2‖ f ‖∞ for some constant M = M(ρ) > 0 and any f ∈ L∞, ρ ∈ [0, 2]\{1}.
Consequently, Hypothesis 5.1 is satisfied for any ρ ∈ (0, 2). Moreover, C∞c (Rd) is a
core for the generator of T |C∞(Rd), cf. [13, Thm. 8.1.6], and so Hypothesis 6.1 holds.

��
Remark 7.2 Under the milder regularity assumption that the diffusion coefficients qi j

are uniformly continuous, one can showwith somemore effort that the Hypothesis 5.1
is satisfied (for any ρ ∈ (0, 2)), e.g. using results from [44]. It is, however, not clear
whether C∞c (Rd) is still a core. In dimension d = 1, one can use that cores are pre-
served under random time changes, cf. [32, Thm. 4.1], to deduce that C∞c (R) is indeed
a core if the diffusion coefficient is (uniformly) continuous. Thus, Proposition 7.1 and
Corollary 7.3 below, hold in dimension d = 1 also for uniformly continuous diffusion
coefficients.

Combining Proposition 7.1 with Theorem 1.1, we get the following corollary.

Corollary 7.3 Let L be a Lévy-type operator of the form

L f (x) = b(x) · ∇ f (x)+ tr(Q(x)∇2 f (x))

+
∫
Rd\{0}

( f (x + y)− f (x)− y · ∇ f (x)1(0,1)(|y|)) μ(x, dy).

(7.3)

If the drift b is bounded and measurable, the diffusion coefficients are bounded, Hölder
continuous, symmetric and uniformly (strictly) elliptic, the jumping kernels depend
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measurably on x and there is some β ∈ (0, 2) such that

sup
x∈Rd

(∫
Rd\{0}

min{|y|β, 1}μ(x, dy)

)
<∞,

then there is a Markovian Cb-Feller semigroup S whose full generator L̂ is the bp-
closure of {( f ,L f ); f ∈ C∞c (Rd)}. Moreover, the (L,C∞c (Rd))-martingale problem
is well-posed. If additionally the family (μ(x, dy))x∈Rd is tight, then S is a C∞-
semigroup.

As already mentioned in the introduction, the fact that second order (or even higher
order) differential operators with lower order coefficients that are merely measurable
generate strongly continuous semigroups on C∞(Rd) is known for a long time (see
[54]). Here, we also allow for lower order integral terms that are merely measurable,
providing an extension of Taira’s results on domains [56]. Also for the well-posedness
of the martingale problem we require less regularity than e.g. in the classical results
by Stroock [55], where continuous dependence of μ(x, ·) on x is assumed. We point
out that recently, there are also first results for differential operators with merely
measurable diffusion coefficients, see [61].

7.2 Lévy generators

Next we consider perturbations of operators A which are the generators of Lévy
processes, that is, stochastic processes with càdlàg sample paths and independent and
stationary increments. Recall that, by the Lévy–Khintchine formula, any Lévy process
can be uniquely characterized (in distribution) by its characteristic exponent ψ or by
its Lévy triplet (b, Q, ν), cf. [49] for more information. An important example is the
fractional Laplacian−(−�)α/2, which is the generator of the isotropic α-stable Lévy
process. Its characteristic exponent isψ(ξ) = |ξ |α , and the corresponding Lévy triplet
is (0, 0, ν) with

ν(U ) = cd,α

∫
U

1

|y|d+α
dy (7.4)

for a normalizing constant cd,α .
In the following, we will consider general Lévy processes and assume that their

characteristic exponent ψ satisfies the Hartman–Wintner condition:

lim|ξ |→∞
Reψ(ξ)

log |ξ | = ∞. (7.5)

This is a mild growth condition on Reψ which ensures the existence of a smooth
transition density pt for each t > 0 for the associated process, cf. [29] for a thorough
discussion.
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Proposition 7.4 Let (Xt )t≥0 be a Lévy process with transition semigroup (T (t))t≥0
and characteristic exponent ψ satisfying the Hartman–Wintner condition (7.5). If there
is a constant κ > 0 such that the transition density pt of Xt satisfies

∫ 1

0

( ∫
Rd
|∇ pt (x)| dx

)κ

dt <∞. (7.6)

then Hypothesis 5.1 and 6.1 hold for any ρ ≤ κ , and so Theorem 1.1 is applicable
(with ρ ≤ κ).

Proof It is well known that T (t) f (x) = ∫
f (x + y)pt (y) dy is a C∞-semigroup and

because of the existence of the density, each T (t) is a strong Feller operator, see e.g.
[19, pp. 438–39].Moreover,C∞c (Rd) is a core for the generator of T (t)|C∞ , see e.g. [6,
Cor. 2.10]. Denote by Â the corresponding full generator. The differentiation lemma
for parameter-dependent integrals entails that T (t) f is differentiable for any t > 0,
f ∈ L∞(Rd), and

‖∇T (t) f ‖∞ ≤ ϕ(t)‖ f ‖∞ with ϕ(t) := max

{
1,

∫
Rd
|∇ pt (x)| dx

}
.

As p2t is the convolution of pt with itself, ‖∇2T (t) f ‖∞ ≤ d2ϕ(t/2)2‖ f ‖∞, cf. [37,
Lem. 4.1]. Using that Cγ

b (Rd), γ ∈ (0, 2)\{1}, is a real interpolation space between
Cb(R

d) and C2
b(R

d), see [59, Thm. 2.7.2.1], and applying an interpolation theorem
[59, Sec. 1.3.3], we find that ‖T (t) f ‖Cγ

b (Rd ) ≤ Mϕ(t/2)γ ‖ f ‖∞ for some constant
M = M(γ ) > 0 and any f ∈ L∞, γ ∈ [0, 2]. ��

Gradient estimates of the form (7.6) for Lévy processes have been intensively
studied in the last decade, e.g. [15, 24, 33, 39, 53] to mention but a few, and so
Proposition 7.4 applies to awide class of Lévy generators. Using the gradient estimates
from [53, Ex. 1.5], we find that the assumptions of Proposition 7.4 are satisfied for
Lévy measures which are dominated from below by a stable measure:

Example 7.5 Let (T (t))t≥0 be the semigroup of a pure-jump Lévy process with Lévy
measure ν satisfying

ν(U ) ≥
∫ r0

0

∫
S

1U (rθ)r−1−α dr �(dθ), U ∈ B(Rd\{0}),

for some constants α ∈ (0, 2), r0 > 0 and a measure � on the unit sphere S whose
support is not contained in any proper linear subspace of Rd . Then the assumptions
of Proposition 7.4 are satisfied (with κ < α).

Example 7.5 covers, in particular, stable operators, i.e. operators (1.1) with b = 0,
Q = 0 and Lévy measures ν of the form ν(U ) = ∫∞

0

∫
S
1U (rθ)r−1−α dr �(dθ). Let

us mention that Komatsu [31] was one of the first to study perturbations of stable
operators by Lévy-type operators; however, his result requires quite strong assump-
tions on the regularity the density of ν. A related result was obtained by Peng [23],
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who considers perturbations of the fractional Laplacian by time-dependent kernels
μ(t, x, dy). Our approach has the advantage that it is not restricted to stable operators
and works in a much more general setting, as demonstrated by Proposition 7.4

7.3 Operators of variable order

Our next application concerns perturbations of the fractional Laplacian of variable
order −(−�)α(·)/2, which is defined on C∞c (Rd) by

−(−�)α(·)/2 f (x)

= cd,α(x)

∫
{y �=0}

( f (x + y)− f (x)− y · ∇ f (x)1(0,1)(|y|)) 1

|y|d+α(x)
dy

for a certain normalizing constant cd,α(x). This operator appears as generator of so-
called processes of variable order, see e.g. [4, 17, 22, 30, 33] for the construction of
such processes and more information about the probabilistic background. Denote by
(T (t))t≥0 the associated C∞-Feller semigroup.

Proposition 7.6 If α : Rd → (0, 2] be Hölder continuous with αL := inf x α(x) > 0,
then (T (t))t≥0 satisfies Hypothesis 5.1 and 6.1 with ρ = αL , and so Theorem 1.1 is
applicable with ρ = αL .

Proof Let (T (t))t≥0 be the Markovian Feller semigroup associated with the operator
−(−�)α(·)/2, see e.g. [4] or [33, Thm. 5.2] for the existence, and denote by Â its
full generator and by A its part in C∞(Rd). It is known from the construction of
the semigroup that C∞c (Rd) is a core and that T (t) f (x) = ∫

f (y)pt (x, y) dy for a
bounded transition function pt , cf. [33]. In consequence, by [6, Thm. 1.9, Thm. 1.14],
each T (t) is a strong Feller operator. Moreover, by [36, Prop. 6.1],

‖T (t) f ‖
C

β
b (Rd )

≤ cβ t−β/αL‖ f ‖∞, f ∈ Bb(R
d), t ∈ (0, 1),

for any β < αL . In conclusion, Hypothesis 6.1 is satisfied. ��
Example 7.7 Consider

Lu = −(−�)α(·)/2u − (−�)β(·)/2

where α : Rd → (0, 2] is Hölder continuous with αL := infx α(x) > 0 and β :
Rd → (0, 2) is a measurable function with supx β(x) < αL . Then, by Proposition 7.6
and Theorem 1.1, the bp-closure of {( f ,L f ); f ∈ C∞c (Rd)} is the generator of a
Markovian Cb-Feller semigroup S and the (L,C∞c (Rd))-martingale problem is well-
posed. If additionally infx β(x) > 0, then the tightness condition (5.4) is satisfied,
and S is a C∞-Feller semigroup.

Let us mention that Theorem 6.3 also yields the continuous dependence of these
solutions on the parameter β. More precisely, if βn , n ∈ N are measurable functions
with βn(x) → β(x) for all x ∈ Rd and 0 < infn infx β(x)≤ supn supxβn(x) < αL ,
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then P(βn ,x) → P(β,x) weakly for every x ∈ Rd . In particular, the associated semi-
groups satisfy S(βn)(t) f (x) → S(β)(t) f (x) for any t > 0, x ∈ Rd and f ∈ Cb(R

d).

Proposition 7.6 can be extended to a wider class of non-local operators, that is, we
can replace the fractional Laplacian of variable order−(−�)α(·)/2 by other operators
of variable order, see [33, Sect. 5.1] for some further examples.

7.4 Non-local operators and Lévy-driven SDEs

In this section, we show how our perturbation results can be applied in the theory of
stochastic differential equations (SDEs). The key is a result by Kurtz [43], which states
that the existence of solutions to Lévy-driven SDEs can be equivalently characterized
by the existence of solutions to martingale problems associated with certain Lévy-
type operators (1.1). For a comprehensive study of Lévy-driven SDEs, e.g. classical
existence and uniqueness results, we refer to Ikeda–Watanabe [18] and Protter [47].
Our first result is about SDEs with additive Lévy noise.

Proposition 7.8 Let (Lt )t≥0 be a Lévy process with characteristic exponent ψ satis-
fying the Hartman–Wintner condition (7.5) and b ∈ Bb(R

d;Rd). If the transition
density pt of (Lt )t≥0 satisfies

∫ 1
0

∫
Rd |∇ pt (x)| dx dt <∞, then the SDE

d Xt = b(Xt ) dt + d Lt , X0 = x, (7.7)

has a unique weak solution. Moreover, the solution does not explode in finite time and
gives rise to a Markovian Feller semigroup with symbol

q(x, ξ) = −ib(x) · ξ + ψ(ξ), x, ξ ∈ Rd .

Proof This is immediate from Proposition 7.4 (with κ = 1) and the results of [43]. ��
Proposition 7.8 applies, in particular, to any Lévy process with characteristic expo-

nent ψ satisfying Reψ(ξ) ≥ c|ξ |α , |ξ | � 1, for some α > 1; indeed, (7.5) is then
trivial and the integrability condition on∇ pt follows from [53, Thm. 3.2]. Let us men-
tion that Tanaka et. al [58, pp. 82, 83] obtained the existence of a unique solution under
the milder assumption that 1

Reψ(ξ)
= o

(|ξ |−1) as |ξ | → ∞. Furthermore, there is
ongoing research about the optimal assumptions on the drift b to ensure the existence
of a unique weak solution to (7.7) for a given Lévy process; e.g. [8] considers isotropic
α-stable drivers, α > 1, and (generally unbounded) drifts b from some Kato class.

Proposition 7.9 Let (Lt )t≥0 be a one-dimensional isotropic α-stable Lévy process for
α ∈ (1, 2), i.e. (Lt )t≥0 is a Lévy process with characteristic exponent ψ(ξ) = |ξ |α . Let
σ : R→ R be a Hölder continuous function with 0 < inf x σ(x) ≤ supx σ(x) < ∞.
For every b ∈ Bb(R), there is a unique weak solution to the SDE

d Xt = b(Xt−) dt + σ(Xt−) d Lt , X0 = x . (7.8)
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The solution does not explode in finite time and gives rise to a Markovian C∞-Feller
semigroup with symbol

q(x, ξ) = −ib(x) · ξ + |σ(x)|α|ξ |α.

Proof Since σ is Hölder continuous, the SDE dYt = σ(Yt−) d Lt has a unique weak
solution which gives rise to a Feller process, see e.g. [40, Thm. 2.1] or [33, Thm.
5.23]. Denote by (T (t))t≥0 the associated semigroup and by Â the full generator. It
is known that C∞c (R) is a core for the generator of T |C∞(R), cf. [33, 40]. The strong
Feller property of T (t) follows from [6, Thm. 1.14] and the fact that Yt has a bounded
transition density pt , see e.g. [33]. Moreover, [36, (proof of) Prop. 4.5] yields the
regularity estimate

‖T (t) f ‖
C

β
b (R)

≤ cβ t−β/α‖ f ‖∞, f ∈ Bb(R), t > 0, (7.9)

for β < α. Choosing β ∈ (1, α) and setting B̂ f (x) = b(x)∇ f (x), we see that the
assumptions of Theorem 5.4 are satisfied, and so there is a Markovian C∞-semigroup
with full generator Â+ B̂. Using thewell-posedness of the (A+ B̂,C∞c (R))-martingale
problem, which holds by Theorem 6.2, it follows from [43] that the SDE (7.8) has a
unique weak solution. ��

Remark 7.10 Proposition 7.9 can be extended in several ways:

(i) We can consider a wider class of driving Lévy processes (Lt )t≥0. There are
two key ingredients which we need. Firstly, the existence of a unique weak
solution to the SDE dYt = σ(Yt−) d Lt ; there is extensive literature on this
topic, see e.g. [7, 33, 38, 40, 63] and the references therein. Secondly, a regularity
estimate ‖T (t) f ‖

C
β
b (Rd )

≤ ϕ(t)‖ f ‖∞, for the corresponding semigroup, where

ϕ ∈ L1(0, 1) and β > 1. Although there are quite some works on regularizing
properties of semigroups associated with SDEs, many of them study only β-
Hölder regularity for β ≤ 1, and this is not enough for our purposes.

(ii) Using localization techniques for martingale problems, one can relax the growth
assumptions on b and σ ; see [34, Thm. 4.2] and [17, Thm. 5.3] for useful results
in this direction.

Proposition 7.11 Let (Lt )t≥0 be a one-dimensional isotropic α-stable Lévy process for
α ∈ (0, 2). Let (Mt )t≥0 be a one-dimensional Lévy process independent of (Lt )t≥0 with
Lévy triplet (b, 0, ν) such that

∫
{|y|≤1} |y|β ν(dy) < ∞ for some β ∈ [0, α). If α ≤ 1

also assume that the compensated drift b−∫
{|y|<1} y ν(dy) is zero. Letσ : R→ (0,∞)

be a Hölder continuous mapping with 0 < inf x σ(x) ≤ supx σ(x) < ∞. For every
κ ∈ Bb(R), the SDE

d Xt− = κ(Xt−) d Mt + σ(Xt−) d Lt , X0 = x
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has a unique weak solution. It does not explode in finite time and it gives rise to a
Markovian Feller semigroup with the symbol

q(x, ξ) = ψ(κ(x)ξ)+ |σ(x)|α|ξ |α,

where ψ denotes the characteristic exponent of (Mt )t≥0.

Note that Proposition 7.11 can be extended to other driving Lévy processes (Lt )t≥0,
cf. Remark 7.10.

Proof of Proposition 7.11 Because of the integrability condition on the Lévy measure
ν, an application of Taylor’s formula shows that the operator

B̂ f (x) := b · ∇ f (x)1{α>1}

+
∫
{y �=0}

( f (x + κ(x)y)− f (x)− f ′(x)κ(x)y1(0,1)(|y|)1{α>1}) ν(dy)

satisfies ‖B̂ f ‖∞ ≤ C‖ f ‖
C

β
b (R)

for some constant C > 0. Moreover, Hypothesis 5.3

holds. Note that the kernels μ(x, dy) associated with B̂ satisfy the tightness condition
(5.4) because

μ(x, {|y| ≥ R}) = ν({y ∈ R\{0}; |κ(x)y| ≥ R})
≤ ν({y ∈ R\{0}; |y| ≥ R/‖κ‖∞}) R→∞−−−→ 0.

Now we can proceed exactly as in the proof of Proposition 7.9; the only difference is
that we consider the just-defined operator B̂ rather than the drift operator. ��
Example 7.12 Let α ∈ (0, 2] and β ∈ (0, α). Let (Lt )t≥0 be an isotropic α-stable
Lévy process and (Mt )t≥0 an isotropic β-stable Lévy process, which is independent of
(Lt )t≥0. Letσ be aHölder continuous functionwith 0 < infx σ(x) ≤ supx σ(x) <∞.
Then, by Proposition 7.11 and Theorem 6.3:

(i) For every κ ∈ Bb(R
d), the SDE

d Xt = κ(Xt−) d Mt + σ(Xt−) d Lt , X0 = x, (7.10)

has a unique weak solution. It gives rise to a Markovian Feller semigroup.

(ii) If κn ∈ Bb(R), n ∈ N, is a sequence of measurable functions such that κn
bp→ κ ,

then the solutions X (κn) to (7.10) (with κ replaced by κn) converge weakly to
X = X (κ) in the Skorohod space D[0,∞).
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Appendix A. bp-convergence of measure-valued functions

We recall that if E is a metric space, then a set M ⊂ Bb(E) is called bp-closed if

whenever ( fn) ⊂ M is a sequence with fn
bp→ f , then also f ∈ M . The bp-closure

of M ⊂ Bb(E) is the smallest bp-closed subset of Bb(E) that contains M . If the
bp-closure of M is Bb(E) we say that M is bp-dense in Bb(E).

We recall the following general result from [13, Prop. 3.4.2].

Proposition A.1 In a metric space E, the set Cb(E) is bp-dense in Bb(E). If E is
additionally locally compact and σ -compact, then also Cc(E) is bp-dense in Bb(E).

In this appendix, we aim to extend this result to functions that take values in the
coneM+(E) of positive, locally finite measures on E , where E is a locally compact,
separable metric space. To that end, we endow M+(E) with the vague topology,
induced by the space Cc(E) of continuous functions with compact support. As is well
known, see [25, Thm. A.2.3(i)], M+(E) is a Polish space in the vague topology, i.e.
the topology is induced by a complete metric and the corresponding metric space is
separable.

As amatter of fact, wewill not be interested in arbitrary E , but only in E = Rd\{0}.
Fix a continuous function g : Rd\{0} → [0,∞). Given a measure ν ∈M+(Rd\{0}),
we put

|ν|g :=
∫
Rd\{0}

g(y) ν(dy).

We denote by K g(Rd ,M+(Rd\{0})) the set of measurable mappings μ : Rd →
M+(Rd\{0}) such that

‖μ‖g := sup
x∈Rd

|μ(x)|g <∞ and lim
R→∞ sup

x∈K
μ(x, {|y| > R})=0

}
for all K � Rd .

We note that, as a consequence of [25, Thm. A.2.3(iv)] the map μ : Rd →
M+(Rd\{0}) is measurable if and only if x 
→ ∫

Rd f (y)μ(x, dy) is measurable for
every f ∈ Cc(R

d\{0}) if and only if x 
→ μ(x, A) is measurable for every relatively
compact set A.

Definition A.2 We say that a sequence (μn) ⊂ K g(Rd ,M+(Rd\{0})) converges
boundedly and pointwise to μ : Rd →M+(Rd\{0}), if
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(i) supn ‖μn‖g <∞,
(ii) μn(x, ·) → ν(x, ·) vaguely for every x ∈ Rd and
(iii) for every K � Rd we have limR→∞ supn∈N supx∈K μn(x, {|y| > R}) = 0.

We write μn
bp→ ν to indicate bounded and pointwise convergence.

Remark A.3 We note that if g(x) = ϕ(|x |) for some function ϕ : (0,∞) → (0,∞)

with ϕ(t) ↑ ∞ as t →∞, then condition (i) entails condition (iii) in Definition A.2.

We note that we did not assume in the above definition that the limit μ belongs to
K g(Rd ,M+(Rd\{0})). As it turns out, this holds true automatically.

Lemma A.4 Let (μn) ⊂ K g(Rd ,M+(Rd\{0})). If μn
bp→ μ, then also μ belongs to

K g(Rd ,M+(Rd\{0})).
Proof We first note that μ is measurable as pointwise limit of measurable functions.
We now pick C > 0 such that ‖μn‖g ≤ C for all n ∈ N and fix a sequence ( fk) ∈
Cc(R

d\{0}) such that 0 ≤ fk(y) ↑ g(y). As μn(x) → μ(x) vaguely, we obtain for
fixed k ∈ N and arbitrary x ∈ Rd that

∫
Rd

fk(y)μ(x, dy) = lim
n→∞

∫
Rd

fk(y)μn(x, dy) ≤ lim sup
n→∞

∫
Rd

g(y) μn(x, dy) ≤ C .

Taking the limit k →∞, monotone convergence implies

∫
Rd

g(y) μ(x, dy) ≤ C

for every x ∈ Rd , proving that ‖μ‖g ≤ C < ∞. To prove that for a compact set K ,
we have limR→∞ supx∈K μ(x, {|y| > R}) = 0, we pick, given ε > 0, a radius R > 0
such that μn(x, {|y| > R}) ≤ ε for all x ∈ K and n ∈ N. Approximating 1{|y|>R} by
an increasing sequence of functions in Cc(R

d), we can repeat the above argument to
prove that μ(x, {|y| > R}) ≤ ε for all x ∈ K . ��

In what follows, we use the notions of bp-closedness, bp-closure and bp-denseness
with the obvious meaning also for subsets of K g(Rd ,M+(Rd\{0})). We can now
prove the main result of this appendix, a version of Proposition A.1 for measure-
valued functions.

Theorem A.5 The set Cc(R
d ,M+(Rd\{0})) ∩ K g(Rd ,M+(Rd\{0})) is bp-dense in

K g(Rd ,M+(Rd\{0})).
Proof We write K g

C for the set which is claimed to be bp-dense and denote by F its
bp-closure. We proceed in several steps.

Step 1: We prove that if μ(x, A) = ϕ(x) · ν(A) for some ϕ ∈ Bb(R
d) and ν ∈

M+(Rd\{0}) with |ν|g <∞, then μ ∈ F.
Indeed, if ϕ ∈ Cc(R

d), then a function μ of the above form belongs to K g
C , and

hence to F. However, if ϕn
bp→ ϕ it is easy to see that ϕn(·)ν bp→ ϕ(·)ν; thus the latter
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belongs F if this is true for the approximating sequence. Invoking Proposition A.1, it
follows that indeed for every ϕ ∈ Bb(R

d) the above function μ belongs to F.
Step 2: We prove that F is a convex cone.
Fix μ ∈ F and put

Fμ :=
{
μ̃ ∈ F : sμ+ tμ̃ ∈ F for all s, t ∈ (0,∞)}.

Amoment’s thought shows thatFμ is bp-closed. Ifμ ∈ K g
C , then clearly every element

of K g
C belongs to Fμ as K g

C is a cone. Thus F ⊂ Fμ and hence F = Fμ. Now let
μ ∈ F be arbitrary. Then we have K g

C ⊂ Fμ by what was just proved. Using that K g
C

is bp-dense in F once again, we find Fμ = F for every μ ∈ F which proves that F is
indeed a cone.

Step 3: It follows from Step 1 and Step 2 that every function of the form

μ(x, ·) =
n∑

k=1
1Ak (x)νk(·),

where A1, . . . , An ∈ B(Rd) and ν1, . . . , νn ∈ M+(Rd\{0}) with |νk |g < ∞ for all
k = 1, . . . , n, belongs to F. Given any sequence (Ak) ⊂ B(Rd) of pairwise disjoint
sets and a tight sequence νk ∈M+(Rd\{0}) with supn |νn|g <∞ also the function

μ(x, ·) :=
∞∑

k=1
1Ak (x)νk(·)

belongs to F; indeed, the partial sums are all in F and so their bp-limit μ belongs to
F by the closedness of F.

Step 4 Fix μ ∈ K g(Rd ,M+(Rd\{0})) with limR→∞ supx∈Rd μ(x, {|y| > R}) =
0. We put

Sμ :=
{
ν ∈M+(Rd\{0}) : |ν|g ≤ ‖μ‖g and

ν({|y| > R}) ≤ sup
x∈Rd

μ(x, {|y| > R}) for all R > 0

}
.

Arguing similar as in the proof of Lemma A.4, we see that Sμ is a closed subset
of M+(Rd\{0}). Consequently, Sμ is separable, whence we find a dense sequence
(νn) ⊂ Sμ that is dense in Sμ.

Let us fix a metric ρ that generates the topology on Sμ. We write B(ν, ε) for the
open ball in Sμ of radius ε and with center ν ∈ Sμ. We can now recursively define

sets B(n)
k by B(n)

1 = B(ν1, n−1) and

B(n)
k+1 := B(νk+1, n−1) \ (B(n)

1 ∪ · · · ∪ B(n)
k ).
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Then for every n ∈ N the sets (B(n)
k )k∈N are pairwise disjoint and their union equals

Sμ. Let us set

μn(x, ·) :=
∞∑

k=1
1

μ−1(B(n)
j )

(x)ν j (·).

By Step 3, the function μn belongs to F. However, we have ‖μn‖g ≤ ‖μ‖g for every
n ∈ N as every ν j belongs to Sμ and for x ∈ Rd we have ρ(μn(x), μ(x)) ≤ n−1 so
that μn(x) → μ(x). By the definition of the set Sμ also condition (iii) in Definition

A.2 is satisfied so that μn
bp→ μ. It follows that μ ∈ F.

Step 5 Given μ ∈ K g(Rd ,M+(Rd\{0})), we set μn := 1B(0,n)μ. By Step 4, we
have μn ∈ F, as supx∈Rd μn(x, {|y| > R}) → 0 as R →∞. On the other hand, we

have μn
bp→ μ, and we conclude that μ ∈ F. ��

We now combine Proposition A.1 and Theorem A.5 into a single result which will
be useful in the main part of this article.

Corollary A.6 Assume that F is a subset of Bb(R
d ;Rd) × K g(Rd ,M+(Rd \ {0}))

such that

(i) Cc(R
d ;Rd)×

[
Cc

(
Rd ,M+(Rd \ {0})) ∩ K g

(
Rd ,M+(Rd \ {0}))] ⊂ F

(ii) whenever (( fn, μn))n∈N ⊂ F and fn
bp→ f and μn

bp→ μ, then also ( f , μ) ∈ F.

Then F = Bb(R
d)× K g(Rd ,M+(Rd \ {0})).

Proof Fixing f ∈ Cc(R
d;Rd) and considering sequences of the form ( f , μn)n∈N bp-

converging to ( f , μ), TheoremA.5 showsCc(R
d)×K g(Rd ,M+(Rd \{0})) ⊂ F . Let

us now fixμ ∈ K g(Rd ,M+(Rd \{0})) and consider sequences ( fn, μ) bp-converging
to ( f , μ). Then Proposition A.1 yields the claim. ��

Appendix B. Continuity of Lévy-type operators in terms of the symbol
and the characteristics

In the proof of one of our perturbation results, Theorem 5.4, we used that the integro-
differential operator

B̂ f (x) = b(x) · ∇ f (x)+
∫
Rd\{0}

( f (x + y)− f (x)− y · ∇ f (x)χ(y)) ν(x, dy)

(B.1)

maps (sufficiently) smooth functions to continuous functions. On C∞c (Rd), the oper-
ator can be considered as a pseudo-differential operator with symbol q(x, ξ), cf.
(1.2), and so one can equivalently asked for conditions on the symbol ensuring that
B̂ f ∈ C(Rd) for f ∈ C∞c (Rd). The following result answers this question; it is some-
what more refined than what we need for our proof but we believe the result to be of
independent interest.
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Theorem B.1 Let B̂ be as in (B.1) and denote by

q(x, ξ) = −ib(x) · ξ +
∫
Rd\{0}

(1− eiy·ξ + iy · ξχ(y)) ν(x, dy) (B.2)

the associated symbol; here χ ∈ C∞c (Rd) is a continuous cut-off function with
1B(0,1) ≤ χ ≤ 1B(0,2). If q is locally bounded, then the following statements are
equivalent.

(i) B̂ f is continuous for every f ∈ C∞c (Rd).
(ii) x 
→ q(x, ξ) is continuous for all ξ ∈ Rd .

(iii) Each of the following conditions is satisfied.

(a) x 
→ b(x) is continuous.
(b) x 
→ ν(x, ·) is vaguely continuous on (Rd\{0},B(Rd\{0})).
(c) The family (ν(x, ·))x∈K , is tight for any compact set K � Rd , i.e.

limR→∞ supx∈K ν(x, {|y| ≥ R}) = 0.
(d) limr→0 supx∈K

∫
{|y|≤r} |y|2 ν(x, dy) = 0 for any compact set K � Rd .

If one (hence, all) of the conditions is satisfied and B̂ : Cβ
b (Rd) → Bb(R

d) is a

bounded operator for some β > 0, then B̂ f is continuous for all f ∈ C
β
b (Rd) ∩

C∞(Rd).

Remark B.2 (a) The implications (ii) ⇐⇒ (i)  ⇒ (iii) remain valid for any Borel
measurable cut-off function χ such that 1B(0,1) ≤ χ ≤ 1B(0,2).

(b) A symbol q of the form (B.2) is locally bounded if, and only if, for any compact
set K ⊆ Rd there exists a constant c > 0 such that |q(x, ξ)| ≤ c(1+ |ξ |2) for all
x ∈ K , ξ ∈ Rd . By [51, Lem. 2.1, Rem. 2.2], this is equivalent to

∀K � Rd : sup
x∈K

|b(x)| + sup
x∈K

∫
Rd\{0}

min{|y|2, 1} ν(x, dy) <∞. (B.3)

Proof of Theorem B.1 The implication (i)  ⇒ (ii) follows from [50, Thm. 4.4]. More-
over, if x 
→ q(x, ξ) is continuous, then we find from the local boundedness of q and
the dominated convergence theorem that

x 
→ B̂ f (x) = −
∫
R

q(x, ξ) f̂ (ξ)eixξ dξ

is continuous for all f ∈ C∞c (R), and this proves (ii)  ⇒ (i). It remains to show the
equivalence (ii) ⇐⇒ (iii). First of all, we note that the conditions (iii)(c) and (iii)(d),
resp., are equivalent to saying that for any convergent sequence xn → x it holds that

lim
R→∞ sup

n∈N
ν(xn, {{|y| ≥ R}) = 0 and lim

r→0
sup
n∈N

∫
{|y|≤r}

|y|2 ν(xn, dy) = 0,

(B.4)
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resp. Fix x ∈ Rd and any sequence xn → x . The functions ξ 
→ q(xn, ξ) and
ξ 
→ q(x, ξ) are continuous negative definite functions, and therefore φn := e−q(xn ,·)
resp. φ := e−q(x,·) are characteristic functions of infinitely divisible distributions, say,
μn resp.μ. Clearly, q(xn, ξ) → q(x, ξ) for each x ∈ Rd , if and only if,φn(ξ)→ φ(ξ)

for all ξ ∈ Rd , andbyLévy’s continuity theorem this is equivalent toweak convergence
μn → μ. The weak convergence μn → μ, in turn, is equivalent to b(xn) → b(x),
ν(xn, ·) → ν(x, ·) vaguely and (B.4), cf. [49, Thm. 8.7]. This finishes the proof. ��
Corollary B.3 Let B̂ be as in (B.1) for a continuous cut-off function χ with 1B(0,1) ≤
χ ≤ 1B(0,2), and denote by q(x, ξ) the symbol of B̂, cf. (B.2). If there is for every
compact set K ⊆ Rd some constant α ∈ (0, 2) such that

sup
x∈K

|b(x)| + sup
x∈K

(∫
{|y|≤1}

|y|α ν(x, dy)

)
<∞, (B.5)

and (ν(x, ·))x∈K is tight, then the following statements are equivalent:

(i) B̂ f is continuous for every f ∈ C∞c (Rd),
(ii) x 
→ q(x, ξ) is continuous for all ξ ∈ Rd ,

(iii) x 
→ b(x) is continuous and x 
→ ν(x, ·) is vaguely continuous.

Proof Becauseof (B.5), the symbolq is locally bounded, cf.RemarkB.2, andmoreover
(iii)(c),(d) are clearly satisfied. Thus, the assertion is immediate from Theorem B.1. ��
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