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Abstract
This paper investigates the topology identification and synchronization in finite time for
fractional singularly perturbed complex networks (FSPCNs). Firstly, a convergence principle
is developed for continuously differential functions. Secondly, a dynamic event-triggered
mechanism (DETM) is designed to achieve the network synchronization, and a topology
observer is developed to identify the network topology. Thirdly, under the designed DETM,
by constructing a Lyapunov functional and applying the inequality analysis technique, the
topology identification and synchronization condition in finite time is established in the forms
of the matrix inequality. In addition, it is proved that the Zeno behavior can be effectively
excluded. Finally, the effectiveness of the main results is verified by an application example.

Keywords Fractional complex networks · Event-triggered mechanism · Synchronization ·
Topology identification

1 Introduction

Complex dynamical networks (CDNs), which contains a large amount of nodes with the
communication topology, are ubiquitous in nature and human society, such as transportation
networks, biological networks, power networks and so on [1–4]. Generally, the dynamics of
CDNs are determined by the topology structure and dynamical properties of nodes, which
indicates that the dynamical behavior of CDNs is difficult to understand when the communi-
cation topology is unknown [5–7]. Hence, it is significant to identify the topology of CDNs,
see [8–19] and references therein.

B Huaiqin Wu
huaiqinwu@ysu.edu.cn

Jinde Cao
jdcao@seu.edu.cn

1 School of Science, Yanshan University, Qinhuangdao 066001, China

2 School of Mathematics, Southeast University, Nanjing 210096, China

3 Ahlia University, Manama 10878, Bahrain

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11063-024-11648-3&domain=pdf


  187 Page 2 of 24 L. Wang et al.

Recently, a plenty of studies are concentrated on the topology identification of CDNs,
and some results are achieved. For example, in [11], Zhu et al. researched the topology iden-
tification of CDNs via synchronization method and an auxiliary network, which composed
of isolated nodes. In [12], a novel method was developed to solve topology identification
for Hindmarsh-Rose neural networks with sinusoidal signals when the persistently excite
conditions could not hold. In [13], the topology identification for CDNs with multiple links
was considered by utilizing adaptive control method and building chaotic auxiliary networks.

Since the fractional calculus can describe the various processes with memory and heredi-
tary characteristics more accurately than integral calculus, see [20, 21], CDNs described by
fractional calculus received wide attention from scholars. More recently, many works have
been put into topology identification for fractional complex dynamical networks (FCDNs)
[15–19]. Particularly, in [18], the topology identification was discussed for FCDNs via
inequality techniques and synchronization-based method . In [19], Bai et al. considered
the secure synchronization and topology identification for FCDNs under Denial of Service
(DoS) attacks by using feedback control method.

It should be pointed out that, in the control mechanism in [14–19], the feedback / adaptive
controller is used to deal with the synchronization of CDNs. Nevertheless, the adaptive/ feed-
back control mechanism requires to update date continuously, which will lead to additional
information communication and waste of resources. To address the drawback, the event-
triggered control (ETC) determined by static rule is proposed, and some results about the
synchronization of CDNs were obtained by applying static ETC . see [22–26]. In static ETC,
information is updated only when the threshold is less than or equal to the measurement error.

In order to mitigate the communication burden more effectively, in recent works, the
dynamic event-triggered control(DETC) mechanism is presented, where a dynamic vari-
able was added to the event-triggered condition. For example, in [29], Li et al. considered
the synchronization for variable-order fractional piecewise-smooth networks by DETC, and
established the exponential synchronization criterion. The mean-square exponential syn-
chronization in a stochastic complex network was investigated via intermittent DETC in
[30].

It is worth noting that in the aforementioned results, for CDNs, the time-scale character-
istics of all nodes are required to be the same. However, in real world, ’fast’ dynamics and
’slow’ dynamics may coexist in one system, which can be modeled as a singularly pertur-
bation system, such as circuit systems, high-speed aircraft systems, etc. [31–34]. Recently,
SPCNs have attracted considerable concern of many scholars [35–44]. Particularly, in [37],
Rakkiyappan et al. explored the state estimation and synchronization for SPCNs by sampling
controlmethod. In [39], the stochastic synchronizationwas studied for SPCNswith impulsive
effects and semi-markov jump topology. It should be pointed out that, in the aforementioned
papers about SPCNs [36–44], the topology structure of the CNs is set to be known. As far
as we know, few results are focused on the topology identification for FSPCNs. Hence, the
mainmotivation of this paper is to design topology observer and control strategywith DETM,
derive synchronization and identification conditions for FSPCNs.

Inspired by the above discussion, the objective of this article is to tackle the problems of the
topology identification and synchronization for FSPCNs. In this paper, themain contributions
are listed below.

1) In the existing results [15] and [18], the topology identification and synchronization are
considered for FCDNs. The topology identification and synchronization are considered
for fractional CDNs with the singularly perturbation in this work. Compared with [15]
and [18], the results in this paper are more universal.
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Table 1 Notation Symbols Meanings

N ,C Integer, complex numbers set

N+ Positive integer numbers set

R Real numbers set

Rn n-dimensional real vector set

Rn×m n × m real matrices set

|x | Absolute value of x

||x || = (
∑n

i=1)|xi |2)
1
2

IM M-dimensional identify matrix

diag(a, b, . . . , c) Diagonal matrix

Cn [a, b] n-order continuously differentiable

Function

⊗ Kronecker product of two matrices

λmin(A)(λmax(A)) the minimum(maximum)

Eigenvalue of A

A−1/AT Inverse/Transpose of matrix A

A > 0 A ∈ Rn×n , and is positive definite

2) An topology observer and a DETM are designed to realize the topology identification
and synchronization for FSPCNs. Compared with the control methods used in [23, 25],
the control strategy adopted in this paper can save resource more efficiently.

3) The finite-time synchronization condition is established based on a novel ε-dependent
Lyapunov function, by the matrix inequality. In addition, the topology identification is
successfully realized.

The remainders of this paper are arranged as follows. In section 2, some important lemmas,
definitions and properties are introduced. The system description is provided in Sect. 3. In
Sect. 4, the main results of the topology identification and synchronization for FSPCNs are
discussed. In section 5, an application example is presented to verify the correctness of the
theoretical results. Section6 gives some conclusions.

Notation: See Table 1.

2 Preliminaries

Definition 1 ( [20]) For f (τ ) ∈ Cn[t0, +∞). Caputo fractional derivative of α-order is
defined as

c
t D

α
t0 f (τ ) = 1

�(n − α)

∫ t

t0

f (n)(v)

(τ − v)1+n−α
dv,

where τ ≥ t0, �(·) is Gamma function, α ∈ (n − 1, n), n ∈ N . Especially, if α ∈ (0, 1),
c
t D

α
t0 f (τ ) = 1

�(1−α)

∫ t
t0

f
′
(v)

(τ−v)α
dv.
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Definition 2 ( [20]) For f (τ ) : [t0, +∞) → R, Riemann-Liouville fractional integral of
α-order is defined as

R
t I

α
t0 f (τ ) = 1

�(α)

∫ t

t0

f (v)

(τ − v)1−α
dv,

where α > 0, and �(α) = ∫ ∞
0 e−tτα−1dτ .

For convenience, I α and Dα are used to denote c
t I

α
t0 and

c
t D

α
t0 in the following.

Property 1. ( [20]). Properties of fractional derivatives

(i) when α ≥ β > 0, Dα I β f (τ ) = Dα−β f (τ );
Especially, Dα I β f (τ ) = f (τ ), where α = β, 0 < α ≤ 1.

(ii) Dαu = 0, where u is a constant.
(iii) Dα(u1 f (τ ) + u2g(τ )) = u1Dα f (τ ) + u2Dαg(τ ),

where u1, u2 are constants.

(iv) If f (τ ) ∈ Cn([t0,+∞), R), then I αDα f (τ ) = f (τ ) − ∑n−1
k=0

f (k)(t0)
k! (τ − t0)k .

Especially, if 0 < α ≤ 1and 0 < t < T , thenDα Iα f (τ ) = f (τ ), IαDα f (τ ) =
f (τ ) − f (t0).

Definition 3 ([21]). Mittag-Leffler function Eά,ὰ(τ ) is defined as

Eά,ὰ(τ ) =
∞∑

k=1

τ k

�(kά + ὰ)
,

where τ ∈ C , ά > 0, ὰ > 0. When ὰ = 1,

Eά,1(τ ) = Eά(τ ) =
∞∑

k=1

τ k

�(kά + 1)
.

In particularly, when ὰ = 1, ά = 1, E1,1(τ ) = eτ .

Lemma 1 ([19]). Let 0 < α ≤ 1. G ∈ Rn×n, and G > 0. Suppose that r(τ ) ∈ Rn is a
function, which is continuously differentiable. Then,

Dα(rT (τ )Gr(τ )) ≤ 2rT (τ )GDαr(τ )

holds, for any τ ≥ t0.

Lemma 2 ([38]). Let ε ∈ (0, ε′], 0 < ε′ ≤ 1. If there exist symmetric matrices Q1, Q3, and

matrix Q2, such that

(
Q1 ε′QT

2
ε′Q3

)

> 0, Q1 > 0, then E(ε)Q(ε) = QT (ε)E(ε) > 0,

where Q(ε) =
(
Q1 εQT

2
Q2 Q3

)

.

Lemma 3 ([38]). Let α̌ ∈ (0, 1). If V(τ ) is continuously differentiable on [t0,+∞), and
satisfies

Dα̌V(τ ) ≤ −νV(τ ), τ ≥ t0,

where ν is a positive constant, then,

V(τ ) ≤ V(t0)Eα̌(−ν(τ − t0)
α̌), τ ≥ t0.
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Lemma 4 ([38]). Let ω is a positive constant. zi ∈ Rn, i = 1, 2. The following inequality

zT1 z2 ≤ ω

2
zT1 z1 + 1

2ω
zT2 z2,

holds.

Lemma 5 If there is a positive definite function V(τ ) ∈ C1([t0,+∞), R), α̌ ∈ (0, 1) such
that

Dα̌V(τ ) ≤ −ζV(τ ) − μ, (1)

where ζ > 0, and μ > 0. Then, limτ→T V(τ ) = 0, and V(τ ) ≡ 0, for τ ≥ T . T is the
solution of the equation

pEα̌

( − ζ(τ − t0)
α̌
) − μ

ζ
= 0,

where p = μ
ζ

+ V(t0).

Proof Applying Property 1, from (1), it follows that,

Dα̌
(V(τ ) + μ

ζ

) ≤ −ζ
(V(τ ) + μ

ζ

)
.

Set V(τ ) + μ
ζ

= Ṽ(τ ),

Dα̌Ṽ(τ ) ≤ −ζ Ṽ(τ ).

According to Lemma 3, we have

Ṽ(τ ) ≤ Ṽ(t0)Eα̌

( − ζ(τ − t0)
α̌
)
.

The above inequality can be represented as

V(τ ) ≤ (V(t0) + μ

ζ

)
Eα̌

( − ζ(τ − t0)
α̌
) − μ

ζ
.

Since Eα̌

( − ζ(τ − t0)α̌
)
is monotonically decreasing function, there exists T > t0, such

that
(V(t0)+ μ

ζ

)
Eα̌

(−ζ(T − t0)α̌
)− μ

ζ
= 0, and V(τ ) ≤ 0, for τ ≥ T . Noting that V(τ ) ≥ 0,

for τ ≥ 0, this derives that V(τ ) ≡ 0, τ ≥ T . This completes the proof. 
�

3 Description of NetworkModel

Consider a nonlinear FSPCNs with M identical nodes described by singularly perturbation
system

E(ε)Dαxi (t) =
[

Dαx1i (t)
εDαx2i (t)

]

= f (xi (t)) + d
M∑

j=1

bi j�x j (t),
(2)

where α ∈ (0, 1), t ∈ [t0, +∞), ε is the perturbation parameter satisfying 0 < ε ≤ ε′ � 1;

E(ε) =
[
In1 0
0 ε In2

]

; xi (t) =
[
x1i (t)
x2i (t)

]

∈ Rn1+n2 is state vector of i-th node at time
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t , i = 1, 2, . . . , M , where x1i (t) = (x1i1(t), x1i2(t), . . ., x1in1(t))
T ∈ Rn1 , x2i (t) =

(x2i1(t), x2i2(t), . . . , x2in2(t))
T ∈ Rn2 ; The nonlinear function f (xi (t)) =

[
f 1(x1i (t))
f 2(x2i (t))

]

∈
Rn1+n2 , where f 1(x1i (t)) = ( f 11 (x1i1(t)), f 12 (x1i2(t)), . . . , f 1n1(x1in1(t)))

T ∈ Rn1 ,
f 2(x2i (t)) = ( f 21 (x2i1(t)), f 22 (x2i2(t)), . . ., f 2n2(x2in2(t)))

T ∈ Rn2 ; d represents the cou-
pling strength; � = diag(�1, �2, . . . , �n1+n2) ∈ R(n1+n2)×(n1+n2) is internal coupling
matrix; B = [bi j ]M×M denotes an unknown weight construction matrix, which stands for
the topology in network (2). If there is a connection between nodes j and i ( j = i), then
bi j = 0, if not, bi j = 0 ( j = i). In addition, bii = −∑M

j=1, j =i bi j .
In the following, for network (2), we design a response network described by

E(ε)Dα yi (t) =
[

Dα y1i (t)
εDα y2i (t)

]

= f (yi (t)) + d
M∑

j=1

b̂i j (t)�y j (t) + ui (t),
(3)

where yi (t) =
[
y1i (t)
y2i (t)

]

is state vector of y-th node at time t , i =
1, 2, . . . , M , in which y1i (t) = (y1i1(t), y1i2(t), . . . , y1in1(t))

T ∈ Rn1 , y2i (t) =
(y2i1(t), y2i2(t), . . . , y2in2(t))

T ∈ Rn2 ; The function f (yi (t)) =
[
f 1(y1i (t))
f 2(y2i (t))

]

∈ Rn1+n2 ,

where f 1(y1i (t)) = ( f 11 (y1i1(t)), f 11 (y1i2(t)), . . . , f 1n1(y1in1(t)))
T ∈ Rn1 , f 2(y2i (t)) =

( f 21 (y2i1(t)), f 22 (y2i2(t)), . . . , f 2n2(y2in2(t)))
T ∈ Rn2 . B̂(t) = [b̂i j (t)]M×M is a known

weight construction matrix, which is used to identify unknown matrix B; ui (t) is the control
input. The other parameters are the same as in (2).

In order to obtain the main results of this article, the following assumptions are made for
f (·) and unknown weight bi j :
(H1): For fi (·), s1 = s2, the following condition is satisfied

0 ≤ fi (s1) − fi (s2)

s1 − s2
≤ zi ,

where zi is a positive constant.
(H2):For weight bi j , which is norm bounded, such that

|bi j | ≤ Mb, i, j = 1, 2, . . . , M,

where Mb > 0 is a constant.
The synchronization error for the i-th node is represented by ei (t), and ei (t) = yi (t) −

xi (t). Together (2) with (3), the synchronization error system can be expressed as

E(ε)Dαei (t) = f̆ (ei (t)) + d
M∑

j=1

b̃i j (t)�y j (t)

+d
M∑

j=1

bi j�e j (t) + ui (t),

(4)

where b̃i j (t) = b̂i j (t) − bi j , f̆ (ei (t)) = f (yi (t)) − f (xi (t)), i, j = 1, 2, . . . , M .
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Definition 4 Let xi (t) be the solutions of (2) with initial value xi (t0) = xi0, yi (t) be the
solutions of (3) with initial value yi (t0) = yi0.

1). If there exist T (ei (t0)) ≥ t0, satisfy

lim
t→T (ei (t0))

‖ ei (t) ‖= 0, and ei (t) ≡ 0, t ≥ T (ei (t0)),

then system (2) and (3) are deemed to achieve synchronization in T (ei (t0)) under the
controller u(t). In addition, T (ei (t0)) is called as setting time.

2). If lim
t→T (ei (t0))

b̃i j (t) = 0, j, i = 1, 2, . . . , M , then the topology in network (2) is said

to realize the identification in finite time T (ei (t0)).

4 Main Result

In this paper, our focus is to establish the conditions that ensure the synchronization of
networks (2) and (3), and to identify the topology in network (2) based on DETC. To do so,
the controller ui (t) is designed as

ui (t) = −Kei (t
i
k) − c

ei (t ik)sgn(ei (t
i
k))

||ei (t ik)||2
, t ∈ [t ik, t ik+1), (5)

where c is positive constant; sgn(·) denotes signum function; K is the control gain matrix to
be designed. {t ik} denotes event-triggered sequence that satisfies 0 ≤ t i0 < t i1 < t i2 < . . . <

t ik < . . ., k ∈ N+ and limt→∞ t ik = +∞.

Remark 1 The signum function, as a simple nonlinear function, can be easily applied in
controller (5) u(t) compare to any other functions. During the operation of the controller,
there is no need for complex mathematical calculations and function approximation, which
helps to reduce the computational load of controller updates. Furthermore, in the proof in
Theorem 1, the signum function term ei (t ik)sgn(ei (t

i
k)) plays a crucial role in eliminating the

terms ϑi eTi (t ik)ei (t
i
k) and ē

T
i (t)ēi (t).

Define the measurement error ēi (t) as ēi (t) = (yi (t ik) − xi (t ik)) − (yi (t) − xi (t)) =
ei (t ik) − ei (t).

Design DETM as

t ik+1 = inf
t>t ik

{

t : ēTi (t)ēi (t) ≥ ϑi e
T
i (t ik)ei (t

i
k) + γiηi (t)

}

, (6)

where ϑi , γi are positive constants, and 0 < ϑi < 1; ηi (t) expresses an internal dynamic
variable, and designed by

Dαηi (t) = −βiηi (t) − 1

2
c

γiηi (t)

||ei (t ik)||2
+ ϑi e

T
i (t ik)ei (t

i
k) − ēTi (t)ēi (t),

(7)

where parameter βi > 0. The framework of DETM (6) is depicted in Fig. 1.

Remark 2 1) InDETM (6), internal dynamic variable ηi (t) is introduced, such that the thresh-
old function ϑi eTi (t ik)ei (t

i
k) + γiηi (t) is adjustable. Due to ηi (t) > 0, the average interval
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Fig. 1 Framework of DETC
scheme

time can be enlarged, and the frequency of events triggered can be reduced effectively and
Zeno behavior can be avoided.

2) In [27], DETM was designed as t ik+1 = inf t>t ik

{
t : ēTi (t)ēi (t) ≥ ϑi eTi (t)ei (t) +

γiηi (t)
}
. Since the threshold function contains a continuous term ϑi eTi (t)ei (t), the state

information is requested to be known at all time. However, in practical application, not all of
state information is available, which may cause the above event-triggering mechanism to be
unavailable.

In [28], DETM was designed as tk+1 = inf t>tk

{
t : ēTi (t)ēi (t) ≥ γiηi (t) + βi e−αt + δ

}
,

βi , δ > 0. Obviously, the threshold function is independent of system states, which may
cause that the control law cannot update in time.

The designed DETM (6) is only required to know the state information at time t ik , and
instead of all. It is easy to see that, controller updates depend on both internal dynamic
variable ηi (t) and state information ēTi (t ik) at time t ik . Compared with [27] and [28], the
designed DETM (6) is more superiority.

Remark 3 ETC updates the controller only when the certain triggering condition (6) is met,
rather than updating the controller at fixed time intervals. Applying ETC to deal with FSPCNs
synchronization can reduce the demand for communication resources, and improves the
overall efficiency of the system operation.

To achieve the purpose of the topology identification for network (2) via controller (5)
with DETM (6), we design the update law of the topology observer b̂i j (t) as

Dα b̂i j (t) = − ρsgn(̃bi j (t))(|b̂i j (t)| + Mb)

− dξi j e
T
i (t)QT (ε)�y j (t).

(8)

where ρ > 0, and ξi j > 0 are real parameter to be designed.
Substitute (5) into (4), for t ∈ [t ik, t ik+1), yields

E(ε)Dαei (t) = f̆ (ei (t)) + d
M∑

j=1

bi j�e j (t)

+d
M∑

j=1

b̃i j (t)�y j (t) − Kei (t
i
k) − c

ei (t ik)sgn(ei (t
i
k))

||ei (t ik)||2
.

(9)

Lemma 6 Consider the designed DETM in (6) with (7). If ηi (t i0) > 0, then, ηi (t) > 0, t ≥ t i0,
i = 1, 2, . . . , M.
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Proof For t ∈ [t ik, t ik+1), applying (6) yields

ēTi (t)ēi (t) ≤ ϑi e
T
i (t ik)ei (t

i
k) + γiηi (t). (10)

By (10) and (7), it follows that

Dαηi (t) ≥ −βiηi (t) − γiηi (t) = −πiηi (t), (11)

where πi = βi + γi .
On the basis of Lemma 3, from (11), we get

ηi (t) ≥ ηi (t
i
k)Eα(−πi (t − t ik)

α), t ∈ [t ik, t ik+1).

k ∈ {0} ∪ N+.
Hence, for t ∈ [t i0, t ik+1), we obtain that

ηi (t) ≥ ηi (t
i
0)

(

�k
r=1Eα(−πi (t

i
r − t ir−1)

α)

)

Eα(−πi (t − t ik)
α).

According to Definition 3 and ηi (t i0) > 0, from the above inequality, it can be derived that
ηi (t) ≥ 0, for t ≥ t0. The proof is completed.

If the dynamic variable ηi (t) ≡ 0, then DETM (6) changes to a static ETM in [27].

4.1 Synchronization and Topology Identification of FSPCNs

In this subsection, the synchronization and topology identification in finite time are realized
between network (2) and (3) under controller (5) and observer (8).

Theorem 1 Let α ∈ (0, 1), and ε ∈ (0, ε′). Under the assumptions (H1)-(H2), if there exist
scalar ω > 0, matrix Q1 > 0, matrix Q2 and symmetric matrix Q3, such that

(i)

(
Q1 ε′QT

2
ε′Q3

)

> 0;

(i i) 1
2 IM ⊗ (QT (ε)Q(ε)) + d(B ⊗ QT (ε)�) + ω

2 IM ⊗ (QT (ε)KKT Q(ε)) − 1
2 IM ⊗

(QT (ε)K + KT Q(ε)) ≤ − z
2 IM(n1+n2),

hold, then system (2) and (3) can achieve the finite-time synchronization under controller
(5). The setting time T (ei (t0)) is the solution of equality

(

V(t0) + μi

ζi

)

Eα

(

− ζi (t − t0)
α

)

− μi

ζi
= 0,

where ζi = min

{
2

λmax(Q(ε)E(ε))

(
λmin(�)

)
, 2ρ, βi + γi

}

, � = − z
2 IM(n1+n2) − 1

2 IM ⊗
(QT (ε)Q(ε))−d(B⊗QT (ε)�)− ω

2 IM⊗(QT (ε)KKT Q(ε))+ 1
2 IM⊗(QT (ε)K+KT Q(ε)),

μi = 1
2cλmin(QT (ε))(1 − ϑi ),

V(t0) = 1
2

∑M
i=1(yi0 − xi0)T E(ε)Q(ε)(yi0 − xi0) + ∑M

i=1 ηi (t0) +
1
2

∑M
i=1

∑M
j=1

1
ξi j

(b̂i j (t0) − bi j )2.

In addition, the topology of system (2) can be identified in finite time under update law of
the topology observer (8) successfully.

Proof Consider the following Lyapunov function:

V(t) = V1(t) + V2(t) + V3(t), (12)

123



  187 Page 10 of 24 L. Wang et al.

where V1(t) = 1
2

∑M
i=1 e

T
i (t)E(ε)Q(ε)ei (t), V2(t) = ∑M

i=1 ηi (t), and V3(t) =
1
2

∑M
i=1

∑M
j=1

1
ξi j

(b̂i j (t) − bi j )2.

For t ∈ [t ik, t ik+1), according to Lemmas 1 and 4, calculating Caputo fractional derivative
of α-order for V1(t) along with the solution of system (9), yields

DαV1(t) ≤
M∑

i=1

eTi (t)QT (ε)E(ε)Dαei (t)

=
M∑

i=1

eTi (t)QT (ε) f̆ (ei (t))

+ d
M∑

i=1

M∑

j=1

bi j e
T
i (t)QT (ε)�e j (t)

+ d
M∑

i=1

M∑

j=1

b̃i j (t)e
T
i (t)QT (ε)�y j (t)

−
M∑

i=1

eTi (t)QT (ε)Kei (t
i
k)

− c
|eTi (t ik) − ēTi (t)|QT (ε)ei (t ik)

||ei (t ik)||2

≤
M∑

i=1

eTi (t)

(
1

2
QT (ε)Q(ε) − QT (ε)K

d
M∑

j=1

bi j Q
T (ε)� + ω

2
QT (ε)KKT Q(ε)

)

ei (t)

+ d
M∑

i=1

M∑

j=1

b̃i j (t)e
T
i (t)QT (ε)�y j (t)

+ 1

2

M∑

i=1

f̆ T (ei (t)) f̆ (ei (t)) −
M∑

i=1

1

2ω
ēTi (t)ēi (t)

+ c
λmin(QT (ε))(−||eTi (t ik)||2 + |ēTi (t)|ei (t ik))

||ei (t ik)||2
.

(13)

For t ∈ [t ik, t ik+1), by computing Caputo fractional derivative of α-order of V2(t) along
with the solution of system (7), one obtains

DαV2(t) =
M∑

i=1

Dαηi (t) =
M∑

i=1

(−βiηi (t)

− 1

2
c

γiηi (t)

||ei (t ik)||2
+ ϑi e

T
i (t ik)ei (t

i
k) − ēTi (t)ēi (t)).

(14)
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For t ∈ [t ik, t ik+1), calculating Caputo fractional derivative of α-order of V3(t) along with
the solution of system (8), it yields

DαV3(t)

=
M∑

i=1

M∑

j=1

1

ξi j
(b̂i j (t) − bi j )D

α b̂i j (t)

= −ρ

M∑

i=1

M∑

j=1

1

ξi j
b̃i j (t)sgn(̃bi j (t))(|b̂i j (t)| + Mb)

− d
M∑

i=1

M∑

j=1

b̃i j (t)e
T
i (t)QT (ε)�y j (t).

(15)

From (H2), it can be obtained that |b̂i j (t)| + Mb ≥ |b̂i j (t) − bi j | = |̃bi j (t)|. Hence,

− ρ

M∑

i=1

M∑

j=1

1

ξi j
b̃i j (t)(sgn(̃bi j (t))(|b̂i j (t)| + Mb))

≤ −ρ

M∑

i=1

M∑

j=1

1

ξi j
(̃bi j (t))

2.

(16)

On the basis of (12)-(16), for t ∈ [t ik, t ik+1), one has

DαV(t) ≤
M∑

i=1

eTi (t)

(
1

2
QT (ε)Q(ε) − QT (ε)K

+ d
M∑

j=1

bi j Q
T (ε)� + ω

2
QT (ε)KKT Q(ε)

)

ei (t)

−
M∑

i=1

1

2ω
ēTi (t)ēi (t) − ρ

M∑

i=1

M∑

j=1

1

ξi j
(̃bi j (t))

2

−
M∑

i=1

ēTi (t)ēi (t) +
M∑

i=1

ϑi e
T
i (t ik)ei (t

i
k)

+ 1

2

M∑

i=1

f̆ T (ei (t)) f̆ (ei (t)) −
M∑

i=1

βiηi (t)

+ c
λmin(QT (ε))(−||eTi (t ik)||2 + |ēTi (t)|ei (t ik))

||ei (t ik)||2
.

(17)

Due to (H1), we have f̆ T (ei (t)) f̆ (ei (t)) ≤ zeTi (t)ei (t), where z = max1≤i≤M
{
z2i

}
.
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Utilizing Property 1 and DETM (6), it follows from (17) that,

DαV(t) ≤
M∑

i=1

eTi (t)

(
1

2
QT (ε)Q(ε) − QT (ε)K

+ ω

2
QT (ε)KKT Q(ε) + d

M∑

j=1

bi j Q
T (ε)�

+ z

2
IM(n1+n2)

)

ei (t) − ρ

M∑

i=1

M∑

j=1

1

ξi j
(̃bi j (t))

2

−
M∑

i=1

(βi + 1

2
c

γiηi (t)

||ei (t ik)||2
+ γi )ηi (t)

+ c
λmin(QT (ε))( 12 ē

T
i (t)ēi (t) − 1

2 ||eTi (t ik)||2)
||ei (t ik)||2

≤eT (t)

(
1

2
IM ⊗ (QT (ε)Q(ε)) + d(B ⊗ QT (ε)�)

+ ω

2
IM ⊗ (QT (ε)KKT Q(ε)) − 1

2
IM ⊗ (QT (ε)K

+ KT Q(ε)) + z

2
IM(n1+n2)

)

e(t) −
M∑

i=1

(βi

+ 1

2
c

γiηi (t)

||ei (t ik)||2
+ γi )ηi (t) − ρ

M∑

i=1

M∑

j=1

1

ξi j
(̃bi j (t))

2

− 1

2
cλminQ

T (ε)
(
1 − ||ē(t)||2

||e(tk)||2
)

≤eT (t)

(
1

2
IM ⊗ (QT (ε)Q(ε)) + d(B ⊗ QT (ε)�)

+ ω

2
IM ⊗ (QT (ε)KKT Q(ε)) − 1

2
IM ⊗ (QT (ε)K

+ KT Q(ε)) + z

2
IM(n1+n2)

)

e(t)

−
M∑

i=1

(βi + γi )ηi (t) − ρ

M∑

i=1

M∑

j=1

1

ξi j
(̃bi j (t))

2

− 1

2
cλmin(Q

T (ε))
(
1 − ϑi ) ≤ −ζiV(t) − μi ,

(18)

where ζi = min{ 2
λmax(Q(ε)E(ε))

(
λmin(�)

)
, 2ρ, βi + γi }, � = − z

2 IM(n1+n2) − 1
2 IM ⊗

(QT (ε)Q(ε))−d(B⊗QT (ε)�)−ω
2 IM⊗(QT (ε)KKT Q(ε))+ 1

2 IM⊗(QT (ε)K+KT Q(ε));
μi = 1

2cλmin(QT (ε))
(
1 − ϑi ).

By Lemma 5, we can conclude that lim
t→T (ei (t0))

V(t) = 0, and V(t) ≡ 0, for t ≥ T (ei (t0)),

where T (ei (t0)) is the solution of equality

(

V(t0) + μi
ζi

)

Eα

(

− ζi (t − t0)α
)

− μi
ζi

= 0.
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Moreover, from the expression of V(t), it can be obtained that, lim
t→T (ei (t))

‖ ei (t) ‖=
lim

t→T (ei (t))
b̃i j (t) = 0, and ‖ ei (t) ‖= b̃i j (t) ≡ 0, for t ≥ T (ei (t0)). This shows that, system

(2) and (3) can achieve the synchronization in finite time under observer (8) and controller
(5), and the unknown topology in network (2) can be identified in finite time. The proof is
complete.

Remark 4 In [15], the topology identification and synchronization were considered for frac-
tional CDNs by the adaptive feedback control strategy. In [44], the synchronization was
studied for SPCNs by the DETC method, but the topology identification issue was not
discussed.

In Theorem 1, the synchronization and topology identification in finite time are exploited
for FSPCNs concurrently on the basis of DETC. Obviously, the results of this paper are an
improvement and extension for that in [15] and [44].

Remark 5 In the proof of Theorem 1, an ε-dependent Lyapunov function is introduced by
incorporating the parameter ε into the traditional Lyapunov function for system stability
analysis. The introduction of ε can enhance the sensitivity of the Lyapunov function, and
then respond to smaller changes in the system state, and has stronger analytical ability than the
traditional Lyapunov function. Moreover, if the parameter ε = 1, the ε-dependent Lyapunov
function becomes a general Lyapunov function, hence, the range of applications of the ε-
dependent Lyapunov function is wider.

In Theorem 1, we have investigated ε ∈ (0, 1) in FSPCNs (2) and (3). In the following
Case 1) and 2), we discuss the synchronization and topology identification in finite time
between networks (2) and (3) when ε = 0 and ε = 1, respectively.

Case 1). Systems (2) and (3) become as

E(0)Dαxi (t) =
(
Dαx1i (t)

0

)

= f (xi (t)) + d
M∑

j=1

bi j�x j (t), (19)

E(0)Dα yi (t) =
(
Dα y1i (t)

0

)

= f (yi (t)) + d
M∑

j=1

b̂i j (t)�y j (t) + ui (t), (20)

respectively, where E(0) =
[
In1 0
0 0

]

.

Corollary 1 Let α ∈ (0, 1). Under the assumptions (H1)-(H2), if there exist scalar ω > 0,
matrix Q2 and positive definite matrices Q1, Q3, such that

(i) E(0)Q(0) ≥ 0.
(i i) 1

2 IM ⊗ (QT (0)Q(0)) + d(B ⊗ QT (0)�) + ω
2 IM ⊗ (QT (0)KKT Q(0)) − 1

2 IM ⊗
(QT (0)K + KT Q(0)) ≤ − z

2 IM(n1+n2), hold, where Q(0) =
(
Q1 0
Q2 Q3

)

, then system (19)

and (20) can achieve the finite time synchronization under controller (5). The setting time
T (ei (t0)) is the solution of equality

(

V(t0) + μi

ζi

)

Eα

(

− ζi (t − t0)
α

)

− μi

ζi
= 0,
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where ζi = min

{
2

λmax(Q(0)E(0))

(
λmin(�)

)
, 2ρ, βi + γi

}

, � = − z
2 IM(n1+n2) − 1

2 IM ⊗
(QT (0)Q(0))−d(B⊗QT (0)�)−ω

2 IM⊗(QT (0)KKT Q(0))+ 1
2 IM⊗(QT (0)K+KT Q(0)),

μi = 1
2cλmin(QT (0))(1 − ϑi ),

V(t0) = 1
2

∑M
i=1(yi0 − xi0)T E(0)Q(0)(yi0 − xi0) + ∑M

i=1 ηi (t0) +
1
2

∑M
i=1

∑M
j=1

1
ξi j

(b̂i j (t0) − bi j )2.

In addition, the topology of system (19) can be identified in finite time under update law
of the topology observer (8) successfully.

Case 2). Systems (2) and (3) change as

Dαxi (t) = f (xi (t)) + d
M∑

j=1

bi j�x j (t), (21)

Dα yi (t) = f (yi (t)) + d
M∑

j=1

b̂i j (t)�y j (t) + ui (t), (22)

respectively.

Corollary 2 Let α ∈ (0, 1). Under the assumptions (H1)-(H2), if there exist scalar ω > 0,
matrix Q > 0, such that

1

2
IM ⊗ (QT Q) + d(B ⊗ QT�) + ω

2
IM ⊗ (QT K KT Q)

− 1

2
IM ⊗ (QT K + KT Q) ≤ − z

2
IM(n1+n2),

hold, then system (21) and (22) can achieve the finite-time synchronization under controller
(5). The setting time T (ei (t0)) is the solution of equality

(

V(t0) + μi

ζi

)

Eα

(

− ζi (t − t0)
α

)

− μi

ζi
= 0,

where ζi = min

{
2

λmax(Q)

(
λmin(�)

)
, 2ρ, βi + γi

}

, � = − 1
2 IM ⊗ (QT Q)−d(B⊗ QT�)−

ω
2 IM ⊗ (QT K KT Q) + 1

2 IM ⊗ (QT K + KT Q) − z
2 IM(n1+n2),

μi = 1
2cλmin(Q)

(
1 − ϑi ),

V(t0) = 1
2

∑M
i=1(yi0 − xi0)T Q(yi0 − xi0) + ∑M

i=1 ηi (t0) + 1
2

∑M
i=1

∑M
j=1

1
ξi j

(b̂i j (t0) −
bi j )2.

In addition, the topology of system (21) can be identified in finite time under the update
law of the topology observer (8) successfully.

Remark 6 When set ε = 0, system (19) and (20) become fractional singular CDNs, which
means that network nodes are connected only in slow dynamical mode, the fast dynamical
connection do not exist. When take ε = 1, networks (21) and (22) change as fractional
CDNs without the singular perturbation, and there is only a fast dynamic connection mode
between networks. Corollary 1 and 2 discuss the synchronization and topology identification
of FSPCNs in the above two cases respectively.

Remark 7 Traditional synchronization methods, such as asymptotic synchronization and
exponential synchronization [17, 18], generally require an infinite time for a system to achieve
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synchronization. Finite-time synchronization method achieves the estimability of the syn-
chronization time. Designers can adjust control parameters based on the estimated time to
meet specific synchronization requirements.

4.2 Exclusion of Zeno Phenomenon

For the designed event-triggering mechanism (6), in the following, it is proved that the Zeno
behavior can be excluded.

Theorem 2 For each node, under the designed event-triggering mechanism (6), the Zeno
phenomenon will not occur.

Proof From the proof process of Theorem 1, we can conclude that, there exists a positive
constant �, such that ||QT (ε)E(ε)Dαei (t)|| ≤ �, i = 1, 2, · · · , M . Noting that ēi (t) =
ei (t ik) − ei (t), we have ēi (t ik) = 0. It derives that, E(ε)Dα ēi (t) = −E(ε)Dαei (t). Hence,

||ēi (t)|| = ||ei (t ik) − ei (t)||
= ||E−1(ε)Q−T (ε)D−αDαQT (ε)E(ε)(ei (t

i
k) − ei (t))||

= ||E−1(ε)Q−T (ε)
1

�(α)

∫ t

t ik

(t − s)α−1DαQT (ε)E(ε)ēi (s)ds||

= ||E−1(ε)Q−T (ε)
1

�(α)

∫ t

t ik

(t − s)α−1QT (ε)E(ε)Dαei (s)ds||

≤ ||E−1(ε)Q−T (ε)|| 1

�(α)

∫ t

t ik

(t − s)α−1||QT (ε)E(ε)Dαei (s)||ds

≤ �||E−1(ε)Q−T (ε)||(t − t ik)
α

�(α + 1)
.

(23)

For t ∈ [t ik, t ik+1), under the event-triggering mechanism (6), it yields

||ēi (t)|| ≥ (γiηi (t) + ϑi e
T
i (t ik)ei (t

i
k))

1
2 . (24)

Let � = t ik+1 − t ik . Together (23) with (24), it follows that,

(γiηi (t
i
k+1) + ϑi e

T
i (t ik)ei (t

i
k))

1
2 ≤ �||E−1(ε)Q(ε)||�α

�(α + 1)
.

By means of Lemma 6, we can obtain that

� ≥
(

�(α + 1)(γiηi (t ik+1) + ϑi ||ei (t ik)||2)
1
2

�||E−1(ε)Q(ε)||
) 1

α

> 0.

This means that, under the designed event-triggering mechanism(6), the Zeno phe-
nomenon will not occur. 
�

5 A Simulation Example

Here, a simulation example is provided to demonstrate the correctness of the theoretical
results of this paper.
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Fig. 2 The curves of ei j (t) and b̂i j (t) without controller

Consider a 3-dimensional FSPCNs with 3 nodes, where the dynamic of nodes is described
by Lorenz system:

E(ε)Dαxi (t) = f (xi (t)) + d
3∑

j=1

bi j�x j (t), (25)

where i, j = 1, 2, 3; d = 0.02; ε = 0.27, ε′ = 0.3; B = (bi j )3×3 and � are chosen as

B =
⎡

⎣
2.4 −5.2 2.8
0 1.0 −1.0

−2.3 0.4 1.9

⎤

⎦ , � =
⎡

⎣
1.52 0 0
0 0.351 0
0 0 3.105

⎤

⎦ .

f (xi (t)) =
⎡

⎣
−10 10 0
28 −1 0
0 0 −8/3

⎤

⎦

⎡

⎣
xi1(t)
xi2(t)
xi3(t)

⎤

⎦ +
⎡

⎣
0

−xi1(t)xi3(t)
xi1(t)xi2(t)

⎤

⎦ .

Network (25) is considered as the drive network, the corresponding response network is

E(ε)Dα yi (t) = f (yi (t)) + d
3∑

j=1

b̂i j (t)�y j (t) + ui (t), (26)

where the parameters α, d , � are same as that in the drive network (25). In addition, the
update law of the observer b̂i j (t) is described by

Dα b̂i j (t) = − ρsgn(̃bi j (t))(|b̂i j (t)| + 5.2)

− dξi j e
T
i (t)QT (ε)�y j (t)

where ρ = 0.1; ξi j = 1, i, j = 1, 2, 3; Q1 =
[
1.3105 0.061
0.061 1.7092

]

, Q2 = [0.68 0.566],
Q3 = [5.433], d and � are same as that in (25).

1). When ui (t) = 0, the trajectories of the error ei j (t) and topology observer b̂i j (t) are
depicted in Fig. 2 (a) and (b), respectively. It is easy to see that, network (25) and (26) can
not achieve the synchronization, and the topology of network (25) can not also be identified
in finite time.

2). For DETM (6) with (7), set c = 1.004, other parameters are shown in Table 2. For
system (7), take initial values η1(0) = 1.8, η2(0) = 2.7, η3(0) = 2.0 of the internal dynamic
variable η(t).

Let t0 = 0. Take the initial values x1(0) = (−1.320,−2.140, 1.035)T , x2(0) =
(−3.070,−1.852,−2.041)T , x3(0) = (−1.331, 2.508,−0.901)T for network (25), and
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Table 2 Parameter values in (6)
with (7)

ϑ Value γ Value β Value

ϑ1 0.954 γ1 0.018 β1 0.047

ϑ2 0.681 γ2 0.216 β2 0.004

ϑ3 0.332 γ3 0.012 β3 0.019

Fig. 3 Chaotic attractor of
Lorenz system with α = 0.97

Fig. 4 In 2) 1©α = 0.97: a The event intervals based on DETM (6); b The trajectories of xi j (t) and yi j (t); c

The trajectories of ei j (t); d The trajectories of b̂i j (t); i, j = 1, 2, 3

y1(0) = (−5.330,−5.503, 2.761)T , y2(0) = (−3.791,−1.030,−3.547)T , y3(0) =
(−0.842, 0.571,−1.415)T for network (26). Under above parameters, the system states at
three different orders are plotted in Figs. 3, 4, 5, 6, 7 and 8.

1©. Fractional order α = 0.97. The Chaotic attractor of Lorenz system is shown in Fig. 3.
By solving the inequality (i i) in Theorem 1, the control gain K in the controller (5) can be
calculated as

K =
⎡

⎣
2.71 2.10 4.25

−0.14 −14.12 −7.06
1.40 −4.61 −7.51

⎤

⎦.
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Fig. 5 Chaotic attractor of
Lorenz system with α = 0.8

Fig. 6 In 2) 2©α = 0.8: a The event intervals based on DETM (6); b The trajectories of xi j (t) and yi j (t); c

The trajectories of ei j (t); d The trajectories of b̂i j (t); i, j = 1, 2, 3

Fig. 7 Chaotic attractor of
Lorenz system with α = 0.7
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Fig. 8 In 2) 3©α = 0.7: a The event intervals based on DETM (6); b The trajectories of xi j (t) and yi j (t); c

The trajectories of ei j (t); d The trajectories of b̂i j (t); i, j = 1, 2, 3

And, on the basis of Theorem 1, the setting time T (ei (t0)) is calculated as T (ei (t0)) =
4.7041. The corresponding simulation results are depicted in Fig. 4.

2©. Fractional order α = 0.8. The Chaotic attractor of Lorenz system is displayed in Fig. 5.
The control gain K can be computed as

K =
⎡

⎣
−0.43 3.27 1.20
−1.65 −5.72 −8.24
2.25 −3.28 2.12

⎤

⎦.

The setting time T (ei (t0)) is calculated as T (ei (t0)) = 3.3156 based Theorem 1. The
corresponding simulation results are shown in Fig. 6.

3©. Fractional orderα = 0.7. Figure7 shows the correspondingChaotic attractor of Lorenz
system. By solving the inequality (i i) in Theorem 1, the control gain K in the controller (5)
can be derived as

K =
⎡

⎣
4.13 3.55 1.95

−0.07 −8.14 −4.68
3.07 −1.77 −2.58

⎤

⎦.

The setting time T (ei (t0)) is calculated as T (ei (t0)) = 5.258. The corresponding
simulation results are displayed in Fig. 8.

From Figs. 3, 4, 5, 6, 7 and 8, we can see that, in the cases of three different values of
fractional order α, the synchronization error ei j (t) converges to zero in finite, which indicates
that the systems (25) and (26) can achieve the finite-time synchronization, and the topology
in network (25) is identified successfully.

3). In [25], the event-triggering mechanism is designed as

t ik+1 = inf
t>t ik

{
t : ēTi (t)ēi (t) ≥ ϑi e

T
i (t ik)ei (t

i
k) + e−ς t}.

Take fractional order α = 0.97, and simulate system (25) and (26) under controller in [25]
and the above parameters. The results are depicted in Fig. 9. In addition, the corresponding
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Fig. 9 α = 0.97: a The event intervals based on DETM [25]; b The trajectories of xi j (t) and yi j (t); c The

trajectories of ei j (t); d The trajectories of b̂i j (t); i, j = 1, 2, 3

Table 3 Event-triggering times and intervals in [25] and the example

Node [25] This example

Triggering Min. Max. Ave. Triggering Min. Max. Ave.
times interval interval interval times interval interval interval

1 66 0.049 0.782 0.093 36 0.062 1.782 0.149

2 58 0.067 0.952 0.210 28 0.187 3.329 0.541

3 68 0.271 1.429 0.425 33 0.405 2.011 0.407

event-triggered intervals and times by using the control mechanism in [25] and the control
mechanism in this example, which are recorded in Table 2. Compared with [25], in this
example, the event-triggering times are reduced obviously, and the event-triggered interval
is magnified. This indicates that the designed DETM (6) can save communication resources
more effectively than the event-triggering mechanism in [25] and has better control effect
(Table 3).

4). Taking α = 0.97, based on the above parameters, we verify the results of Corollary 1
and 2. The corresponding results are shown in Figs. 10 and 11. Figure10 shows the system
trajectory with ε = 0, and Fig. 11 shows the system trajectory with ε = 1.

From Figs. 10 and 11, it can be seen that, the synchronization error ei j (t) converges to
zero in finite time. This implies that ε = 0 and ε = 1, the systems (25) and (26) can achieve
the finite-time synchronization. On the basis of Corollary 1, the setting time T (ei (t0)) is
calculated as T (ei (t0)) = 4.6913, and from Corollary 2, it can be get T (ei (t0)) = 6.4287.
In addition, the identification trajectories of b̂i j (t) is depicted in Figs. 10d and 11d. From
Figs. 10d and 11d, we conclude that the topology in network (25) is identified successfully.
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Fig. 10 Corollary 1 α = 0.7: a The event intervals based on DETM (6); b The trajectories of xi j (t) and yi j (t);

c The trajectories of ei j (t); d The trajectories of b̂i j (t); i, j = 1, 2, 3

Fig. 11 Corollary 2 α = 0.7: a The event intervals based on DETM (6); b The trajectories of xi j (t) and yi j (t);

c The trajectories of ei j (t); d The trajectories of b̂i j (t); i, j = 1, 2, 3

6 Conclusion

In this paper,we have discussed the topology identification and synchronization of FSPCNs in
finite time via DETC. A topology observer and a DETM-based controller have been designed
to derive the topology identification and synchronization in finite time. Moreover, it has been
proved that Zeno behavior does not exhibit for the designed DETM.
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In the future, it is a meaning endeavor to investigate the finite-time topology identifica-
tion and synchronization of variable-order Fractional complex networks with discontinuous
internal dynamics.
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