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Abstract
This paper introduces an innovative approach for modelling unsteady incompressible natural convection flow over an inclined 
oscillating plate with an inclined magnetic effect that employs the Atangana-Baleanu time-fractional derivative (having a 
non-singular and non-local kernel) and the Mittag-Leffler function. The fractional model, which includes Fourier and Fick's 
equations, investigates memory effects and is solved using the Laplace transform. The Mittag-Leffler function captures power-
law relaxation dynamics, which improves our understanding of thermal and fluid behaviour. Graphical examination shows 
the influence of fractional and physically involved parameters, leading to the conclusion that concentration, temperature, 
and velocity profiles initially grow and then decrease asymptotically with time. Moreover, the study emphasizes the impact 
of effective Prandtl and Schmidt numbers on temperature, concentration, and velocity levels in the fluid. 

Keywords MHD · Natural convection · Newtonian heating · Atangana-Balenau time-fractional approach · Laplace 
transform · Viscous fluid

Abbreviations
AB  Atangana-Balenau-time-fractional derivative
NF  Nanofluids
HNF  Hybrid-nanofluid
MHD  Magnetohydrodynamics
PDEs  Partial differential equations

List of symbols
w  Fluid velocity 

(

ms−1
)

t  Times (s)
g  Gravity acceleration 

(

ms−2
)

K  Thermal conductivity of the fluid 
(

Wm−1 k−1
)

Cf  Skin friction
ρ  Fluid density 

(

kgm−3
)

U0  Characteristic velocity 
(

ms−1
)

�1  The angle of magnetic inclination
�2  The inclination angle of the plate
�  Concentration of fluid 

(

molm−3
)

Preff  Effective Prandtl number
�  Temperature of the fluid (K)
Bo  Strength of magnetic field 

(

Kg s−2
)

M  Magnetic parameter (K)
Re  Reynold's number
Sc  Schmidt number
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q  Laplace transform variable
��  Volumetric coefficient of thermal expansion 

(

k−1
)

�∞  Ambient temperature (K)
Gr  Grashof number
�  Kinematic viscosity 

(

m2 s−1
)

Gm  Mass Grashof number
Cp  Specific heat at constant pressure 

(

J kg−1K−1
)

Sh  Sherwood number 
γ  Fractional parameter
Nu  Nusselt number
�  Electrical conductivity
H  Slip parameter

Introduction

Natural convection flows phenomena happen broadly in 
nature and are generally significant in solar energy collec-
tors, purification processes, atmospheric, refrigeration of 
nuclear reactors, and oceanic circulation that occur in fluid 
mechanics if the temperature does vary density differences, 
leading to buoyant effects that affect its motion. Insights on 
utilizing natural convective flows may be seen in [1–4]

Akram et al. [6] investigated the impacts of MHD NF flow 
on peristaltic waves along with viscous dissipation as well 
as convection produced by slip effects through a channel, by 
employing the extensive wavelength and little but finite Rey-
nold number estimation process. Sadia et al. [7] discussed a 
second-grade fluid motion produced by employing a perme-
able disc taking partial slip character. Thermal transmission 
made by heating the disc surface as well as by ohmic and 
viscous heating effects are evaluated and modelled with a 
thermal slip state. Associated mass transmission phenomena 
with thermophoretic distribution are also articulated. Further, 
the implementation of velocity slip supposition encourages 
non-linearity in the boundary situations in velocity mecha-
nisms. Abidin et al. [8] studied a Carreau NF flow in a chan-
nel by Bvp4c technique of MATLAB. The concentration as 
well as energy equations is supposed by employing conserva-
tion and Navier–Stokes equations utilizing the revised Buon-
giorno model. They proved that temperature distribution rises 
along with heat source, thermal radiation, nanoscale effects, 
and Brinkman number. The fractional Oldroyd-B HNF with 
important impacts like wall slip condition, constant concen-
tration, and Newtonian heating which further categorizes the 
behaviour of HNF flow and thermal transmission phenomena 
in a good manner was examined by the Laplace method. They 
also studied fractionalized Oldroyd-B HNF and second-grade 
NF based on AB and Prabhakar fractional techniques [9, 10]. 
A fractionalized MHD as well as the thermal transfer of a 
Brinkman tri-HNF in a porous medium with ramped condi-
tions and generalized velocity in a vertical plate was discussed 
by utilizing AB differentiation and the Laplace approach. 

Further, a convection flow of a fractional HNF in a micro-
channel containing two parallel plates separately was consid-
ered with Newtonian heating impacts with the Caputo–Fab-
rizio (CF) and Laplace's approach by Amir et al. [11, 12].

The effects of Newtonian heating constraint with free con-
vection fluid flowing were examined by Vieru et al. [13]. The 
problems for an incompressible flow with chemical reactions 
for some different fluids over a plate were considered in [14]. 
Viscous dissoluteness as well as the effect of the Joule heat-
ing scheme is investigated in [15]. The Newtonian heating 
impacts for the three-dimensional MHD flow with a special 
form of pressure were studied in [16]. A particular form of 
movement with Newtonian heating effect and power-law NF 
was discussed by Hayat et al. [17].

Free convective MHD flow with slip condition was 
investigated in [18]. They considered the Newtonian heat-
ing impacts with a nonlinear elastic plate in their research. 
Kamran et al. [19] discoursed Newtonian heating with the 
convective flow by using chemical reactions and boundary 
slip conditions. The characteristics of Newtonian heating 
were deliberated in [20] because of the motion of a micropo-
lar fluid with a flexible plate. The spectral relaxation tech-
nique was used to discuss the NF for MHD flow through a 
channel flow in [21]. The consequences of Newtonian heat-
ing, heat generation, and organic response were studied [22] 
by considering Casson fluid flow on a moving plate placed 
with a permeable media. The flow of non-Newtonian fluid 
by taking into mind the viscosity and Newtonian heating 
effect was examined by Ahmad et al. [23].

The perception of fractional order and integral operators 
has suggestively affected several areas of applied sciences, 
engineering, and technology. In 1967, the perception of frac-
tional calculus was developed from Caputo’s research work 
[24] in the year of 1967 and projected a characterization 
of the fractional derivative. This description helps use the 
integral transform method with an initial condition.

Moreover, this method was useful to find the solution 
to numerous physical mathematical problems. However, 
Caputo and Fabrizio studied that this non-integer technique 
has few drawbacks that yield indeterminate outcomes mostly 
for the structure and explanation of applied models. Here-
after, some well-known investigators appealed that such 
ambiguous consequences are due to singularity in the com-
plicated integral. Their suggestion was useful and attentive. 
Subsequently, Caputo and Fabrizio proposed an innovative 
fractional derivative lacking a singularity [25].

Numerous researchers efficiently applied the Caputo-
Fabrizio operator method in their work [26]. After this, a 
novel fractional order derivative also acknowledged opposi-
tions due to the non-local kernel. So, Atangana and Baleanu 
presented an innovative non-integer operator involving a 
non-singular as well as non-local kernel [27]. Newly, many 
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researchers are applying these non-integer operators hav-
ing the Mittag-Leffler function. However, a more systematic 
and comprehensive investigation of these recent techniques 
is still compulsory. Lin et al. [28] used the Laplace technique 
to study a Casson fluid fractional model that included two 
parallel plates subjected to magnetic force. El-Zahar et al. 
[29] solved a fractionalized convection–diffusion system with 
a modified residual power series approach. Demir et al. [30] 
investigated a proportional Caputo-hybrid technique with a 
novel feature for this operator. Furthermore, they demon-
strated how results build on and improve on prior findings in 
the system of integral inequalities. Chu et al. [31] examined 
a fractional third-order dispersive system using a variational 
iteration transform approach and the Shehu decomposition 
method. Raza et al. [32] used a nonlinear fractional system 
with the AB derivative to define COVID-19. They used the 
Toufik-Atangana approach to provide numerical solutions 
for the fractional model. Majeed et al. studied Newtonian 
and non-Newtonian fluids with different circumstances i.e. 
viscous fluid flow between two discs, with a hexagonal cav-
ity, Maxwell fluid flow with Keller box-scheme, flow and 
thermal transfer over a pair of heated bluff bodies through 
a channel and presented important results in the literature 
[33–35]. Different researchers discussed flow in a channel; 
in a wavy trapezoidal cavity, MHD flows with slip conditions 
and periodic flow in no-Newtonian fluid [37–39].

The study of MHD fractionalized viscous fluids with 
thermal memory, slip, and Newtonian heating effects is very 
important in many scientific and engineering disciplines. 
Understanding these complex fluid dynamics is critical for 
optimizing heat transfer operations in industrial systems, 
increasing the performance of energy conversion devices, and 
designing innovative cooling systems. Further, the proposed 
fractional model, which employs the Atangana-Baleanu time-
fractional approach and the Mittag-Leffler kernel, advances 
mathematical modelling methods to describe phenomena 
involving non-local and memory-dependent effects, provid-
ing a valuable tool for investigators in fluid dynamics as well 
as applied mathematics. This study's findings are poised to 
manipulate diverse fields, including materials science and 
environmental engineering, by giving insights into the com-
plicated interplay of magnetic fields, thermal memory, and 
fractional calculus in fluid systems [41–45].

In the above literature, we see that the investigation of the 
Newtonian heating influence in numerous sceneries is a sub-
stantial practical as well as theoretical study for the solution 
of significant problems based on the non-integer derivative. 
After receiving inspiration from these facts, our main goal is 
to examine the influences of Newtonian heating on incom-
pressible natural convection unsteady and viscous flow over 
an oscillating infinite inclined plate with an inclined magnetic 
field by employing fractional operator with Mittag-Leffler 
memory. The Laplace transform is invoked for the numerical 

and fractional simulations. To accomplish the Laplace inver-
sion, two different approaches, Tzou technique and Stehfest are 
used. Finally, a graphical investigation of fractional and flow 
parameters is done by employing MathCad15 and discussed.

Problem statement based 
on Atangana‑Balenau‑time‑fractional 
derivative

We consider unsteady and free convection viscous flow over 
an oscillating inclined plate with an inclined magnetic field 
having a strength Bo . Initially, fluid and the inclined plate 
having an ambient medium temperature �∞ and concentra-
tion value of �∞ . At t > 0+ , the fixed plate starts oscillating 
through velocity Uocos(�t) . The values of thermal as well as 
concentration also increase over time as revealed in Fig. 1. 
With the above conditions and using Boussinseq's estimation, 
the governing equations for this problem are [5]

(1)
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Fig. 1  Flow geometry
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where �(y, t), �(y, t) indicates the thermal and mass fluxes by 
Fourier as well as Fick’s law.

The following are the supposed physical initial boundary 
conditions

By introducing the following dimensionless parameters and 
functional values

Into Eqs. (1–8) and ignore the steric notation. We have

(6)w(y, 0) = 0,�(y, 0) = �∞,�(y, 0) = �∞; y ≥ 0

(7)
w(0, t) − h

𝜕w(y, t)
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|

|

|
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|

|

|
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h

k
𝜙(0, t), 𝜓(0, t) = 𝜓w; t > 0

(8)
w(y, t) → 0, �(y, t) → �∞, �(y, t) → �∞ as y → ∞
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where

Formulation of fractional model by using AB 
fractional derivative

To construct a fractional model recently introduced fractional 
derivative i.e. AB derivative is utilized, which is stated as [32, 
33] for the function η (�, t).

and Eγ(z) is a Mittage-Lefflerr function demarcated as

with

In this investigation, we have used an effective fractional 
approach i.e. AB time-fractional operator to investigate the 
thermal memory in view of generalized Fourier and Fick's 
law [32, 33]

Solution of the problem

Temperature field

Applying the Laplace transform on Eqs. (10 and 21) and con-
ditions (14)2–(16)2, we get

(16)w(y, t) → 0, �(y, t) → 0, �(y, t) → 0 as y → ∞.
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AB
�

𝛾

t 𝜂(𝜉, t) =
1

1 − γ∫
t

0

Eγ

[

𝛾(t − z)𝛾

1 − γ

]

𝜂
�

(𝜉, t)dt; 0 < γ < 1

(18)Eγ(z) =

∞
∑

i=0

z𝛾

Γ(i𝛾 + 1)
; 0 < 𝛾 < 1, z ∈ ℂ.

(19)L
{

AB
�

�

t η(�, t)
}

=
q�L[�(�, t)] − qγ−1�(�, 0)

(1 − η)q� + γ
,

(20)Lim
�→1

AB
�

�

t �(�, t) =
��(�, t)

�t
.

(21)�(y, t) = −AB
�

�

t

��(y, t)

�y
.

(22)�(y, t) = −AB
�

�

t

��(y, t)

�y
.

(23)Pr
eff
q�̄�(y, q) =

q𝛾

(1 − 𝛾)q𝛾 + 𝛾

𝜕2�̄�(y, q)

𝜕y2
,



Investigation of MHD fractionalized viscous fluid and thermal memory with slip and Newtonian…

The solution of Eq. (23) with transformed conditions in Eq. 
(24) will be yielded as

To obtain the Laplace transform inversion of Eq. (25), 
we utilized the Stehfest and Tzou numerical methods as in 
Table 1. In this subsection, we have found the solution for 
temperature distribution based on the AB fractional derivative 
by employing the Laplace method.

Concentration profile

Taking Laplace transform on Eqs. (12 and 22) and conforming 
conditions (14)3–(16)3, we get

(24)
��(y, q)

�y

|

|

|

|
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(

1

q
+ �(0, q)

)
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q
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(27)�(y, q) =
1

q
,�(y, q) → 0;y → ∞.

By employing the above conditions of Eq. (27) and after 
simplification, Eq. (26) gives the concentration field

The Laplace inverse of Eq. (28) will be examined in 
Table 1 numerically. In this subsection, we have found 
the solution for the concentration profile based on the AB 
fractional derivative by employing the Laplace technique.

Velocity field

Taking the Laplace transform on Eq. (9) and correspond-
ing conditions (14)1–(16)1, we get

By using the conditions of Eq. (30) and temperature 
solution from Eq. (25) and the concentration value from 
Eq. (28), the solution of the momentum Eq. (29) is
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The Laplace inversion of above Eq. (31) will be exam-
ined in Table 1 numerically.

Gradients

The present research also addresses the three essential vari-
ables of engineering curiosity: the Nusselt number, the Sher-
wood number, and shear stress. The aforementioned gradi-
ents can be expressed mathematically as:

Nusselt number

Sherwood number

Skin friction

For the Laplace inversion, numerous investigators have 
used diverse numerical inverse approaches. So, here, we 
will also utilize the Stehfest technique [47] to investigate the 
solution of thermal, concentration, and momentum profiles 
numerically. Gaver-Stehfest method [47] mathematically 
may be simulated as

Nu = −
��(y, t)

�y

|

|

|

|y=0

= −L−1

{

��(0, q)

�y

}

.

Sh = −
��(y, t)

�y

|

|

|

|y=0

= −L−1

{

��(0, q)

�y

}

.

Cf = −
�w(y, t)

�y

|

|

|

|y=0

= −L−1

{

�w(0, q)

�y

}

.

where P is a positive integer, and

Nevertheless, we have also hired another approximation 
to find the solution of concentration, energy, and momentum 
profile, Tzou’s method for the validity and comparison of 
our attained numerical consequences by the Stehfest method. 
Tzou’s technique [48] can be demarcated as

where l is an imaginary unit and Re(.) is the real part and 
P > 1 is the natural number.

In this subsection, we have found the solution for veloc-
ity distribution based on the AB fractional derivative by 
employing the Laplace technique. Furthermore, we also 
found the three essential variables of engineering curiosity 
i.e. Nusselt number, Sherwood number, and Skin friction. 
In the end, we included a comparison for the validation of 
the codes for the Gaver–Stehfest method [47] and Tzou’s 
technique [48].

Results with discussion

The physical characteristics of the MHD free convective 
fractionalized viscous fluid model based on the AB deriva-
tive having a non-singular and non-local kernel to investigate 

(32)w(y, t) =
ln(2)

t

P
∑

m=1

umw

(

y,m
ln(2)

t

)

um = (−1)
m+

P

2

min

(

q,
P

2

)

∑

i=

[

q+1

2

]

i
P

2 (2i)!
(

P

2
− i

)

!i!(i − 1)!(q − i)!(2i − q)!

(33)

w(y, t) =
e4.7

t

[

1

2
w

(

i,
4.7

t

)

+ Re

{

P
∑

j=1

(−1)kw
(

i,
4.7 + k�l

t

)

}]

Table 1  Numerical results of 
concentration, temperature, 
and momentum profile through 
Stehfest as well as Tzou’s 
technique

y � by Stehfest � by Tzou ϕ by Stehfest ϕ by Tzou W by Stehfest W by Tzou

0.1 0.87814 0.85593 1.3181 1.3182 2.3908 2.3895

0.3 0.67719 0.67821 0.93671 0.93696 2.796 2.7971

0.5 0.52204 0.52209 0.6567 0.6569 2.8729 2.874

0.7 0.40213 0.40215 0.45394 0.45409 2.759 2.76

0.9 0.30936 0.30938 0.30922 0.30933 2.5444 2.5452

1.1 0.23756 0.23758 0.20747 0.20756 2.2863 2.2871

1.3 0.18201 0.18202 0.13705 0.13712 2.0196 2.0204

1.5 0.13905 0.13905 0.089097 0.08915 1.7642 1.7649

1.7 0.10587 0.10588 0.056981 0.05702 1.5301 1.5307

1.9 0.080299 0.080299 0.035837 0.035864 1.3215 1.322
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the slip and Newtonian heating effect are studied. Further-
more, the joint effect of thermal, mass, and velocity transfer 
has been taken into our study by demonstrating graphs for 
diverse estimations of the time. The graphical analysis illus-
trates the impacts of different fractional and flow parameters 
i.e. � , Gr , Gm , Preff , Re , Sceff , M , and the angle of magnetic 
fields’ inclination ( �1 ) for the physical understanding of the 
found results for energy, momentum, and concentration pro-
files on the MHD fluid flowing over an inclined oscillating 
plate in Figs. 2–14 through Mathcad15

Figure 2 is organized to examine the impacts of � on the 
temperature distribution. By increasing the estimation of � , 
the heat shows increasing behaviour for a small time and the 
fractional parameter shows the opposite behaviour for the 
temperature at a large time. This specifies the significance of 

the AB fractional operator (a non-singular and non-local ker-
nel) that assures to illustration of the extensive generalized 
memory and hereditary characteristics. Figure 3 is planned 
to display the consequence of effective Prandtl number Preff 
on the energy profile. The effective Prandtl number is the 
ratio of Prandtl number Pr and Reynolds number Re . The 
Pr is a dimensionless measure that clarifies the connection 
between the energy as well as velocity boundary layer thick-
ness. The higher the values of Preff results from the higher 
values of Pr . In heat transfer problems, the thinner energy 
boundary layer in comparison with the velocity boundary 
layer is due to greater Pr , which outcomes in a lessening in 
the energy profile at small and large times. Hence, Pr may 
be applied to increase the rate of cooling.
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Figure 4 displays the influence of � on the concentration. 
A gradual increase (at a small time) and decreasing behav-
iour (at a large time) can be observed as � rises. This is also 
due to the significance of the AB fractional operator (a non-
singular and non-local kernel) that assures to illustration of 
the extensive generalized memory and hereditary character-
istics. Figure 5 exposes the result of Sceff on the concentra-
tion. The effective Schmidt number Sceff resulted from the 
dimensionless numbers i.e. Schmidt Sc and Reynolds Re . It 
is found that at small and larger times values-enhancing Sceff 
which makes concentration levels fall. This may be enlight-
ened by the detail that Sc is the ratio among viscous forces 
as well as mass diffusivity, so an intensification in Sc raises 
the viscous forces, and therefore, the concentration declines.

Figure 6 exposes the effects of � on the momentum pro-
file. This can be detected that at a smaller time growing, the 
estimation of � leads to enhancing and declining (at a larger 
time) the velocity profile. This is also due to the implication 
of the AB fractional operator (a non-singular and non-local 
kernel) that assures to illustration of the extensive general-
ized memory and hereditary characteristics. Also, velocity 
decreases away from the plate as well as asymptotically rises 
in y-direction, which is also denoting the considered condi-
tions. The effects of Preff on the rate of velocity are stud-
ied in Fig. 7. The velocity decreases by growing Preff . An 
increase in Preff leads from increasing Pr which decreases the 
energy boundary layer thickness. The Pr denotes the ratio of 
momentum diffusivity to energy diffusivity. The increasing 
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value of Pr raises the thickening of the momentum bound-
ary layer compared to thermal boundary layers. That’s why 
velocity declines for growing estimation of Preff for different 
times.

The Grashof number is significant for the reason that it 
depicts the ratio of resistive forces arising from fluid viscos-
ity to buoyant forces coming from spatial variation as well 
as fluid density. Figures 8 and 9 illustrate velocity profiles 
for various values of Gr and Gm . Increased values of these 
parameters produce forces of buoyancy, leading to higher 
induced flows. As Gr and Gm are increased, the fluid's veloc-
ity improves as a result.

Figure 10 determines the result of Sceff on the velocity. It 
is exposed that growing the estimation of Sceff  declines the 

velocity. This is clarified by the element that Sc is the ratio 
of viscous forces as well as mass diffusivity, so growth in Sc 
grows the viscous forces and therefore declines the veloc-
ity. Figure 11 exhibited that the reduction in velocity profile 
resulted from enhancing the value of Re . Re is the ratio of 
inertial forces and viscous forces (friction forces of two fluid 
elements moving to each other). An increasing value of Re 
decreases the viscous forces, so velocity is enhanced.

Figure 12 and 13 reveal the impact of magnetic parameter 
M and angle �1 of magnetic effect on the velocity profile. 
M is a dimensionless number that is rendered with Lorentz 
force that counters fluid velocity. The advanced value of M 
leads to a higher Lorentz force, which opposes movement. 
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So, velocity is reduced with growing M . Likewise, the angle 
of a magnetic field �1 stronger the stimulus of M which is 
transferred by the Lorentz force. For �1 = �∕2 (normal mag-
netic field), the effect of the Lorentz force is maximum, so 
lowers the velocity. Figure 14 is plotted for comparing two 
diverse numerical methods, Stehfest as well as Tzou for ther-
mal, concentration, and velocity curves. The obtained results 
from diverse profile curves have overlapped with each other, 
signifying this research work's validity. (Table 2)

Conclusions

In this attempt, the flow of unsteady, viscous, MHD flow 
over an infinite inclined oscillating plate along with an 
AB fractional derivative (having a non-singular and non-
local kernel) with the Mittag-Leffler function is invoked 
for developing the fractional model to study the memory 
effects. The effects of Newtonian heating as well as slip 
conditions are also taken to be under consideration. The 
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Table 2  Numerical results of 
Nusselt number and Sherwood 
number, as well as skin friction

� Nu at t = 0.2 Nu at t = 2.0 Sh at t = 0.2 Sh at t = 2.0 Cf  at t = 0.2 Cf  at t = 2.0

0.1 1.2975 2.6103 1.9595 1.0598 1.7246 0.21429
0.2 1.3063 2.6057 1.9536 1.089 1.7134 0.22738
0.3 1.3206 2.5972 1.9362 1.1385 1.6962 0.2482
0.4 1.3415 2.5821 1.9041 1.2087 1.674 0.27589
0.5 1.3707 2.5559 1.8558 1.2997 1.6476 0.30982
0.6 1.4119 2.5102 1.7909 1.4115 1.6171 0.35002
0.7 1.4723 2.4317 1.7106 1.5437 1.5817 0.3976
0.8 1.5679 2.3027 1.6191 1.6951 1.5384 0.45405
0.9 1.7361 2.1172 1.5306 1.8634 1.4801 0.5148
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Laplace approach is employed to obtain the solution for 
governing equations of energy and concentration, as well 
as velocity. The main key points are enumerated below:

• The profiles of concentration and temperature, as well 
as velocity increased for a small time by enhancing � 
and asymptotically declined at a large time.

• The effective Prandtl and Schmidt numbers decrease 
the thermal and concentration, as well as velocity levels 
of the fluid.

• Velocity profiles are boosted by enhancing the value 
of Gr and Gm because of the growth in the buoyancy 
effect.

• The velocity profile shows a trend of increasing and 
declining by improving the estimations of the Reynolds 
number and magnetic parameter, respectively.

• The solution curves of temperature, momentum, and 
concentration fields with numerical techniques i.e. Ste-
hfest and Tzou coincided with each other which assures 
the validation of our achieved results.

Consequently, our claimed results offer significant 
insights into industrial and engineering systems. These 
findings guide the development of thermal transfer tech-
nologies, assisting in the optimization of processes for bet-
ter efficiency in applications such as cooling mechanisms 
and power generation. The research advances heat transfer 
processes, increasing the overall efficiency of industrial 
systems.

Future recommendations

To extend the problem addressed in this paper, we pro-
pose the following ideas based on the analysis, geometries, 
methodologies, and expansions stated below:

• The Prabhakar and Caputo-Fabrizio fractional opera-
tors may be used to study the same problem in channel 
flow with a permeable medium.

• The same problem may also be explored using the frac-
tional natural decomposition method (FNDM) and the 
Keller Box approach.

• A comparison investigation of this fractional model 
may also be performed by using the natural and Laplace 
transforms.
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