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Abstract
Diffusion models (DMs) are a type of potential generative models, which have achieved 
better effects in many fields than traditional methods. DMs consist of two main processes: 
one is the forward process of gradually adding noise to the original data until pure Gauss-
ian noise; the other is the reverse process of gradually removing noise to generate sam-
ples conforming to the target distribution. DMs optimize the application results through the 
iterative noise processing process. However, this greatly increases the computational and 
storage costs in the training and inference stages, limiting the wide application of DMs. 
Therefore, how to effectively reduce the resource consumption of using DMs while giving 
full play to their good performance has become a valuable and necessary research problem. 
At present, some research has been devoted to lightweight DMs to solve this problem, but 
there has been no survey in this area. This paper focuses on lightweight DMs methods in 
the field of image processing, classifies them according to their processing ideas. Finally, 
the development prospect of future work is analyzed and discussed. It is hoped that this 
paper can provide other researchers with strategic ideas to reduce the resource consump-
tion of DMs, thereby promoting the further development of this research direction and pro-
viding available models for wider applications.
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1  Introduction

Diffusion models (DMs), a class of score-based generative models, have attracted increas-
ing attention in recent years due to their powerful performance. Compared with genera-
tive adversarial networks (GANs) (Goodfellow et  al. 2014; Gui et  al. 2023), DMs can 
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provide more stable training and better mode coverage (Nichol and Dhariwal 2021; Xiao 
et al. 2021). Furthermore, DMs do not impose strict constraints on the model architecture 
as other generative models (Song et al. 2023) such as Autoregressive models (Uria et al. 
2016), Variational Autoencoders (VAEs) (Kingma and Welling 2013), or Normalizing 
Flows (Flows) (Kingma and Dhariwal 2018). Therefore, with their huge advantages and 
potential, DMs have been rapidly expanded to other fields such as audio and music synthe-
sis (Chen et al. 2020, 2022b; Okamoto et al. 2021; Liu et al. 2023a; He et al. 2023c), lan-
guage model (Gong et al. 2022; Li et al. 2022a; Tang et al. 2023), video generation (Mei 
and Patel 2023; Ruan et al. 2023; Blattmann et al. 2023; Ni et al. 2023), etc. after being 
successfully applied in the field of image processing (Nichol and Dhariwal 2021; Dhari-
wal and Nichol 2021; Ho et al. 2020; Song et al. 2022), and achieved satisfactory results.

DMs are trained using noise-perturbed data and learn to remove corresponding noise from 
noisy data. The corresponding two processes of adding noise and denoising are placed on the 
Markov chain. Different from the single-step generation of other generative models such as 
GANs, VAEs, and Flows, trained DMs can obtain the results of the target data distribution 
in the multi-step iterative denoising process. They obtain high-quality samples in this way of 
gradually optimizing intermediate results coupled with larger-scale neural network architec-
tures. But this also comes at a high price in terms of time consumption, computational cost, 
and storage resources. For example, GENIE used a cluster of NVIDIA V100 GPUs with a 
total computation of about 163k GPU hours (Dockhorn et al. 2022); PBE takes about 7 days 
to train using 64 NVIDIA V100 GPUs (Yang et al. 2023b); DiT-XL/2 (Peebles and Xie 2022) 
requires about 950 and 1733 V100 GPU days of training for 256 × 256 and 512 × 512 images, 
respectively (Xie et al. 2023); ResGrad and GradTTS (Popov et al. 2021) both use 8 NVIDIA 
V100 GPUs and require 500k and 1700k training steps, respectively (Chen et  al. 2022b); 
DALL-E 2 contains 4 independent DMs and requires 5.5B parameters (Rombach et al. 2022; 
Ramesh et al. 2022); ADM has a parameter size of 552.8M on a 256 × 256 image synthe-
sis, and it takes 5 days to generate 50k samples with an A100 GPU (Dhariwal and Nichol 
2021; Yang et al. 2023c). The iterative generative process of DMs is typically 10 to 2000 times 
more computationally intensive than other single-step generative models (Song et  al. 2023; 
Zhang and Chen 2022; Lu et al. 2022a). The improvement and application of these early DMs 
mainly focused on exchanging cost for high sample quality, resulting in a large number of 
model parameters, long research cycles, and high hardware requirements. Therefore, this situ-
ation limits the generalization of DMs in real-time demanding and resource-constrained tasks. 
And the high resource consumption also puts pressure on most researchers, which further hin-
ders the exploration and development of DMs. Under this background, lightweight DMs have 
become a very urgent and valuable research problem (Song et al. 2023).

Recent studies have begun to pay attention to and try to solve the problem of high cost 
of DMs. With the input of researchers in different fields, the lightweight research of DMs 
has gradually achieved a satisfactory balance between processing efficiency and result qual-
ity (Luhman and Luhman 2021; Lemercier et al. 2023; Qian et al. 2022; Li et al. 2022d; 
Yu et al. 2023b; Mao et al. 2023; Zhang et al. 2023d; Shang et al. 2023a). However, the 
number of related works is gradually increasing, and the methods are also quite different. 
It is becoming more and more difficult for researchers to keep up with the speed of new 
progress, which is not conducive to the promotion and popularization of DMs. Therefore, it 
is urgent to investigate the progress of existing lightweight DMs. This paper will review the 
existing lightweight DMs methods in the field of image processing, and classify the papers 
according to the lightweight ideas. In addition, based on the analysis of the current research 
results, the future prospects of lightweight DMs methods are also given. It is hoped that 
this work can provide valuable reference for scholars studying DMs.
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The rest of this paper is organized as follows. Section 2 discusses the fundamentals of 
DMs. Section 3 is the main part of this paper. Specifically, the current methods of light-
weight DMs in the field of image processing are classified into eight categories: knowledge 
distillation (KD), quantization, pruning, fine-tuning, signal domain transformation, algo-
rithm optimization, hybrid strategy, and other methods. This paper takes different methods 
of lightweighting as the main line, and selects representative work for discussion. In the 
final Sect. 4, a brief analysis is provided, and future prospects are discussed.

2 � Basic principles of diffusion models

DMs are first applied to image generation tasks in the field of image processing. Its original 
idea is to sample high-quality images close to the original sample distribution from random 
Gaussian noise  (Ho et  al. 2020). It consists of a forward process (or diffusion process) 
responsible for gradually adding noise to the original data distribution, and a reverse pro-
cess (or denoising process) that is opposite to the forward process, that is, to recover the 
target distribution from the noise by iterative denoising (Nichol and Dhariwal 2021). The 
two key processes of DMs (Sects. 2.1 and 2.2) will provide a brief description below in 
order to understand the methods of lightweight DMs later.

2.1 � Forward process

Given a sample x0 ∼ q(x0) that conforms to the distribution of the original data. The for-
ward process is governed by a Markov chain (Ho et al. 2020). As t increases, larger Gauss-
ian noise is gradually introduced into x0 by a variance schedule �t ∈ (0, 1) (Fig. 1):

where q(xt|xt−1) represents a Gaussian transition at each step, i.e. adding noise to xt−1 . 
When adding noise in the forward process until step T, xT is obtained that approximates 
an isotropic Gaussian distribution. The number of diffusion steps T is set manually, and is 
set to 1000, 4000 in early DMs (Nichol and Dhariwal 2021; Ho et al. 2020). When x0 is 
given, the conditional distribution of the latent xt at any t can be expressed in closed form 
by means of Eq. (1):

(1)q(xt�xt−1) = N(xt;
√
1 − �txt−1, �tI),

Fig. 1   Brief description of DMs. The upper and lower parts on the left of the figure represent the forward 
process and the reverse process, respectively. Where q(xt|xt−1) and p�(xt−1|xt) represent a Gaussian transi-
tion in the forward and reverse processes, respectively. x0 , xt and xT are the original image, the noisy image 
of the intermediate process, and pure Gaussian noise, respectively. The right of the figure is a diagram of 
the U-Net network responsible for prediction (Shang et al. 2023b)
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where 𝛼t = 1 − 𝛽t, 𝛼̄t =
∏t

s=1
𝛼s, � ∼ N(0, I). Therefore, the forward process can directly 

add any degree of noise to x0 in a single step without using a neural network. Combining 
the above Eqs. (1) and (2), when xt and x0 of the forward process are known, the poste-
rior distribution q(xt−1|xt, x0) of xt−1 can be obtained by using Bayes’ theorem (Nichol and 
Dhariwal 2021).

2.2 � Reverse process

The reverse process is placed in the Markov chain opposite to that of the forward process 
(Fig. 1), starting at p(xT ) ∼ N(xT ;0, I) . To make p�(x0) fit the true distribution q(x0) , the 
result is refined by T-step iterations:

where ��(xt, t) and ��(xt, t) represent the predicteds of the mean and variance of the distri-
bution q(xt−1|xt, x0) , respectively (Nichol and Dhariwal 2021; Li et al. 2022d). The param-
eterization of the mean is usually modified, and the network can directly predict x0 (Xiao 
et al. 2021; Wang et al. 2022c; Xu et al. 2023) or � (Ho et al. 2020; Rombach et al. 2022; 
Yang et al. 2023c). ��(xt, t) is generally set as a time-related constant (Ho et al. 2020). A 
common setting is to use the output �� of network to predict � , and the variance set to 
𝛽t =

1−𝛼̄t−1

1−𝛼̄t
𝛽t . In each iteration, the prediction noise �� is used to denoise the intermediate 

results:

The loss function is generally constructed using a variational lower bound on the nega-
tive log-likelihood. After analytical calculation and simplification of the loss, the training 
objective of a simple mean square error is used to train the model (Ho et al. 2020):

3 � Lightweight methods of diffusion models

Although DMs obtain satisfactory high-quality results, the process of training and infer-
ence consumes a lot of time, computation and storage costs. Because DMs not only rely 
on hundreds or thousands of diffusion steps T, but also require the help of network evalu-
ation to refine the results at each step in the sampling process (Nichol and Dhariwal 2021; 
Ho et al. 2020; Shang et al. 2023b). To make DMs break through the challenge of being 
deployed in an environment with limited storage and computing power, it is particularly 
important to study the lightweight of DMs. In recent years, efforts have been made on 
lightweight DMs. And because DMs are successfully applied in the image field for the first 
time, the development of lightweight DMs in this field is relatively long. Therefore, this 

(2)xt(x0, �) =
√
𝛼̄tx0 +

√
(1 − 𝛼̄t)�,

(3)p�(xt−1|xt) = N(xt−1;��(xt, t),��(xt, t)),

(4)xt−1 = N

�
xt−1;

1
√
𝛼t

�
xt −

𝛽t√
1 − 𝛼̄t

�𝜃(xt, t)

�
, 𝛽tI

�
.

(5)Lsimple(𝜃) = �t,x0,�

�
��� − �𝜃

�√
𝛼̄tx0 +

√
1 − 𝛼̄t�, t

�
��2

�
.
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section focuses on the methods of lightweight DMs in the field of image processing, and 
classifies them into KD, quantization, pruning, fine-tuning, signal domain transformation, 
algorithm optimization, hybrid strategy, and other methods according to the lightweight 
ideas used in the existing papers (Fig.  2). The following sections will describe each of 
these eight categories.

3.1 � Knowledge distillation

Although large-scale pre-trained DMs have competitive performance, their large compu-
tation and memory consumption make practical deployment difficult. Practical devices 
usually have limited storage and computing capabilities and are quite different from each 
other. Therefore, the cost of these two aspects should be reduced as much as possible when 
lightweighting DMs. KD can meet this need. It is a way to compress a powerful and cum-
bersome sample model to another lightweight sample model without sacrificing too much 

Fig. 2   Diagram of the classification of lightweight DMs. There are eight categories, including KD, quan-
tization, pruning, fine-tuning, signal domain transformation, algorithm optimization, hybrid strategy, and 
other methods. In the figure, subcategories are further divided under each main category and the character-
istics of each category are explained. In addition, the corresponding representative model is attached as an 
example. The superscripts 1 and 2 correspond to Clark and Jaini (2023) and Xia et al. (2022), respectively
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model performance (Chen et al. 2022a; Zhang et al. 2022b). The output distribution of the 
student model matches that of the teacher DMs for training (Song et al. 2023; Yin et al. 
2022; Huang et al. 2022; Salimans and Ho 2021). Large, slow teacher DMs can then be 
distilled into lightweight, faster-sampling student models. Sampling can often be acceler-
ated by reducing the number of sampling steps. Because fewer sampling steps represent 
fewer network calls, thereby reducing the computational overhead in use. To achieve the 
goal of a small number of steps, multiple or single distillations can be adopted. According 
to the number of distillations, these methods can be divided into multi-stage distillation 
and single-stage distillation.

3.1.1 � Multi‑stage distillation

Salimans and Ho (2021) noticed that single-stage distillation of  Luhman and Luhman 
(2021) requires running the original model on full sampling steps to build a large dataset 
for training. So its distillation cost is linear with the number of sampling steps. To reduce 
the cost of distillation, they proposed progressive distillation (PD) to gradually reduce 
the number of network evaluations required for sampling  (Salimans and Ho 2021). This 
method takes a trained sampler as a teacher model, and sets the student model to have the 
same architecture and number of parameters as the teacher model. A single student step 
is used to match two teacher steps, so that new DMs only requires half the original sam-
pling steps. This distillation process is then continued to be applied to the student model, 
iteratively halving the number of required sampling steps (Fig. 3). This method can finally 
reduce the sampling steps to 4 steps with little performance loss (Salimans and Ho 2021). 
Many later works were also inspired by PD. They have improved in expanding the applica-
ble scenarios and optimizing the distillation process.

Classifier-free guided DMs further expand the application scope of DMs and explore 
their potential. But such DMs need to evaluate a class-conditional and an unconditional 
DMs when sampling (Ramesh et al. 2022; Nichol et al. 2022; Saharia et al. 2022a), thus 

Fig. 3   Diagram of PD iterative reduces sampling steps. It is assumed that the original sampler f (z;�) 
denoises from random noise � to sample x in 4 steps. After two distillations, the new sampler f (z;�) has 1/4 
of the original steps (Salimans and Ho 2021)
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requiring higher computational complexity than unconditional guidance. And lightweight 
processing is urgently needed. However, PD only explores the scenario of unconditional 
guided sampling. So Meng et  al. proposed a two-stage distillation strategy to make PD 
applicable to classifier-free guided DMs  (Meng et  al. 2023). The method first learns a 
single model to match the combined output of the conditional and unconditional models. 
Then, the model is gradually distilled through the PD strategy into a model with fewer 
sampling steps. This work matches the performance of the teacher with only 2 to 4 sam-
pling steps. And the effectiveness of distilling classifier-free DMs for pixel space (Ho and 
Salimans 2021) and latent space (Rombach et al. 2022) was also demonstrated for the first 
time (Meng et al. 2023).

In addition, PD needs to progressively align the output images of the T-step teacher 
sampler with the T/2-step student sampler for training. But it is difficult to directly align the 
images. Sun et al. proposed classifier-based feature distillation (CFD) to solve this prob-
lem  (Sun et  al. 2022). CFD first uses a pre-trained classifier independent of the dataset 
to obtain the advanced features of the output images of the student model and the teacher 
model. And it then computes the Kullback–Leibler (KL) divergence between the two fea-
ture distributions. This guides the student model to focus on those features that are closely 
related and important to image composition. And this further distills the intermediate layer 
outputs of the noise evaluation model (Shao et al. 2023). At the same time, CFD bypasses 
the problem of alignment. Therefore, the learning load of the model is reduced and the 
consistency of images is ensured (Sun et al. 2022). Berthelot et al. (Berthelot et al. 2023) 
also extended PD and proposed the transitive closure time-distillation (TRACT). Com-
pared to PD, TRACT is not constrained by the mandatory requirement of T � = T∕2 . Each 
of its training stages allows distillation of T steps to arbitrary T ′ < T  steps up to the desired 
number of steps. In this way, TRACT reduces the number of distillation stages from log2 T  
to a small constant and can achieve high-quality samples in one step (Berthelot et al. 2023).

3.1.2 � Single‑stage distillation

Luhman and Luhman (2021) applied KD to the lightweight of DMs for the first time. They 
use pre-trained DMs (Song et al. 2020a) as the teacher model, and the student model do 
not change the network structure. The student is trained to generate images in a single step 
by computing the KL divergence between the two distributions of the final output of the 
student and the teacher (Luhman and Luhman 2021). After that, there was a lot of work on 
multi-stage distillations to avoid the performance degradation of single-stage distillations. 
But single-stage distillation has also been getting good results recently. Song et al. proposed 
consistency distillation (CD) (Song et al. 2023). CD uses a numerical ordinary differential 
equation (ODE) solver and pre-trained DMs to generate pairs of adjacent points on a prob-
ability flow (PF) ODE trajectory (Song et al. 2023). DMs are distilled by minimizing the 
difference between the model outputs of these adjacent point pairs. Ultimately, DMs will 
be a model that maps any point at any time step to the start of a trajectory. This achieves the 
generation of higher quality samples than PD in fewer steps (Song et al. 2023). Shao et al. 
argued that previous distillation methods all required pre-trained weights, and the student 
architecture was heavily dependent on the chosen teacher architecture (Shao et al. 2023). It 
limited the scalability of the student model. Therefore, they proposed catch-up distillation 
(CUD) method, using DMs to simultaneously play the role of teacher and student with-
out any pre-trained weights. CUD encourages the current moment output of the model to 
“catch up” with its previous moment output. At the same time, it aligns the current moment 
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output with both the ground truth (GT) label and the previous moment output by adjusting 
the training target. The multi-step alignment distillation based on Runge–Kutta makes full 
use of all sampling points and provides more comprehensive information about Xt

dt
 than one-

step alignment distillation (Fig. 4). This prevents asynchronous updates, improving model 
performance. Experiments have found that CUD can achieve similar results with fewer 
iterations and a smaller batch size than CD (Shao et al. 2023).

3.2 � Quantization

Quantization can also make DMs more satisfying in terms of storage and computation 
requirements during actual deployment. This approach replaces floating-point parameters 
(biases, activations, and weights) in neural networks with low-precision floating-point val-
ues or a small set of training values (Cheikh Tourad and Eleuldj 2022). It reduces the data 
storage and computational complexity of the model by changing the representation of data 
without changing the network architecture, and achieves fast inference  (Bai et  al. 2022). 
Quantization is generally divided into two categories: quantization-aware training (QAT) 
and post-training quantization (PTQ) (Wei et  al. 2021; Youn et  al. 2022). Among them, 
QAT usually uses the entire training set for quantization during the training stage. This 
requires more training time, memory requirements, and data consumption (Bai et al. 2022; 
Youn et  al. 2022; Macha et  al. 2023). In contrast, PTQ does not require full datasets or 
expensive retraining. Although PTQ causes a certain information loss, making the model 
performance slightly weaker than QAT (Bai et al. 2022; Wei et al. 2021; Macha et al. 2023; 
Oh et al. 2022), it is more attractive for DMs requiring expensive training costs.Therefore, 
most of the current work uses PTQ to quantify DMs. Specifically, it mainly promotes the 
quantization of DMs from two aspects: quantization noise evaluation network and quanti-
zation error reduction.

3.2.1 � Network quantization

Traditional DMs need to use computationally intensive neural networks for iterative noise 
evaluation during the generation process. Therefore, reducing the number of network eval-
uations and the cost of a single evaluation can reduce the total computational overhead. 

Fig. 4   The framework of the Runge–Kutta-based multi-step alignment distillation of the CUD (Shao et al. 
2023)
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Both Shang et al. (2023b) and Li et al. (2023a) introduced PTQ to reduce the single cost 
of the evaluation by compressing the noise evaluation network. But the output distribu-
tion of the evaluation network of DMs will change with the time step. So the traditional 
PTQ for single time step scenario fails in DMs (Fig. 5). To solve this problem, Shang et al. 
explored the core design of PTQ on DMs from three aspects of quantization operation, 
calibration dataset and calibration metric, and proposed PTQ4DM (Shang et  al. 2023b). 
First, the computation-intensive convolutional and fully-connected layers in the network 
can be quantized and batch normalization folded into the convolutional layers (Shang et al. 
2023b). Operations of special functions such as SiLU and softmax maintain full-precision. 
Experiments show that the output xt−1 , � and � (Fig. 1) of the DMs network are not sensi-
tive to quantization. Thus the operations that produce them can also be quantized. Second, 
PTQ4DM proposes normally distributed time-step calibration (NDTC) to obtain a good 
calibration dataset. This method samples a set of time steps from a skew normal distribu-
tion. Calibration samples are then generated using the denoising process of full-precision 
DMs based on this time step. In this way, the time step difference of the calibration set 
is enhanced to improve the model performance. Third, the mean-square error (MSE) is 
chosen as a measure to quantify DMs according to the experimental effect. Experimental 
results show that the method can maintain or even improve performance after the full-pre-
cision DMs are quantized into 8-bit models after tailoring these three aspects. Moreover, it 
does not require retraining and can be used in conjunction with other fast sampling meth-
ods (Song et al. 2020a). The PTQ method proposed by Li et al. to deal with the multi-time 
step structure of DMs is called Q-Diffusion (Li et al. 2023a). The inputs of adjacent con-
secutive time steps have relatively similar distributions. A small calibration set can thus 
be generated by randomly sampling some intermediate inputs uniformly in a fixed interval 
across all time steps. This balances the size of the calibration set and its representational 
ability distributed over all time steps. When calibrating a quantized model, the model is 

Fig. 5   The range of activations of the floating-point 32 (FP32) output of the DMs (Song et al. 2020a) at dif-
ferent time steps (top) (Li et al. 2023a) and the limitations of static quantization of DMs (bottom) (So et al. 
2023). The y axis and x axis in a represent the activation value and the time step in the diffusion process, 
respectively. It shows that the activation distribution changes gradually with the time step. Assume that the 
activation distribution grows gradually as the time step progresses. b represents a small quantization inter-
val and a large truncation error. And c represents a large quantization interval and a large rounding error
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divided into several reconstruction blocks. The model iteratively reconstructs the output 
and adjusts the clipping range and scaling factors of the weight quantizers in each block. 
The mean squared error between quantization and full-precision output is minimized by 
adaptive rounding. The core component of residual connections in the U-Net network of 
DMs is defined as a block. And other parts of the model that do not meet this condition 
are calibrated in a layer-by-layer manner. This better resolves inter-layer dependencies and 
generalization. For activation quantization, only the step size of the quantizer is adjusted 
since the activations are constantly changing with the input. Experimental results show that 
the method is capable of directly quantizing full-precision DMs to 8-bit or 4-bit models 
without losing much perceptual quality.

3.2.2 � Quantization error reduction

Wang et al. also noticed that the activation distribution at different time steps and the valid-
ity variation of calibration images obtained at different time steps increase the quantization 
error  (Wang et al. 2023b). To reduce the increase in quantization error and the decrease 
in model performance caused by these two problems, they proposed an efficient data-free 
PTQ framework for DMs (ADP-DM). To avoid the overfitting of step-wise quantization 
caused by limited calibration samples, ADP-DM adopts a differentiable search strategy. 
In this way, the optimal group assignment at different generation time steps is obtained, 
and the discretization function of each group is learned by minimizing the discretization 
error. At the same time, ADP-DM also selects the optimal time step for calibration image 
generation through the principle of structural risk minimization. This is different from 
PTQ4DM (Shang et al. 2023b) by manually specifying the time step index. This method 
reduces the discretization error and improves the generalization ability of quantized DMs 
in deployment with negligible computational overhead. Experimental results show that the 
proposed method achieves a significant boost in performance compared to PTQ methods 
for DMs (Shang et al. 2023b; Li et al. 2023a) with similar computational cost (Wang et al. 
2023b). However, So et al. argued that although previous studies (Shang et al. 2023b; Li 
et al. 2023a) focused on the dynamics of the input activation distribution, they still relied 
on static parameters  (So et  al. 2023). This leads to suboptimal convergence in minimiz-
ing the quantization error. Therefore, they proposed a new method for activation quan-
tification in DMs, temporal dynamic quantization (TDQ). The TDQ module generates a 
time-dependent optimal quantization configuration, dynamically adjusts the quantization 
interval according to the time step information. This minimizes activation quantization 
errors, significantly improving output quality. Unlike conventional dynamic quantization 
techniques, this method has no computational overhead during inference and is compatible 
with both PTQ and QAT (So et al. 2023).

At the same time as ADP-DM, He et al. aimed to systematically analyze the impact of 
quantification on DMs, and also established a unified PTQ framework (He et al. 2023a). 
They argued that the quantization noise in each denoising step leads to a bias in the esti-
mated mean. And quantization noise may also be accumulated during the sampling process, 
damaging the quality of the generated samples. Therefore, they proposed a unified formula 
for the quantization noise and diffuse perturbed noise. That is, the quantization noise of the 
original quantized noise prediction network is decomposed into (1 + k)��(xt, t) + Δ

�� (xt ,t)
 . 

Where k��(xt, t) is the linear correlation part corresponding to full precision and Δ
�� (xt ,t)

 is 
the residual uncorrelated part. These two parts are corrected separately by estimating the 



Lightweight diffusion models: a survey﻿	

1 3

Page 11 of 51    161 

correlation coefficient and correcting the denoising variance schedule to reduce the mean 
bias and extra variance in each denoising step. In addition, they also proposed a mixed-
precision scheme to select the optimal bitwidth of each denoising step. Specifically, the 
speedup and high signal-to-noise ratio (SNR) are guaranteed by early low bits and late 
high bits in the denoising steps. Experiments show that the proposed method can generate 
higher quality samples than Q-Diffusion (Li et al. 2023a) at a lower computational cost.

3.3 � Pruning

There are non-contributing parameters or structures in the DMs network structure, which 
is also one of the reasons that affect the size of the model and the speed of inference. Prun-
ing can eliminate non-key parameters in the model and ignore some computational costs 
with low returns (Chin et al. 2020). It can be divided into structural pruning and non-struc-
tural pruning. Structural pruning effectively reduces the model size by eliminating redun-
dant parameters and substructures in the network, while non-structural pruning essentially 
masks parameter by zeroing them out  (Fang et al. 2023a; Sanh et al. 2020). By pruning 
DMs, a balance between accuracy and speed can be achieved, minimizing accuracy reduc-
tion and maximizing speed. This enables models to be deployed and run more efficiently in 
resource-constrained environments.

3.3.1 � Structural pruning

Considering the iterative nature of DMs when generating samples, Fang et al. adaptively 
improved the structural pruning technology according to their characteristics, and proposed 
Diff-Pruning  (Fang et  al. 2023b). Different diffusion time steps contribute differently to 
the content and detail of the sample (Rombach et al. 2022; Yang et al. 2023c). And noise 
levels with large t cannot provide information gradients. So Diff-Pruning models the trade-
off between content, detail, and noise as a pruning problem of diffusion time steps. The 
method utilizes Taylor expansion to identify and prune non-contributing diffusion steps to 
provide an efficient and stable approximation of partial steps. Furthermore, the full Taylor 
expansion does not accurately estimate the weight importance due to the accumulation of 
some noisy gradients from the convergence gradients or unimportant steps. A threshold-
ing strategy with binary weights �t is therefore introduced to determine the weights, mod-
eling the pruning problem as a weighted trade-off between content and detail (Fig. 6). The 

Fig. 6   The pruning strategy of Diff-Pruning. The Taylor expansion is exploited to identify and remove non-
critical steps at time steps that require pruning. Where binary weights �t ∈ {0, 1} weigh local details (such 
as edges and colors), and contents (such as objects and shapes) (Fang et al. 2023b). (Color figure online)
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lightweight process of the model only needs 10% to 20% of the training cost, which is 
much smaller than the training cost of the original model (Fang et al. 2023b).

3.3.2 � Non‑structural pruning

In early work, Li et al. pruned model weights by zeroing out elements smaller than a self-
set threshold to achieve the target sparsity (Li et al. 2022b). This method directly uses the 
pre-trained weights and uniformly prunes 40% of the model weights. This fine-grained 
pruning method does not outperform the effect of its hybrid strategy due to no further fit-
ness improvements.

Transferring pre-trained DMs to downstream tasks can not only fully exploit the poten-
tial of the original model, but also save the training cost for new tasks. At the same time, 
in the process of transferring tasks, pruning can also be used to further reduce the cost, 
making the new model easier to use. Clark et al. proposed a method for evaluating DMs for 
Text-to-Image (TTI) as zero-shot classifiers (Clark and Jaini 2023). This method uses the 
ability of DMs to denoise noisy images as a proxy for the likelihood of the label given the 
text description of the label, thereby achieving the evaluation of the zero-shot classification 
task. But this classification process requires multiple denoising of images for each class. 
With the help of pruning, this method cuts out the obviously wrong categories in advance, 
greatly reducing computing resources. This method effectively applies DMs for TTI to 
other tasks besides generation, revealing more capabilities of pre-trained DMs (Clark and 
Jaini 2023).

3.4 � Fine‑tuning

Models with higher performance or adapted to new tasks can be obtained through spe-
cialized architectural design and training from scratch. However, in addition to cost con-
straints, this may also be limited by insufficient training data or the difficulty of generating 
complex scenes with high quality (Wang et al. 2022b). Large pre-trained DMs have com-
petitive performance. Transferring them to new tasks can circumvent these problems to a 
certain extent and save resource consumption during training. Fine-tuning can initialize a 
new model with the weights of a pre-trained model and further adjust and train on a new 

Fig. 7   Diagram of source and target domains in DMs. a shows that the denoising process of the DMs usu-
ally generates images iteratively from random noise, so that large DMs pre-trained in the source domain can 
be fine-tuned to the target domain (Xie et al. 2023). b shows that improved data can be generated by explor-
ing other unexplored paths without following the reverse process (Fan and Lee 2023)
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dataset (Mahajan et al. 2018; Wortsman et al. 2022; Liu et al. 2022; Church et al. 2021). 
Therefore, fine-tuning DMs as another lightweight direction allows users to reuse large 
pre-trained DMs while minimizing computation and resource usage (Fig. 7). According to 
the degree of adjustment, fine-tuning can be divided into full fine-tuning and partial fine-
tuning. Where full fine-tuning usually refers to fine-tuning all parameters of the pre-trained 
model, while partial fine-tuning is the opposite. Appropriate selection based on specific 
task requirements can cost-effectively improve the performance of DMs and expand their 
application breadth (Kumar et al. 2022; Kumari et al. 2023).

3.4.1 � Full fine‑tuning

The process of transferring the knowledge learned by pre-trained DMs to downstream 
tasks will be limited by dealing with personalized topics and the risk of overfitting (Han 
et  al. 2023). Kim et  al. proposed DiffusionCLIP, which can perform image editing 
guided by text prompts, and successfully performs zero-shot image processing even 
between unseen domains (Kim et al. 2022b). The method utilizes pre-trained DMs and 
the loss of the contrastive language-image pretraining (CLIP) model for text-guided 
image processing. They found that directly fine-tuning the �� that the DMs is responsi-
ble for predicting is more effective than fine-tuning the latents. Therefore, a loss consist-
ing of the directional CLIP loss Ldirection and the consistency loss Lid is set. As shown in 
Fig. 8, the Ldirection loss is calculated by the original image x0 , the predicted image x̂0 
generated by the latent, the reference text yref  , and the target text ytar to supervise the 
optimization. And Lid is used to ensure the characteristics of the object to avoid unnec-
essary changes. Thus, the generation quality of fine-tuned DMs is guaranteed. Wang 
et al. paid more attention to comprehensive pre-training models that are easier to trans-
fer to downstream tasks, and thus proposed a general framework based on pre-trained 
DMs (Wang et al. 2022b). DMs are first pre-trained conditioned on semantic inputs. A 
large number of different types of images helps DMs have the ability to act as generative 

Fig. 8   Diagram of DiffusionCLIP. The input images are first transformed into latents by DMs. Then, the 
fine-tuned DMs predict the updated samples guided by the directional CLIP loss (Kim et al. 2022b)
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priors for general images. And this does not require any task-specific customization or 
hyperparameter tuning. The trained DMs can be used as decoders. A two-stage fine-
tuning scheme is followed to maximize the use of pre-trained knowledge and adapt to 
downstream tasks. In the first stage the decoder is fixed. Only a task-specific encoder 
needs to be trained to map conditional inputs to a pre-trained latent space. The entire 
model is jointly fine-tuned in the second stage to improve the overall performance.

Large DMs for TTI lack the ability to imitate content in a given reference set and 
synthesize new features in different contexts (Ruiz et al. 2023a). Therefore, Ruiz et al. 
proposed a method for personalization generation, DreamBooth, to make better use of 
pre-trained DMs  (Ruiz et  al. 2023a). Its goal is to introduce a new “unique identifier, 
subject” pair into the “dictionary” of the model. This enables category-specific prior 
knowledge to be combined with the subject in order to generate new images of the sub-
ject. Directly fine-tuning all layers of the model may reduce output diversity. And it will 
also bring about the problem of language drift, that is, the model will gradually forget 
how to generate topics of the same category as the target topic. Therefore, DreamBooth 
generates samples using samplers on frozen pre-trained DMs. A self-generated class-
specific prior preservation loss is added to supervise the model output (Fig. 9). Experi-
ments show that the fine-tuning method only needs 3–5 subject images to be able to syn-
thesize subjects under different conditions that are not present in the reference images. 
This makes large pre-trained DMs easier to personalize. The diffusion policy optimiza-
tion with KL regularization (DPOK) further optimizes the image quality of DMs for 
TTI (Fan et al. 2023). This method defines the fine-tuning task as a reinforcement learn-
ing (RL) problem. And it avoids computing gradients with trajectories that may cause 
storage inefficiencies, but instead uses policy gradients to update pre-trained DMs to 
maximize the reward for feedback training. To prevent overfitting the reward model, 
the KL divergence between the fine-tuned model and the pre-trained model is used 
as a regularizer. Experiments show that DPOK generally outperforms simple super-
vised fine-tuning methods  (Lee et al. 2023c) in image-text alignment and image qual-
ity. Later, DomainStudio  (Zhu et al. 2023) was proposed based on DreamBooth  (Ruiz 
et  al. 2023a). In the fine-tuning process, the method uses the high-frequency compo-
nents in the source domain and the target domain to perform pairwise similarity loss 

Fig. 9   Diagram of DreamBooth and Custom Diffusion. DreamBooth fine-tunes all layers of the model (a, 
Ruiz et al. 2023a), and Custom Diffusion only fine-tunes the key and value parameters of the cross-attention 
layers (b Kumari et al. 2023)
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to enhance the diversity of high-frequency details in the samples. And it uses high-fre-
quency reconstruction loss to enhance the learning of high-frequency details in samples, 
thereby improving the generation quality.

Shortcut fine-tuning (SFT) focuses more on the sampling speed after fine-tuning (Fan 
and Lee 2023). The method models trajectories of conditional probabilities. It provides 
an alternative method of gradient estimation equivalent to policy gradient, which does not 
require differentiation through composite functions. Specifically, the pre-trained DMs sam-
pler is fine-tuned by directly minimizing the integral probability metric (IPM), instead of 
learning the backward diffusion process. This allows the sampler to find a more efficient 
sampling shortcut than the backward diffusion process without changing the noise distribu-
tion (Fig. 7) (Fan and Lee 2023).

Jia et  al. argued that previous methods  (Kumari et  al. 2023; Ruiz et  al. 2023a) were 
slow to process each object and that the storage cost of the model increased with the num-
ber of objects to process  (Jia et  al. 2023). To reduce storage requirements and speed up 
fine-tuning without compromising the performance of large pre-trained DMs, they focus 
on bypassing lengthy optimizations. An encoder is first adopted to capture the high-level 
identifiable semantics of objects, and only a single feed-forward pass is required to gener-
ate object-specific embeddings. Then, the obtained object embeddings are passed to the 
TTI synthesis model for subsequent generation (Jia et al. 2023). This model aims to gen-
eralize to unknown objects. Therefore, it is not suitable for fine-tuning a small number of 
parameters in the way of Custom Diffusion (Kumari et al. 2023), and needs to fine-tune the 
enhanced network as a whole.

3.4.2 � Partial fine‑tuning

Custom Diffusion has a similar goal to DreamBooth (Kumari et al. 2023). But instead of 
fine-tuning all parameters, it fine-tunes a small number of parameters. The optimization 
backbone of this method is stable diffusion (SDMs) (Rombach et al. 2022). Although the 
cross-attention layer parameters only account for 5% of the overall parameters, this part 
has a high impact on the latent features of the model. Therefore, only the parameters of 
the cross-attention layer need to be fine-tuned. Whereas the fine-tuning task aims to update 
the mapping from given text to image distribution, and the text features are only fed into 
the key and value parameter matrices in the cross-attention block. Therefore, this method 
only needs to update a small subset of parameters consisting of the keys and values of the 
cross-attention layers (Fig. 9). To prevent language drift, single concept fine-tuning of this 
method does not modify the loss like DreamBooth. Instead, it is solved using a regular-
ized dataset containing images whose titles have a high similarity to the target text prompt. 
Furthermore, merging the key and value matrices of multiple text features for training can 
allow multiple fine-tuning concepts to be generated. This method greatly reduces the time 
of the fine-tuning, enabling fast tuning of models to represent new concepts in about 6 min, 
efficiently enhancing existing models. Also based on SDMs, Wu et al. proposed a simple 
and lightweight image editing algorithm to achieve style matching and content preservation 
of images (Wu et al. 2023a). The whole process optimizes the hybrid weights of two text 
embeddings under two objectives, one is a perceptual loss for content preservation and the 
other is a CLIP-based style matching loss. The method only involves optimizing about 50 
parameters without fine-tuning the DMs themselves. Experiments show that the method 
can modify a large range of attributes without affecting other content, and outperforms 
DMs-based image editing algorithms that require fine-tuning (Kim et al. 2022b).
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SVDiff is different from the above methods in the idea of reducing the risk of overfit-
ting and language drift (Han et al. 2023). Inspired by FSGAN, this method fine-tunes the 
singular values of the weight matrix of pre-trained DMs to obtain a compact and efficient 
spectral shift parameter space. Specifically, instead of fine-tuning the entire weight matrix, 
fine-tuning is performed on the spectral shift, that is, the difference between the singu-
lar values of the updated weight matrix and the original weight matrix. Separately trained 
spectral shifts can be combined with each other to form new models for the generation of 
different image styles. After experimental comparison, the model size of SVDiff is 1/2 to 
1/3 of that of LoRA (Hu et al. 2021), another fine-tuning method.

Xie et al. proposed a parameter-efficient fine-tuning strategy, DiffFit, to adapt large pre-
trained DMs to various downstream domains (Xie et al. 2023). This method only fine-tunes 
the bias term, normalization, class-conditional modules, and scaling factors that accom-
modate feature scaling enhancements. Compared to full fine-tuning, DiffFit achieves a 2× 
training speed-up and only needs to store about 0.12% of the total model parameters.

3.5 � Signal domain transformation

The high-dimensional characteristics and redundancy of image information increase the 
processing volume of DMs. The signal domain transformation can convert images pro-
cessed by DMs from the spatial domain to the frequency domain. In this way, targeted 
operations can be performed on different frequency components, thereby reducing the 
burden of model training and sampling. Techniques such as the Fourier transform (FT) 
or wavelet transform for frequency domain processing are backed by mathematical princi-
ples. And they have also been verified to be effective in image processing tasks (Zhao et al. 
2023c; Shen et al. 2023). This provides a new perspective for lightweight DMs.

Guth et al. believed that the high-dimensional probability distribution of natural images 
has complex multi-scale characteristics, and the time consumed increases rapidly with the 
increase of image size (Guth et al. 2022). Thus, they proposed a wavelet score-based gen-
erative model (WSGM). This method can decompose the image into the product of condi-
tional probabilities of normalized wavelet coefficients across scales to simplify the compu-
tation. WSGM first generates the first low-resolution (LR) image. And this generated LR 
image is conditionally renormalized by the wavelet coefficients. Then a higher resolution 
image is reconstructed from these wavelet coefficients by fast inverse wavelet transform 
(IWT). This process repeats the reverse diffusion on the discrete wavelet coefficients at 
each scale to obtain higher and higher resolution images. And the number of steps on each 
scale is the same. This can be orders of magnitude smaller than original DMs (Ho et al. 
2020).

Further, Phung et  al. found that although DDGAN  (Xiao et  al. 2021) can greatly 
shorten the running time of the model by reducing the sampling steps from thousands 
to several steps, its speed is still far behind that of GANs (Phung et al. 2023). To fur-
ther reduce the speed gap while maintaining the generation of high-quality images, they 
used wavelet decomposition to extract low-frequency and high-frequency components 
from the image and feature layers. These components are processed adaptively to speed 
up processing without loss of generation quality (Fig. 10). Meanwhile, a reconstruction 
term is introduced to improve the convergence of model training  (Phung et  al. 2023). 
Zhang et al. found that when the coordinates of the target dataset have widely different 
scales or are strongly correlated, the sampling process will be ill-conditioned  (Zhang 
et al. 2023c). Therefore, although a larger step size can reduce the number of steps, the 
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convergence of the sampling process cannot be guaranteed. They proposed a model-
agnostic preconditioned diffusion sampling (PDS) method. The sampling process is 
introduced into a preconditioning matrix to make the scale of the target distribution 
more similar across all coordinates. And fast FT is used to reduce construction cost. 
This method balances the scales of different coordinates in the sample space, alleviating 
the ill-conditioned problem without retraining the model.

Moser et  al. proposed a diffusion-wavelet (DiWa) method  (Moser et  al. 2023) to 
reduce memory consumption and processing time. This method combines the advan-
tages of DMs and discrete wavelet transformation (DWT), and is applied to image super-
resolution reconstruction (SR) task. There are two benefits to DMs working in the DWT 
domain. The first is that DWT directly isolates high-frequency details in separate sub-
bands. This makes the representation more sparse, which is good for model learning. 
The second is that DWT halves the spatial size of the image according to the Nyquist 
rule  (Moser et  al. 2023). This speeds up the per-step inference time of the denoising 
network and improves the convergence rate. Experiments show that the parameters of 
this method are 17% and 78% of those of SR3  (Saharia et  al. 2022b) and SRDiff  (Li 
et al. 2022c) previously applied to SR tasks, respectively. The diffusion-based low-light 
(DiffLL) method (Jiang et al. 2023b) is used for low-light image enhancement tasks and 
also introduces DWT. It contains wavelet-based conditional DMs (WCDM) to solve the 
problems of large consumption of computing resources and unstable restoration effect of 
traditional DMs in image restoration (IR) tasks. The low-light image is converted to the 
wavelet domain by 2D-DWT twice to obtain the average coefficient and high-frequency 
coefficient. WCDM performs a diffusion operation on the average coefficient for robust 
and efficient recovery. The high-frequency restoration modules (HFRM) supplement the 
diagonal details with vertical and horizontal information to obtain high-frequency coef-
ficients. This is used to coordinate reconstruction of fine-grained details  (Jiang et  al. 
2023b). Finally, the inverse 2D-DWT is used to transform the results into pixel space. 
WCDM speeds up the inference process while maintaining perceptual fidelity, reducing 
the usage of computing resources (Jiang et al. 2023b).

3.6 � Algorithm optimization

The above methods benefit from lightweighting techniques that have proven effective on 
other models. They were adaptively modified and applied to DMs with remarkable results. 

Fig. 10   Wavelet-based diffusion scheme for (Phung et al. 2023). The denoising operation is performed in 
the wavelet space. And after T steps of denoising, the final result in pixel space is reconstructed through 
IWT (Phung et al. 2023)
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There are currently many works on research based on the characteristics of DMs. They 
obtain effective training strategies and efficient samplers by optimizing the algorithms of 
the training and sampling process, thereby improving model performance and efficiency.

3.6.1 � Sampler optimization

Reducing the number of iteration steps in the sampling process can lightweight DMs. 
However, this can also increase the step size, resulting in a serious drop in performance. 
To solve this problem and achieve high-quality samples with fewer sampling steps, a lot of 
work on optimization algorithms has been generated. Song et al. proposed denoising diffu-
sion implicit models (DDIMs) (Song et al. 2020a). This method generalizes the Markovian 
forward process used by the original DMs (Ho et al. 2020) to a non-Markovian forward 
process. This allows DMs to uniformly skip some steps in the sampling process to reduce 
the number of sampling steps. Finally, a shorter reverse Markov chain is obtained (Fig. 11). 
And DDIMs do not need to change the objective function. Therefore, pre-trained DMs can 
be used directly, avoiding retraining the model. Experiments show that the method gen-
erates high-quality samples at 10× to 50× the sampling speed of the original DMs  (Ho 
et al. 2020). Ghimire et al. explained this problem from a geometric perspective (Ghimire 
et al. 2023). They proved that the addition of noise in the space of probability measures 
and the forward and reverse processes of DMs are Wasserstein gradient flows. However, 
when the number of sampling steps is reduced, the samples will generate errors at each 
step and gradually move away from the gradient flow path. This results in a higher over-
all error. Thus, they proposed an estimation of Wasserstein Gradient. And the intermedi-
ate samples are projected back to the gradient flow path after each step to guarantee the 
descent towards the gradient flow path. ACDMSR adds a deterministic denoising process 
to improve performance and speed up the inference process (Niu et al. 2023). A pre-trained 
SR model is used to provide a pre-super-resolved version x̂0 of a given LR image. Similar 
to  (Preechakul et  al. 2022), the obtained x̂0 can replace x0 in the deterministic iterative 
denoising process q(xt−1|xt, x0) to achieve SR and assist in generating images with more 
visual fidelity (Saharia et al. 2022b; Li et al. 2022c).

Meng et al. still use skip steps as the main idea to reduce the number of sampling steps, 
and propose stochastic differential editing (SDEdit) for image synthesis and editing (Meng 
et al. 2021). Unlike the uniform skipping of DDIMs (Song et al. 2020a), this method does 
not start denoising from Gaussian noise, but performs noise perturbation on the scribbled 
image input (Fig. 12). This perturbation result serves as a prior for DMs and is gradually 
synthesized into realistic images. This method regulates the sampling time by the degree of 
prior perturbation, and synthesizes realistic images with fewer steps. Similarly, Zhang et al. 
also skipped the previous steps to reduce the sampling steps, and proposed a retrieval-based 
diffusion sampling framework (ReDi) (Zhang et al. 2023e). But ReDi retrieves trajectories 

Fig. 11   Diagram of DDIMs. a shows a non-Markovian diffusion process. b shows that the sampling pro-
cess that originally required three steps can be completed in two steps with the help of DDIMs (Song et al. 
2020a)
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similar to partly generated trajectories from a pre-computed knowledge base. This part is 
then skipped in the early stages of the generation, speeding up the inference process. After-
wards, the model continues to sample from later steps of the retrieved trajectories. Unlike 
SDEdit  (Meng et  al. 2021), CoreDiff does not add noise to the input image  (Gao et  al. 
2023a). This method replaces Gaussian noise with an operator that simulates physical deg-
radation. Therefore, it can directly use the information-rich image to replace the random 
Gaussian noise at the beginning of the sampling process, skipping the previous sampling 
step. ResShift is a fast sampling model designed for SR (Yue et al. 2023). It also does not 
use white Gaussian noise, but starts with a prior distribution based on LR images. A new 
Markov chain is designed, which makes the residuals of HR images and LR images grad-
ually transferred. Combined with noise schedule, it is possible to more precisely control 
changes in residuals and noise levels during transitions. This method avoids the problem 
of over-blurry SR results produced by previous accelerated sampling techniques (Rombach 
et al. 2022; Song et al. 2020a), and outperforms them in efficiency. ResShift requires only 
15 sampling steps to achieve better results than previous methods (Zhang et al. 2021; Liang 
et al. 2022).

Gao et al. considered that the inference process of the original DMs (Ho et al. 2020) was 
approximated by solving the corresponding diffusion ODE (Song et al. 2020b) in the con-
tinuum limit (Gao et al. 2023b). Therefore, they investigated a numerical analysis method 
for ODE solvers, namely backward error analysis. Moreover, a fast sampling scheme based 
on dynamically adjusting the long-term backward error is proposed, which is called the 
restricting backward error (RBE) table. They found that backward error analysis was use-
ful for clarifying the role of finite steps and helping to identify implicit biases of different 
ODE solvers (Gao et al. 2023b). Its goal is to describe the bias introduced when integrating 
an ODE with finite steps by introducing a modified ancillary flow. This ensures that the 
discrete iterations of the original ODE are on the path of the continuous solution of the 
modified flow. According to the RBE table, the model is able to generate samples that out-
perform early samplers (Ho et al. 2020; Lu et al. 2022a; Song et al. 2020a) within 8 sam-
pling steps without any training. Permenter et al. argued that learning denoising is related 
to learning projections  (Permenter and Yuan 2023). Therefore, the sampling of DMs is 
reinterpreted as an approximate gradient descent applied to the Euclidean distance func-
tion. And the convergence analysis of the sampler of DDIM is provided under the assump-
tion of the projection error of the denoiser. Using the properties of the distance function, 
a high-order sampler is designed. This sampler aggregates previous denoiser outputs to 
reduce errors. This method enables the sampler to obtain high-quality samples in 5 to 10 
steps on pre-trained DMs (Ho et al. 2020; Song et al. 2020a).

Fig. 12   Diagram of SDEdit. Blue dots represent edits to the image. The green and blue contour lines repre-
sent the distribution of images and strokes, respectively (Meng et al. 2021). (Color figure online)
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Lu et al. (2022b) and Wizadwongsa and Suwajanakorn (2022) mainly focused on meth-
ods for reducing the number of steps for guided sampling. They both found that the first-
order solver (Song et al. 2020a) can perform guided sampling to improve sample quality, 
but requires a larger number of sampling steps. Higher-order samplers can sample in fewer 
steps without guidance. But it performs worse than low-order methods when applied to 
guided sampling  (Wizadwongsa and Suwajanakorn 2022). To apply high-order samplers 
to guided sampling and obtain higher-quality samples with a small number of steps, they 
explored from different aspects. Lu et al. found that large guidance scales shrink the con-
vergence radius of high-order solvers, making them unstable  (Lu et  al. 2022b). And its 
converged solution is not in the same range as the original data. Therefore, high-order 
samplers will have problems of instability and slow speed. The high-order solver (DPM-
Solver++) proposed by them is not to predict the noise �� , but to use the data prediction 
model x� from xt to predict x0 to solve the diffusion ODE. And the solution is matched 
with the training data distribution by a threshold method, so as to maintain the quality 
of sampling. Wizadwongsa et al. found that the difference between guided sampling and 
unguided sampling in classical high-order methods is whether the gradient of the condi-
tional function is added to the sampling equation (Wizadwongsa and Suwajanakorn 2022). 
Therefore, they conjectured that classical higher-order methods may not be suitable for 
conditional functions. A solution based on the operator splitting method of strang split-
ting (Strang 1968) is proposed. It separates the underperforming condition function term 
from the standard diffusion term and solves it separately at each time step. This method 
allows use in various conditional generation tasks, such as TTI, image inpainting, coloriza-
tion and SR. Zhao et al. wanted to further accelerate the high-order solver and designed a 
sampling framework using a pre-trained model called UniPC (Zhao et al. 2023a). UniPC 
consists of a corrector (UniC) and a predictor (UniP) in the same analytical form. Inspired 
by the prediction-correction method for solving ODE values, UniPC can be applied after 
previous DMs samplers. And it does not require additional model evaluation to improve 
sampling accuracy. The framework has a uniform analytical form for arbitrary orders and 
supports unconditional and conditional sampling.

Unlike the above methods, Golnari et al. did not reduce the cost by reducing the sam-
pling steps  (Golnari et  al. 2023). They focused on optimizing SDMs guided inference 
pipeline and proposed a method to simplify the noise computation process during sam-
pling. Initial iterations establish the general layout of the image, and later iterations work 
on improving its overall quality. Therefore, limiting optimization to late iterations avoids 
any adverse impact on the overall performance of the model. The predicted noise contains 
unconditional and conditional noise terms. Computational complexity can be reduced by 
removing unconditional noise for some iterations. Experiments show that optimization 
extended to 50% iterations can reduce inference time by 20.3%.

3.6.2 � Training strategy optimization

Li et al. started from the problem and performed selective calculations (Li et al. 2022b). 
They argued that only local regions of pixels need to be updated for image editing at any 
moment. But DMs resynthesize regions that don’t need to be modified, which wastes com-
putational resources. Therefore, a general method called spatially sparse inference (SSI) 
is proposed. To selectively compute on edited regions, first all activations of the origi-
nal input image need to be precomputed. During editing, the edited region is located by 
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the calculated difference mask between the original image and the edited image (Li et al. 
2022b). Unedited regions can then reuse precomputed activations, while edited regions are 
updated simply by applying convolutional filters. Experiments show that the method can 
reduce the computation of DDIMs (Song et al. 2020a) by 7.5 times and speed up the sam-
pling time by 6.6 times while maintaining the visual fidelity when the editing area accounts 
for 1.2% of the total area.

To speed up the convergence speed of DMs training and shorten the training cycle, 
Hang et al. proposed a weighting strategy called Min-SNR-� for optimization (Hang et al. 
2023). They found that the optimization direction conflicts between the time steps of DMs, 
which caused the optimization process to be blocked. To improve the convergence speed of 
the model, they considered diffusion training as a multi-task learning problem. That is, the 
denoising process of each step is regarded as a separate task. And the loss weight of each 
task is determined by its task difficulty, that is, the compressed SNR. This effectively bal-
ances conflicts between different time steps. Experimental results show that the proposed 
method converges 3.4 times faster than previous weighting strategies  (Gu et  al. 2022). 
At the same time, better image generation quality can be achieved while using a smaller 
architecture than previous state-of-the-art  (Song et  al. 2020a; Bao et  al. 2023). Voronov 
et al. pointed out that the previous textual inversion (TI) method (Ruiz et al. 2023a) had 
a long training time, which limited the feasibility of practical applications and increased 
the experimental time of research  (Voronov et al. 2023). They found that most concepts 
are already learned in the early stages, and the quality does not improve in the later stages. 
To speed up the training process, deterministic variance evaluation (DVAR) is proposed, 
which is an early stopping criterion of TI. DVAR uses batches of entirely random data 
to train the model but evaluates it on batches with partially fixed randomness across all 
iterations. This method improves the speed of adaptation by 15 times without significant 
degradation in image quality (Voronov et al. 2023). Fast DMs (FDM) improve the forward 
process from a stochastic optimization perspective to speed up training and sampling (Wu 
et al. 2023b). The authors noticed that the forward process conforms to the stochastic opti-
mization process of stochastic gradient descent (SGD) for a stochastic time-variant prob-
lem (Wu et  al. 2023b). Meanwhile, momentum SGD can achieve more stable and faster 
convergence. Therefore, FDM introduces a momentum mechanism to improve the for-
ward process. Moreover, the momentum SGD process is regarded as a damped oscillation 
system, and the noise perturbation kernel function is derived. This avoids oscillation and 
achieves a faster convergence rate of the forward process. Experimental results show that 
FDM can be applied to DM frameworks such as VP (Song et al. 2020b), VE (Song et al. 
2020b) and EDM (Karras et al. 2022).And FDM reduces their training cost by about half 
and the sampling steps by a factor of about 3. DMs model score evolution with a single 
time-varying neural network, resulting in long training time and limited modeling flexibil-
ity (Haxholli and Lorenzi 2023). Haxholli et al. proposed a parallel score matching strategy 
to address this issue  (Haxholli and Lorenzi 2023). The method employs separate neural 
networks to separately learn the evolution of scores within a specific time sub-interval. 
It is further extended to use different networks to independently model the scores of each 
individual time point. Experimental results show that this approach significantly speeds 
up the training process through data parallelization and additional parallelization layers. 
ProtoDiffusion combines prototype learning and DMs (Baykal et al. 2023). Specifically, it 
first learns prototypes of the classes using a separate classifier. It then introduces these pro-
totypes into the training of DMs as conditional information to guide the diffusion process. 
Experiments show that learned prototypes can have an impact on model performance in the 
early stages of training, thereby speeding up training.



	 W. Song et al.

1 3

  161   Page 22 of 51

Ning et al. pointed out that as the step size increases, sampling will accumulate errors 
and reduce the accuracy of the model (Ning et al. 2023). These errors are mainly due to the 
difference between the training phase and the sampling phase. During training, xt is given 
to predict xt−1 . However, the sampling is based on the prediction of the previous generation 
results, so the real xt cannot be obtained. To alleviate this problem, they propose a DMs 
training regularization method (DDPM-IP) to explicitly model prediction errors. DDPM-IP 
does not require changes to the network structure or specific loss functions. The error of 
the prediction network is simulated using a dedicated random noise vector, and xt contain-
ing error noise is provided to the prediction network. Experiments show that the model 
with reduced error allow larger step size, helping to reduce training and inference time. Lee 
et al. argued that the slow sampling efficiency of DMs is due to the high curvature of the 
forward process directly related to the truncation error of the numerical solver (Lee et al. 
2023b). Zero curvature means that generative ODEs can be solved exactly with only one 
function evaluation. They found that it was the intersection between forward trajectories 
that caused the high curvature, and that reducing the degree of intersection improved the 
curvature. Therefore, they parameterized the coupling as a neural network. And the KL 
term is used to ensure the effective coupling between the noise distribution and the original 
data distribution (Fig. 13).Decoupled DMs (DDM) are designed to improve the solution 
efficiency of the reverse process by simplifying the forward process (Huang et al. 2023a). 
DDM decomposes the complex diffusion process into two relatively simple processes. The 
image distribution is approximated by an explicit transition probability, and the noise path 
is controlled by a standard Wiener process. This enables the model to learn to predict noise 
and image components, respectively. Furthermore, the explicit transition probability is 
introduced to model the gradient of image component. This allows the sampling step size 
to be increased. Experiments have proven that DDM has a lower computational budget for 
sampling than previous DMs and can generate high-quality images in 10 steps (Ho et al. 
2020; Song et al. 2020b; Vahdat et al. 2021; Dockhorn et al. 2021). PartDiff approximates 
the intermediate state of the denoising process of the HR image to the latent state of the 
LR image, and starts denoising from the intermediate distribution (Zhao et al. 2023b). And 
the proposed latent alignment mechanism is used to gradually interpolate the latent states 
of LR and HR images during the training process. This compensates for the approximation 
error introduced by skipping a large number of denoising steps.

Fig. 13   The basis and vision principle of Lee et al. (2023b). a shows that the reconstruction error is high 
when the forward trajectories intersect and is low when they do not intersect. b shows the visual principle 
of the method (Lee et al. 2023b)
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3.7 � Hybrid strategy

Hybrid strategy is a method of integrating other architectures and technologies into DMs. 
It aims to take advantage of various methods to speed up the sampling of DMs or reduce 
the training cost when applied to other tasks. By exploring the hybrid strategy, different 
technologies can be more fully utilized. This can improve the effectiveness and applicabil-
ity of DMs, and further promote the development of its related applications.

3.7.1 � Hybrid network architecture

Combined with lightweight or high-quality model network architecture, the shortcom-
ings of DMs can be compensated. This enables DMs to obtain high-quality results with 
low computational cost and expands its application scenarios. Kulikov et  al. designed a 
lightweight fully convolutional denoiser to simplify the DMs architecture, and proposed 
SinDDM for single image generation  (Kulikov et  al. 2023). The fully convolutional 
denoiser of this model is constrained by both noise level and scale. The receptive field 
of the denoiser is set relatively small to control it to only capture statistics of fine details 
within each scale. Therefore, samples of any size can be generated from coarse to fine. 
In addition to learning the internal statistical information of the image through a multi-
scale diffusion process, SinDDM can also be guided by external supervision. It generates 
high-quality samples while having good generalization ability. Zheng et al. proposed DMs 
sampling with neural operator (DSNO) from the perspective of parallel decoding (Zheng 
et al. 2023b). This method constructs the neural operator backbone of DSNO by introduc-
ing temporal convolutional layers parameterized in Fourier space in given DMs. And the 
initial Gaussian distribution is mapped to the continuous-time solution trajectory of the 
reverse diffusion process. This allows the final solution to be generated from a single model 
evaluation (Fig. 14). To extend pre-trained DMs to specific tasks and save training cost, a 
neural network structure named ControlNet is proposed (Zhang and Agrawala 2023). This 
structure is used to control pre-trained large-scale DMs to support additional input condi-
tions. ControlNet clones the weights of large DMs into trainable and locked copies. The 
two are used to learn conditional control on task-specific datasets and preserve the ability 
of the original network learning, respectively. The trainable and locked modules are con-
nected with zero convolutions, where the convolution weights are gradually grown from 
zero to optimized parameters in a learned manner. Experiments show that the model can be 
trained on personal devices and can maintain good robustness (Zhang and Agrawala 2023). 
Shang et al. noticed that simple convolutional neural networks (CNN) can save costs, and 
proposed a ResDiff based on the residual structure (Shang et al. 2023a). They used CNNs 
instead of DMs to restore the main low-frequency content, and used DMs to predict the 
residual between real images and CNN-predicted images. And a loss function based on fre-
quency domain is introduced to promote the recovery ability of CNN. Frequency-domain 
guided diffusion enables DMs to predict high-frequency details. To improve the customiza-
tion efficiency of DMs for TTI (Kumari et al. 2023; Ruiz et al. 2023a), Xiao et al. investi-
gated the low-rankness of the multi-head attention (MHA) layer in the model (Xiao et al. 
2023a). They found that the partial weight matrices of MHA did not exhibit sufficient low-
rank properties. This limits the overall potential performance gain from low-rank decom-
position. Therefore, the low-rankness at the head level is designed, reducing the param-
eters of MHA and relaxing the low-rank constraint. This method has faster training speed 
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and lower additional storage cost than previous methods (Kumari et al. 2023; Ruiz et al. 
2023a).

Bond-Taylor et al. considered that DMs generate higher resolution images with higher 
computational requirements  (Bond-Taylor et  al. 2022). Therefore, they designed DMs 
for vector-quantized image representation to alleviate this problem. This method uses an 
unconstrained transformer architecture as the backbone of the DMs. This enables paral-
lel prediction of vector quantization tokens, facilitating the unconditional generation of 
globally consistent high resolution (HR) and diverse images with lower computational 
overhead. This method is 88 times faster than the original DMs  (Ho et  al. 2020) after 
combining the operation of uniform skip steps. Hoogeboom et  al. considered that meth-
ods focusing on latent diffusion in low-dimensional spaces or image generation in multi-
level cascades (Rombach et al. 2022; Ho et al. 2022; Balaji et al. 2022) added additional 
complexity to the diffusion framework  (Hoogeboom et  al. 2023). Applying DMs in the 
pixel space of HR images remains challenging. Therefore, a single-stage model for TTI is 
proposed to generate HR images while maintaining the simplicity of the model  (Hooge-
boom et al. 2023). Low computational intensity leads to low accelerator utilization, while 
large activations cause out-of-memory problems. Therefore, LR feature maps are scaled 
to increase utilization and relieve memory pressure. And the convolutional layer with the 
self-attention module in the original U-Net architecture is replaced by a multi-layer per-
ceptron module to speed up training. Zheng et al. utilized masked training to significantly 
reduce the training cost of DMs without sacrificing generative performance (Zheng et al. 

Fig. 14   The network design and training for DSNO. DSNO operates on temporal and channel dimensions 
with the help of the proposed temporal convolutional layer. And it outputs representations of different tem-
poral positions in the trajectory on a single forward pass. Other blocks operate on pixel and channel dimen-
sions (Zheng et al. 2023b)
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2023a). Specifically, a large proportion (e.g., 50%) of patches in diffused input images 
are randomly masked during training. Masked training employs an asymmetric encoder-
decoder architecture consisting of a transformer encoder that operates only on unmasked 
patches and a lightweight transformer decoder for full patches. And the task of reconstruct-
ing masked patches is augmented to learn the score of unmasked patches. This facilitates 
long-range understanding of full patches. Experiments on the ImageNet-256 × 256 dataset 
show that the method achieves the same level of performance as the state-of-the-art dif-
fusion transformer (DiT) model  (Peebles and Xie 2022) using 31% of the original train-
ing time (Zheng et al. 2023a). Multi-architecture multi-expert (MEME) framework adopts 
multiple architectures to adapt to specific frequency requirements between different time 
steps to improve computational efficiency (Lee et al. 2023a). Some previous works have 
introduced multi-expert strategies to assign denoisers to different noise intervals  (Balaji 
et al. 2022; Go et al. 2023). But they ignore specialized operations for specific frequencies. 
For example, self-attention operations and convolutions are good at processing low-fre-
quency and high-frequency components, respectively. Therefore, MEME tailors multiple 
experts of specialized architectures for the required operations at each time-step interval. 
Experiments show that MEME outperforms previous baseline models  (Rombach et  al. 
2022) in terms of both computational efficiency and generation performance.

Autoencoders (AE) can perform representation learning on input information and are 
also used to lightweight DMs. For example, Preechakul et al. believed that since DMs can 
only approximate p�(xt−1|xt) through Gaussian distribution, a large number of sampling 
steps are required  (Preechakul et  al. 2022). When the information of x0 in q(xt−1|xt, x0) 
is captured in large quantities, q(xt−1|xt, x0) can be modeled to obtain high-quality sam-
ples faster. A method combining AE and DMs is proposed, called Diffusion AE (Diff-AE) 
(Preechakul et al. 2022). Diff-AE first relies on AE to extract a meaningful and decodable 

Fig. 15   Diagram of Diff-AE (Preechakul et al. 2022), DiffuseVAE (Pandey et al. 2022) and PDAE (Zhang 
et al. 2022a). a shows that the AE in Diff-AE maps the input image x0 to the semantic encoding zsem as a 
condition for DMs to generate images (Preechakul et al. 2022). b is a diagram of the two-stage training of 
DiffuseVAE (Pandey et al. 2022). c shows the training of PDAE. Pre-trained DMs are frozen during train-
ing, indicated by gray sections (Zhang et al. 2022a)



	 W. Song et al.

1 3

  161   Page 26 of 51

representation zsem of the input image to discover high-level semantics. The conditioned 
DMs are then used as decoders to model the rest of the random variation (Fig. 15). Since 
zsem captures a lot of information about x0 , p�(xt−1|xt, zsem) is closer to q(xt−1|xt, x0) than 
p�(xt−1|xt) . DMs lack low-dimensional and interpretable latent spaces, which can be com-
pensated by VAEs (Pandey et al. 2022). Therefore, DiffuseVAE is designed as a two-stage 
conditional framework, using VAEs to accelerate the sampling of DMs  (Pandey et  al. 
2022). In the first stage, the original image x0 is modeled as x̂0 by standard VAEs. In the 
second stage, x0 is reconstructed with the DMs model conditional on x̂0 (Fig. 15). Zhang 
et  al. aimed to utilize pre-trained DMs for image reconstruction  (Zhang et  al. 2022a). 
Therefore, a general method of pre-trained DMs autoencoding (PDAE) is proposed based 
on Diff-AE (Zhang et al. 2022a). The information loss in the forward process of pre-trained 
DMs leads to a gap between the posterior mean predicted by DMs and the true mean. 
Therefore, the idea of PDAE is to perform representation learning through AE, that is, 
E� (x0) learns compact and meaningful representations in input images to help fill in the 
gaps of information loss (Fig. 15). The pre-trained unconditioned DMs are then used for 
image reconstruction. Experiments show that AE improves the training efficiency and per-
formance of DMs. The training time required by PDAE to complete representation learning 
is less than half of that of Diff-AE, but the effect is still better than that of Diff-AE (Zhang 
et al. 2022a).

The network of models such as Flows is reversible, so model evaluation and inversion 
calculations are fast, and can be combined with DMs with stronger expressive capabili-
ties  (Kingma and Dhariwal 2018). Diffusion Flows (DiffFlow) connects the two  (Zhang 
and Chen 2021). The algorithm consists of two neural stochastic differential equations 
(SDEs). A forward SDE gradually adds noise to the data, transforming the data into Gauss-
ian random noise. A backward SDE gradually removes noise for sampling. The two neural 
SDEs are jointly trained by minimizing the KL divergence. Backward SDE starts from a 
Gaussian distribution and eventually converges to the desired data distribution. Compared 
with DMs, DiffFlow learns a more flexible forward diffusion, which can adaptively trans-
form data into noise more effectively (Fig.  16). Subsequently, the data-adaptive implicit 
nonlinear DMs (INDM) also combines Flows and DMs (Kim et al. 2022a). It extends lin-
ear DMs to nonlinear diffusion processes. INDM learns nonlinear diffusion in data space 

Fig. 16   Diagram of Flows, DMs and DiffFlow  (Zhang and Chen 2021). Both the forward and backward 
processes of Flows are deterministic, while both processes of DMs are stochastic. And the forward and 
backward processes of DiffFlow are both trainable and stochastic (Zhang and Chen 2021)
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and realizes linear diffusion in latent space through Flows. This flexible nonlinear diffusion 
has a better learning curve and thus is faster to train than prior work (Song et al. 2020b).

GANs are used by lightweight DMs for their fast generation speed and powerful expres-
sive ability. Xiao et  al. believed that the denoising process of DMs was limited by the 
Gaussian distribution and could not adapt to the denoising of large step size (Xiao et al. 
2021). Therefore, they proposed to model the Gaussian distribution instead of complex 
multimodal distribution. Conditional GANs can simulate such complex conditional distri-
butions in images, which GANs just lack the characteristics of mode coverage and sample 
diversity possessed by DMs. Denoising diffusion GANs (DDGAN) combines GANs and 
DMs (Xiao et al. 2021). To build adversarial training, the generator only needs to predict 
x0 and use q(xt−1|xt, x0) to get xt−1 . The discriminator takes xt−1 , xt as input and decides 
whether xt−1 is the real version (Fig. 17). Diffusion-GAN also combines GANs (Wang et al. 
2022c). It not only avoids the expensive sampling chain of DMs, but also generates more 
realistic images than GANs. The discriminator of this method also learns to distinguish dif-
fused real data from generated data. But the generator learns from the feedback of discrimi-
nator by backpropagating along the forward diffusion chain, producing samples that can 
fool the discriminator at any diffusion step. Li et al. combined the optimization efficiency 
of GANs with the predictive power of DMs (Li et al. 2022d). They proposed a pixel spread 
model (PSM) for image inpainting of large missing regions. The model iteratively employs 
a decoupled probabilistic modeling strategy and predicts an outcome representing the mean 
term and an uncertainty map representing the variance term. Implicit adversarial training 
is used to optimize the mean term, resulting in more accurate predictions with fewer itera-
tions. And the variance term is explicitly modeled using Gaussian regularization, making 
the model faster and lighter. Xu et  al. noticed that DDGAN (Xiao et  al. 2021) does not 
force the reverse step to use a parametric distribution, speeding up sampling with larger 
step size  (Xu et  al. 2023). But there are scalability issues when dealing with large-scale 

Fig. 17   Diagram of training DDGAN. The green part is the discriminator, and the blue part is the generator 
(Xiao et al. 2021). (Color figure online)
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datasets. Therefore, they further proposed an implicit model to match the marginal dis-
tribution of noisy data with the explicit conditional distribution of forward diffusion (Xu 
et al. 2023). This combines implicit and explicit training objectives such that the marginal 
distributions of random variables can be matched during the reverse diffusion process. 
Experiments demonstrate that the method achieves generative performance comparable to 
models based on DMs (Nichol and Dhariwal 2021; Song et al. 2020b; Karras et al. 2022) 
and outperforms models with fewer sampling steps (Xiao et al. 2021).

Frido is a kind of feature pyramid DMs (Fan et al. 2023a). It alleviates the slow infer-
ence of DMs by performing a multi-scale coarse-to-fine denoising process. Specifically, 
Frido uses the VQGAN-based  (Esser et  al. 2021) multi-scale vector quantization model 
(MS-VQGAN) to encode the input image into vector quantization features of multiple 
scales in the latent space to provide different levels of image information. Then the latents 
of all scales are merged, giving DMs a coarse-to-fine prior to decode the output image 
(Fig. 18). Ryu et  al. proposed pyramid DMs (PDDPM) (Ryu and Ye 2022) to make the 
neural network lighter. The authors found that without positional encoding, the model lost 
the ability to predict the correct image at different resolutions. Therefore, PDDPM adds the 
condition of position information through position embedding during training, and gen-
erates HR images from coarser resolution images. The flexibility of the model is further 
improved by patch-based training when generating larger-scale images. Traditional DMs 
maintain constant resolution during sampling, which reduces speed. Therefore, Zhou et al. 
proposed pyramid DMs (PyDiff) for low-light image enhancement (Zhou et al. 2023b). The 
pyramid structure of this method gradually increases the resolution to reduce the compu-
tational cost during the sampling process and accelerate the sampling. Xia et al. found that 
traditional DMs can generate each pixel by starting from noise (Xia et al. 2023b). This is 
inefficient for IR tasks where most of the pixels are already given. Thus, they proposed 
DiffIR consisting of three components, including the compact IR prior extraction network 
(CPEN), dynamic IR transformer (DIRformer) and a denoising network for DMs. In the 
pre-training stage, real images are fed into CPEN to obtain a compact IR prior represen-
tation (IPR). In the second stage, training DMs directly estimates the same IPR as the 
pre-trained CPEN using only low-quality (LQ) images. DIRformer utilizes IPR to recover 
LQ images. Multiple networks are combined, which further reduces the impact of evalu-
ation errors. And since IPR is just a compact vector, DiffIR can use fewer iterations than 

Fig. 18   Diagram of Frido  (Fan et  al. 2023a). a shows that MS-VQGAN encodes images into multi-scale 
features. The upper part of b is a process from coarse to fine, with the upper layers to lower layers denoising 
in sequence. The bottom half of b describes each denoising step. U-Net is shared at both time step and scale 
level (Fan et al. 2023a)
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traditional DMs (Rombach et al. 2022) to obtain accurate estimates, yielding more stable 
and realistic results.

3.7.2 � Efficient technology integration

The sampling speed of DMs can also be greatly improved by mixing with other efficient 
technologies. For example, Wang et al. proposed a latent feature DMs (LDDPM) similar to 
LDMs (Rombach et al. 2022) to solve the problem of excessive sampling time (Wang et al. 
2022a). Firstly, the encoder is used to encode the image effectively, so as to reduce the 
solution space of the reconstructed image. Then DMs are used as generators in adversarial 
training, which are optimized by the discriminator to improve the generative modeling abil-
ity of the model. Bolya et al. noted that the computational scale of DMs for transformer-
based backbone is related to the square of the number of tokens  (Bolya and Hoffman 
2023). Therefore, they proposed token merging (ToMe) to reduce the number of tokens and 
speed up the generation process. The generated images generally have a high redundancy. 
It is a waste of resources to perform calculations for each token. ToMe reduces the compu-
tational cost by combining redundant tokens to reduce tokens without any additional train-
ing. Experiments show that ToMe can ensure the performance of SDMs while increasing 
the generation speed by 2 times and reducing memory consumption by 5.6 times (Bolya 
and Hoffman 2023).

Li et al. lightened the cost of a single sampling and reduced the number of sampling 
steps  (Li et  al. 2023b). Combining network architecture and distillation, they proposed 
SnapFusion  (Li et  al. 2023b). For the research on the UNet architecture in SDMs, the 
authors found that the model parameters were concentrated in the downsampling stage. 
The slowest parts are the input and output stages with maximum feature resolution. Snap-
Fusion uses robustly trained models and constructed evolution action set to perform online 
network changes of UNet, reducing redundant parts. And using the 32-step output data of 
the original model (Rombach et al. 2022) to perform two step distillations (Salimans and 
Ho 2021), an 8-step efficient UNet can be obtained. This greatly reduces the amount of 
computation. This method realizes running DMs for TTI in less than 2 s on mobile devices 
for the first time, and promotes the application process of DMs in edge devices. Kim et al. 
focused on reducing the cost of a single sampling and proposed a block-removed knowl-
edge-distilled SDMs (BK-SDMs) (Kim et  al. 2023). This study removes some residual 
blocks and attention blocks from U-Net for SDMs. This reduces the number of parameters, 
multiply-accumulate operations (MACs) per sampling step, and latency by more than 30%. 
And with limited resources, the input of U-Net can be obtained with the help of pretrained-
and-frozen encoders, and then the distillation operation is performed.

3.8 � Other methods

Besides the methods mentioned above, there are other works such as resizing the input 
image by patches, or dimensionality reduction such as signal decomposition and process-
ing in latent spaces. They can effectively reduce the time and computational overhead of a 
single network evaluation, thereby further reducing the burden of the training and sampling 
process.
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3.8.1 � Patch‑based

The input and output of traditional DMs are both HR images, which makes the memory 
requirement in the sampling process too high. A method for patch-based DMs was pro-
posed by Xia et al  (Xia et al. 2022). This method trains the DMs network by extracting 
patches from the original image, and then samples each patch of the image separately for 
image reconstruction during the sampling process. Data processing is patch-based, so 
workflows can be distributed in parallel, overcoming memory issues with large-scale data.

Similarly, Arakawa et  al. believed that large-scale input would cause memory con-
sumption when passing through the self-attention mechanism in the DMs network, and 
also proposed a DMs based on patch-wise generation (Arakawa et al. 2023). Specifically, 
two regulation methods are introduced. The first uses position-wise conditioning using a 
one-hot representation to ensure that generated patches are in the proper position. The sec-
ond is global content conditioning (GCC), which ensures that patches connected together 
have consistent content. Experiments show that this method enables a moderate trade-off 
between maximum memory consumption and generated image quality. It maintains com-
parable image quality even when maximum memory consumption is cut in half (Arakawa 
et al. 2023).

3.8.2 � Dimensionality reduction

Zhang et al. only focused on high dimensions in the early stages of sampling (Zhang et al. 
2023b). They believed that this stage had spatial redundancy in the image signal, so it did 
not need to maintain high dimensionality. Thus, they proposed dimensionality-varying dif-
fusion process (DVDP). The image is decomposed by the signal into multiple orthogo-
nal components, and the attenuation of each component is controlled when the image is 
perturbed. Insignificant components can be reduced by increasing the noise intensity. The 
original image can be represented by a low-dimensional signal to reduce computational 
cost, which hardly loses information.

Fig. 19   Diagram of LDMs (Rombach et al. 2022). The green part is the latent space, and the red part on the 
left is the pixel space (Rombach et al. 2022). (Color figure online)
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Latent diffusion models (LDMs) avoid the high computational cost of DMs in pixel 
space (Rombach et al. 2022). This method utilizes pre-trained AE to convert pixel space 
into latent space, reducing the complexity. The AE encoder first compresses the image to 
the latent space. DMs can then be diffused and sampled in the latent space. Finally, the 
result is restored to the original pixel space using the AE decoder (Fig. 19). This method of 
compressing high-dimensional features into low-dimensional spaces for operations signifi-
cantly reduces computational requirements compared to pixel-based DMs (Dhariwal and 
Nichol 2021). Based on LDMs, Avrahami et al. run latent diffusion in a lower-dimensional 
latent space to speed up the inference process of the model  (Avrahami et  al. 2023). But 
each step performs local image editing by mixing latents according to user-supplied masks. 
This enables localized text-driven editing on generic images. Experiments show that the 
method is faster than previous works (Nichol et al. 2022; Avrahami et al. 2022) and pro-
duces more accurate results. Wang et  al. noted that the cost and difficulty of accurately 
regressing pixel values increases with resolution (Wang et al. 2023a). The latent space is 
lower dimensional than the pixel space, which can reduce the cost of each denoising step. 
But regressing to real-value latent representations remains complex. Therefore, they pro-
posed a method to represent and generate images using a binary latent space. The bidirec-
tional mapping between an image and the corresponding latent binary representation is 
modeled by a trained AE with a Bernoulli encoded distribution. This binary latent space 

Fig. 20   A roadmap of lightweight DMs methods summarized in chronological order. Different colored 
boxes in the figure represent different categories of methods. Representative models in each category are 
shown in the boxes. The corresponding relationship between superscripts and papers is: 1.  (Luhman and 
Luhman 2021), 2. (Jolicoeur-Martineau et al. 2021), 3. (Salimans and Ho 2021), 4. (Kingma et al. 2021), 
5. (Watson et al. 2021), 6. (Wang et al. 2022c), 7. (Jeon and Park 2022), 8. (Wizadwongsa and Suwajana-
korn 2022), 9. (Bao et al. 2022), 10. (Li et al. 2022b), 11. (Preechakul et al. 2022), 12. (Bond-Taylor et al. 
2022), 13.  (Wang et al. 2022b), 14.  (Xia et al. 2022), 15.  (Avrahami et al. 2023), 16.  (Hoogeboom et al. 
2023), 17.  (Shao et  al. 2023), 18.  (Lee et  al. 2023b), 19.  (Ghimire et  al. 2023), 20.  (Gao et  al. 2023b), 
21.  (He et  al. 2023a), 22.  (Fan and Lee 2023), 23.  (Arakawa et  al. 2023), 24.  (Clark and Jaini 2023), 
25. (Meng et al. 2023), 26. (Phung et al. 2023), 27. (Kumari et al. 2023), 28. (Wu et al. 2023), 29. (Wang 
et al. 2023a). (Color figure online)
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provides a compact discrete image representation that can be modeled more efficiently than 
pixel or continuous latent representation. This binary latent DMs can have higher sampling 
efficiency and representation ability of HR images.

The above is a detailed introduction to the current methods of lightweight DMs in the 
field of image processing. Figure 20 summarizes the development of different categories of 
methods. To quickly understand the key points and related work of each lightweight method, 
a classification table (Table 1) is summarized. The first column of the table contains a brief 
description of each method, and the second column highlights the characteristics of the cor-
responding method. In addition, in order to facilitate researchers to quickly find methods for 
specific tasks, the third and fourth columns divide relevant papers according to task types.

To better demonstrate the performance of the models, the experimental results of 
image generation of lightweight DMs are summarized, involving the performance on 
CIFAR10 (Krizhevsky et al. 2009) and LSUN-Bedroom datasets (Yu et al. 2015)(Table 2). 
The table contains the lightweight type “Lightweight Method” of the model “Model”, and 
the values of the Number of Function Evaluations (NFE), Fréchet Inception Distance (FID) 
(Heusel et  al. 2017) and Inception Score (IS) (Salimans et  al. 2016) indexes on the two 
datasets. The model parameters “Params” and hardware configuration “Hardware” are also 
provided. Because some papers do not show relevant results, they are not listed here.

4 � Conclusion and prospect

DMs have become a hot topic in the field of image processing due to their competitive 
performance and great potential. However, their high computing and storage costs are not 
friendly to researchers who lack high performance hardware equipment, thus limiting their 
application. For applications that need to be built on intelligent edge devices, it is more 
necessary to design lightweight methods. To reduce the cost of training and inference 
stages while generating high-quality samples, many methods have been proposed in recent 
years. These methods further lighten DMs from KD, quantization, pruning, fine-tuning, 
signal domain transformation, algorithm optimization, hybrid strategy, and other different 
perspectives. This survey first introduces the basic principle of DMs, and then sorts out 
these types of methods. However, current lightweight approaches to DMs have not been 
fully explored, implying that there are still issues that require attention. This section dis-
cusses these issues and provides insights into future prospects.

4.1 � Theoretical derivation

DMs are derived from concepts in physics and are supported by interpretable mathematical 
theories. By optimizing the training strategies (Hang et al. 2023; Lee et al. 2023b) and sam-
plers (Gao et al. 2023b; Golnari et al. 2023) of DMs from the perspective of theoretical deri-
vation, some results have been achieved in improving training speed and reducing sampling 
costs. However, these basic principles still need to be studied in depth, and there is still huge 
room for theoretical expansion in lightweight DMs. Some possible research directions include:

(1)	 Relevant theories for adjusting the diffusion process
	   The sampling of DMs is equivalent to solving the corresponding SDE or ODE (Zhou 

et al. 2023a; Guo et al. 2023). Therefore, it is necessary to reason about efficient and 
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accurate samplers. For example, the current sampler will cause certain errors by reduc-
ing the number of solutions. Zhou et al. improved the ODE-based sampler by directly 
learning the mean direction to eliminate truncation errors (Zhou et al. 2023a). Guo 
et al. proposed a new Gaussian mixture solver based on SDE by relaxing the Gaussian 
reverse kernel assumption (Guo et al. 2023). Xia et al. adjusts the network by aligning 
the sampling distribution with the real distribution and obtaining new time steps to find 
a more accurate integral direction (Xia et al. 2023a). In addition, the performance of 
the sampler can be improved by reparameterizing the diffusion process (Zhang et al. 
2023a) or mapping it to a more amenable space for sampling (Pandey et al. 2023). 
This ensures that results are generated in smaller steps. Using theoretical derivation, 
obtaining samplers that can generate new samples without training is also worthy of 
attention (Scarvelis et al. 2023).

	   Reasoning about and adjusting more accurate training targets also helps improve 
training efficiency. The general constant loss weight strategy in DMs will lead to biased 
estimation during the training phase. For example, Yu et al. proposed an effective 
weighting strategy based on the theoretical unbiased principle (Yu et al. 2023a). Kang 
et al. used observations following the Bernoulli distribution to concretize a surrogate 
loss for negative log-likelihood (Kang et al. 2023). This realigns training goals to trade 
off quality versus speed. The assumption that the original goals of DMs are invariant to 
noise processes may also affect model performance. For example, this assumption was 
eliminated as Sekhar et al (Sekhar Sahoo et al. 2023). They use Bayesian inference to 
adjust the noise schedule based on the specific characteristics of each image instance. 
Lin et al. used noise schedules with zero terminal SNR to ensure that training behavior 
is aligned with inference (Lin et al. 2024).

(2)	 Improve the theoretical framework of DMs from different view
	   By deriving it from multiple different perspectives, it helps to gain a deeper under-

standing of the theoretical basis of DMs. There is already work devoted to optimization 
from a physics perspective. For example, Ambrogioni derived through the perspec-
tive of equilibrium statistical mechanics (Ambrogioni 2023). And Corso et al. used a 
time-evolving potential to guide the inference process (Corso et al. 2023). In addition, 
introducing concepts from other fields is also considered as a potential direction. For 
example, by incorporating RL (Fan et al. 2023b) or consistency training theory (Song 
et al. 2023; Song and Dhariwal 2023; Kim et al. 2023) into DMs for further derivation 
to improve training strategies.

	   In addition to the above improvement directions, DMs for different image tasks also 
need to improve their interpretability accordingly. In the context of specific tasks, such 
as IR, SR, etc., there is still the problem of insufficient theoretical elaboration of the 
significant performance of DMs (Nie et al. 2023).

4.2 � Architecture design

The efficiency and application cost of DMs are closely related to the design of network 
architecture. Most current research is based on the UNet architecture, and vanilla UNet 
used in DMs usually requires a large amount of computing resources (Xiao et al. 2023b). 
Therefore, further research is needed to gain a deeper understanding of the capabilities and 
limitations of different modules in DMs networks. For example, Huang et  al. found that 
UNet is often affected by unstable training in DMs, and reducing its long skip connec-
tion coefficient can alleviate this problem (Huang et al. 2023b). Therefore, they proposed 
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an efficient coefficient scaling framework to ensure training stability and improve speed. 
Xiao et  al. focused on simplifying channel attention and introducing simple gate opera-
tions  (Xiao et  al. 2023b). And Zheng et  al. introduced LEGO bricks for effective stack-
ing  (Zheng et  al. 2023c). They all succeeded in achieving a more lightweight network 
while maintaining good predictive performance. In addition, modules designed for spe-
cific tasks can simplify calculations. For example, the Prompt-Aware Introverted Atten-
tion layer designed by Manukyan et al (Manukyan et al. 2023). This module improves the 
self-attention score, thereby producing better TTI results. Xiao et al. added a conditional 
prior enhancement module to help obtain prior information to assist SR tasks (Xiao et al. 
2023b).

Integrating other efficient and mature network architectures, such as GANs (Xiao et al. 
2021), AE (Pandey et al. 2022), etc. for lightweighting also has obvious advantages. Exist-
ing works have demonstrated that more effective and faster models can be obtained by 
combining different complementary network architectures. Currently, only a limited part 
of the attributes are manipulated after combining different works (Leng et al. 2023). There-
fore, future research needs to be adjusted in practical applications and focus on the respec-
tive strengths and weaknesses of the combined network architectures. The extent of their 
influence in forward and reverse processes and in different tasks should be studied  (Lee 
et al. 2023a). For example, PDAE first studies the modeling characteristics of DMs (Zhang 
et  al. 2022a). After that, meaningful partial information is targetedly generated by AE, 
which is good at representation learning. The rest are rebuilt by DMs. This improves the 
training efficiency and performance of DMs. Xia et al. assigned the task of predictive priori 
representation and prediction high-quality results according to the advantages of each net-
work to reduce the impact of errors  (Xia et  al. 2023b). Ultimately the method produces 
more stable and realistic results with fewer iterations. At the same time, the scheduling of 
different models is also important (Liu et al. 2023b; Tsaban and Passos 2023). This allows 
the advantages of DMs in training stability and mode coverage to be better exploited. And 
the capabilities of each network are better integrated. Lightweight DMs of higher quality 
and computational efficiency can be constructed for desired scenarios.

4.3 � Technology integration

Model compression techniques, such as KD  (Salimans and Ho 2021; Shao et  al. 2023), 
quantization  (Song et  al. 2020a; So et  al. 2023), pruning  (Fang et  al. 2023b), and fine-
tuning  (Kumari et  al. 2023; Ruiz et  al. 2023a), are widely recognized as effective light-
weight approaches. However, further in-depth research is needed in adapting the method of 
compressing DMs for different needs. As Starodubcev et al. observed that when distilling 
DMs for TTI, the student model outperformed the teacher model in some sample genera-
tion (Starodubcev et al. 2023). Therefore, they proposed an adaptive collaborative pipeline 
to assist distillation. In addition to improvements in task customization, careful design of 
different network modules (Lee et al. 2023d) and sampling stages (Wang et al. 2023c; Mei 
et al. 2023; Yin et al. 2023) can help improve the suitability of compression techniques. For 
example, the network is pruned into different scales according to different generation steps 
to avoid redundant calculations (Yang et al. 2023a). As a technology that introduced light-
weight DMs earlier, distillation has achieved faster development than other compression 
technologies. However, introducing other compression techniques can also help achieve 
more competitive results. Combined with pruning methods, Lottery Ticket Hypothesis 
can find sparser sub-models, thereby reducing storage and computing pressure (Jiang et al. 
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2023a). Methods of superimposing multiple technologies, including integration between 
compression technologies (Chang et al. 2023; He et al. 2023b) and integration with other 
architectures (Sauer et al. 2023), are all directions that can be explored in depth in future 
research.

In addition, pre-trained DMs have been extensively learned on large-scale data, which 
can capture rich semantic information. To make full use of these existing knowledge and 
achieve the effect of multi-purpose models, optimization techniques that utilize pre-trained 
DMs are attractive  (Clark and Jaini 2023; Ruiz et  al. 2023a; Laousy et  al. 2023). How-
ever, pre-trained models may face the problem of catastrophic forgetting when perform-
ing downstream tasks. At the same time, in the case of limited data, the research on few-
shot (Ruiz et al. 2023a; Masip et al. 2023) or zero-shot (Clark and Jaini 2023; Kim et al. 
2022b; He et al. 2023d; Nguyen and Tran 2023) has become a direction worthy of atten-
tion. This may enable DMs to generate satisfactory results in unseen domains and even 
in other tasks. Although good results have been achieved in this field, most of the work 
is still limited by the capabilities of pre-trained DMs (Wang et al. 2022b; Han et al. 2023; 
Ruiz et al. 2023a; Permenter and Yuan 2023) or weakens the capabilities of the original 
model  (Lu et  al. 2023). Therefore, future research may need to resort to means such as 
more powerful prior conditions (Ma et al. 2023a) or semantic information to more effec-
tively share the knowledge of pre-trained DMs. This will help tap the potential of large-
scale DMs and bring more possibilities for model optimization.

4.4 � Multi‑domain processing

The image generally has redundancy in space, and the sampling of DMs needs to be pro-
cessed in the same dimension. This results in a large computational and storage overhead. 
Images can be transformed from the pixel domain to the frequency domain for processing 
to solve this problem. For example, Phung et al. (2023) and Jiang et al. (2023b) extract low-
frequency and high-frequency components from the images through DWT, and perform 
adaptive processing respectively. This processing method can not only capture information 
on different frequencies, but also improve the efficiency of data expression. However, it is 
worth noting that the number of studies in the direction of frequency domain processing is 
currently lacking, and further research is needed.

The exploration of the latent space domain has also received more and more attention. 
Rombach et  al. (2022) uses AE to convert image data from pixel space to latent space 
for processing. This method of reducing data dimensions has been proven to effectively 
improve data compactness and reduce computational complexity. There is also related 
work in the follow-up, but the process of transforming the latent space requires an addi-
tional encoder, which adds additional complexity to the diffusion framework (Hoogeboom 
et al. 2023). However, there may be cases where other pre-trained encoders are not suitable 
for DMs processing  (Wang et al. 2023a). Therefore, this aspect is still worthy of further 
exploration, so that future DMs can reduce the dimensionality and complexity of the data 
to a greater extent while maintaining the semantic information of the data.

In addition, the latent space domain is easier to integrate with other domains, provid-
ing potential opportunities for lightweight DMs. For example, the features processed by 
LDMs in the latent space are then segmented based on patches to further reduce the fea-
ture scale  (Ma et  al. 2023b). Luo et  al. successfully enhanced the frequency component 
from latent space to pixel space by introducing a frequency compensation module  (Luo 
et  al. 2023a). It is worth noting that in the latest research, the consistency model  (Song 
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et al. 2023) is also transformed into the latent space, and the inference process is further 
accelerated through fine-tuning (Luo et al. 2023b, c). Therefore, future in-depth research 
on the characteristics and advantages of latent space is expected to bring more possibilities 
to lightweight DMs.

It is hoped that the efforts of this work can further promote the interest of scholars in 
various fields to study lightweight DMs. More efficient, reliable and user-friendliness light-
weight DMs solutions can be provided in the future. And it is expected that the poten-
tial of DMs will break through the current limitations and play their role in real-time and 
resource-limited application scenarios.
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