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Abstract
Background Enterococcus faecalis is a common cause of healthcare-associated infections. Its resistance to linezolid, the 
antibiotic of last resort for vancomycin-resistant enterococci, has become a growing threat in healthcare settings.
Methods We analyzed the data of E. faecalis isolates from 26 medical institutions between 2018 and 2020 and performed 
univariate and multivariate logistic regression analyses to determine the independent predictors for linezolid-resistant E. 
faecalis (LREFs). Then, we used the artificial neural network (ANN) and logistic regression (LR) to build a prediction model 
for linezolid resistance and performed a performance evaluation and comparison.
Results Of 12,089 E. faecalis strains, 755 (6.25%) were resistant to linezolid. Among vancomycin-resistant E. faecalis, the 
linezolid-resistant rate was 24.44%, higher than that of vancomycin-susceptible E. faecalis (p < 0.0001). Univariate and 
multivariate regression analyses showed that gender, age, specimen type, length of stay before culture, season, region, GDP 
(gross domestic product), number of beds, and hospital level were predictors of linezolid resistance. Both the ANN and LR 
models constructed in the study performed well in predicting linezolid resistance in E. faecalis, with AUCs of 0.754 and 
0.741 in the validation set, respectively. However, synthetic minority oversampling technique (SMOTE) did not improve 
the prediction ability of the models.
Conclusion E. faecalis linezolid-resistant rates varied by specimen site, geographic region, GDP level, facility level, and the 
number of beds. At the same time, community-acquired E. faecalis with linezolid resistance should be monitored closely. 
We can use the prediction model to guide clinical medication and take timely prevention and control measures.
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Introduction

E. faecalis is a Gram-positive, facultatively anaerobic, cat-
alase-negative bacteria that normally lives in the intestines 
of healthy humans [1] and also widely distributed in nature. 
However, it can survive under harsh conditions [2] due to its 
resilient and versatile features, especially its intrinsic resist-
ance to various antimicrobials and acquisition of resistance 
traits [3], which may cause serious infections in hospitals 
and difficult to treat. At 2020, it had become the third most 
common gram-positive bacteria and the fifth most common 
pathogen in healthcare-associated infections (HAI) world-
wide from CHINET surveillance [4, 5].

Linezolid, as the last-line drug for vancomycin-resistant 
E. faecalis, has been frequently used in the clinical treat-
ment of various serious infections such as pneumonia, 
meningitis, or skin infections, and also used for treating 
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difficult infections and multi-drug resistant tuberculosis [6, 
7]. Although the incidence of linezolid-resistant E. faeca-
lis in humans is still very low, the emergence of linezolid-
transferable resistance genes cfr, cfr(B), cfr(C), poxtA, and 
optrA in recent years [8–11] has raised concerns about the 
impact of E. faecalis on linezolid drug resistance. Lin-
ezolid resistance can also be caused by mutations in the 
23S rRNA gene, and all of the above genes are increas-
ingly observed in food-producing animals, food of animal 
origin, and humans[12]. Some studies have reported high 
detection of linezolid-insensitive E. faecalis, even be as 
high as 18% in food-producing animals [13, 14]. Due to 
the abuse of antimicrobial drugs and poor prevention and 
control, the resistance rate of E. faecalis to linezolid may 
gradually increase. Therefore, we need to monitor and 
predict the epidemiology of linezolid- resistant E. faeca-
lis. This study will build a predictive model for linezolid 
resistance, which can guide clinicians on how to use anti-
biotics rationally and empirically and decision makers on 
how to formulate prevention and control measures timely 
and effective.

Methods

We used big data from the Hospital Infection Prevention 
and Control Center System (NICC), a real-time monitoring 
system that receives healthcare-association infection data 
from secondary and above medical institutions across the 
province, to conduct a retrospective observational study of 
E. faecalis. For avoiding systematic bias due to changes in 
hospital participation over time, we included data from 26 
medical institutions which uploading relatively complete 
data for more than 36 months from 2018 to 2021.

Selection of E. faecalis isolates

We extracted relevant data on E. faecalis reported by 26 
medical institutions above from the system from 2018 to 
2021. We selected only the first E. faecalis isolate from each 
inpatient and excluded duplicate isolates. We also excluded 
isolates that did not have linezolid susceptibility testing or 
had missing information on the factors. We defined linezolid 
resistant E. faecalis (LREfs) as those that were reported as 
linezolid-intermediate or linezolid-resistant by the medical 
institutions. We defined linezolid-susceptible E. faecalis 
(LSEfs) as those that were reported as linezolid-sensitive. 
Sensitivity judgments for other antibiotics also follow the 
above principles. The Clinical and Laboratory Standards 
Institute (CLSI) M100 standard is followed by the micro-
biological labs in the hospitals where we collected our data.

Factors

We collected possible risk factors and categorized them. 
The age of patients was divided into four age groups 
(0–18, 19–45, 46–65, and 66-year-old). Patients were 
divided into female and male. The sources of isolates 
are divided into north, west, south, and east regions and 
are divided into two categories: 0–P50 and P51 or above 
according to the GDP of the source area. Isolate acquisi-
tion time is divided into spring, summer, autumn, and 
winter, according to the season, and divided into 5 cat-
egories (0–2, 3–7, 8–14, 15–28, and 29 days) according 
to the number of days of hospitalization when the patho-
gen was detected. The source of the isolate is divided 
into respiratory, urinary, cerebrospinal fluid, secretion, 
blood, drain fluid, and others. The hospital is divided 
into secondary-level hospital and tertiary-level hospital 
according to the type of hospital and divided into five 
categories according to the number of beds (0–500, 
501–1000, 1001–1500, 1501–2000, and 2001 beds). The 
source department of isolates is divided into the intensive 
care unit and non-intensive care unit.

Statistical analysis

We used SAS software (version 9.4, SAS Institute, Cary, 
NC, USA) or R software (version 4.2.1, R Foundation, 
Vienna, Austria) for statistical analyses. The primary out-
come was the proportion of E. faecalis isolates that were 
not susceptible to linezolid (%). We reported continuous 
variables as means or medians, and categorical variables 
as frequencies or proportions. We used the Chi-squared 
test to compare the proportions of LREfs by different 
variables.

SMOTE

Synthetic minority oversampling technique (SMOTE) is 
a common oversampling method that creates synthetic 
samples based on the features of the minority class 
instances and their nearest neighbors. SMOTE increases 
the number of minority class without affecting the num-
ber of majority class [15]. In this study, we used SMOTE 
to balance the training set so that the ratio of positive 
samples (LSEfs) to negative samples (LREfs) was close 
to 1:1.

Predictive model construction

We randomly split the data set into a training set (70%) and 
an independent validation set (30%). We used univariate 
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and multivariate logistic regression analyses for variable 
screening only in the training set. Factors that were statisti-
cally significant (a p-value less than 0.05 was considered 
significant) in the univariate logistic regression analysis 
were input variables in the artificial neural network (ANN) 
and multivariate analyses. Then, we used stepwise logistic 
regression for multivariate analysis to determine independ-
ent predictors. Both the ANN and logistic regression (LR) 
models were constructed on the same training set (with or 
without SMOTE) and tested on the same validation set.

We used RSNNS packages for R for ANN algorithms and 
the results of the multivariate analysis to build up the LR 
model. The dependent variable was LREfs rate. For internal 
validation, we used bootstrapping method. We used Youden 
index to determine accuracy, sensitivity, and specificity from 
the optimal threshold. And we measured accuracy, sensi-
tivity, specificity, receiver operating characteristic (ROC) 
curve, area under the ROC curve (AUROC), calibration 
curves, leave-one-out cross validation, and decision curve 
analysis (DCA) on validation set to evaluate model perfor-
mance [16]. The difference in AUROC values between the 
two models was compared with the method described by 
DeLong et al.

Results

We collected 364,886 isolates from clinical specimens of 
inpatients in 26 medical institutions from 2018 to 2021. Of 
these, 13,556(3.72%) were E. faecalis. 12,089 (89.18%) 
isolates of E. faecalis were tested to linezolid. A total of 
755 isolates of LREfs were detected, with a resistant rate 
of 6.25%.

Drug susceptibility of E. faecalis

Among vancomycin-resistant E. faecalis, the linezolid 
resistance rate was 24.44%, which was higher than that of 
vancomycin-susceptible E. faecalis (p < 0.001). In addition, 
among E. faecalis resistant to penicillin, quinolones, tigecy-
cline, tetracycline, or erythromycin, the rate of resistance to 
linezolid was also higher than that of sensitive strains, with 
statistical significance (p < 0.05) (shown in Fig. 1).

Correlative analysis of clinical data of LREfs

Basic characteristics of predictive factors related to LREfs

The 755 specimens of LREfs were mainly from people older 
than 46 (median age 59), with a male/female ratio of 1.23. 
There is no significant difference in distribution. Most of 
these specimens came from hospitals in the eastern region, 
tertiary hospitals, or hospitals with beds between 1501 and 

2000. The specimens of LREfs obtained from non-ICU inpa-
tients were the most, up to 88.48%. The number of samples 
of LREfs detected within 2 days after admission accounted 
for 49.27%. The number of specimens in spring, summer, 
and autumn was not much different, and the number of 
LREfs detected in winter was relatively small. The speci-
mens were mainly from the respiratory system (49.27%), 
followed by urine (44.37%) and secretion (28.48%). The 
baseline characteristics of E. faecalis and LREfs are shown 
in supplemental Table A1.

Univariate and multivariate analyses of predictive factors 
for LREfs

Male and GDP > P50 were independent predictors (risk 
factors) of E. faecalis resistant to linezolid, while tertiary 
hospitals and winter were independent protective variables, 
according to univariate and multivariate regression analy-
sis. Additionally, compared to E. faecalis isolates from res-
piratory specimens, E. faecalis isolates from drainage fluid, 
blood, and urine were less likely to be linezolid resistant. In 
comparison to hospitals with more than 2000 beds, those 
with fewer than 500 beds, 501–1000 beds, and 1501–2000 
beds were more likely to find LREf isolates. The rate of 
LREf isolates in the northern region was lower than in the 
eastern region (showed in Fig. 2).

Changes in detection rate of LREfs with days 
of hospitalization in different GDP regions

Within 2 days of hospitalization, the resistant rate of E. fae-
calis from low-GDP regions was 3.54%, which was com-
parable to the rate observed after 2 days of hospitalization 

Fig. 1  Resistance of different antibiotic-resistant E. faecalis to lin-
ezolid. LREFs: linezolid-resistant E. faecalis. *The difference is sta-
tistically significant
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Fig. 2  Univariable and mul-
tivariable analyses of factors 
associated with LREfs
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(3.36%). However, the rate of LREfs within 2 days in high-
GDP areas was statistically higher than that after 2 days 
(9.56% vs. 7.35%; p < 0.001) (showed in Fig. 3).

A predictive model for LREfs

In the ANN prediction model, an input layer consisting of 
23 neurons (including the 23 variables found in the univari-
able regression analysis) was parsed. The number of neu-
rons in the hidden layer was determined to be 18 (showed 
in Fig. 2). And the LR prediction model was constructed 
by utilizing the independent predictors discovered in a 
multivariable investigation. In the training set, the AUC of 
ANN was greater than that of LR, and the difference was 
statistically significant (0.763 vs. 0.745, p < 0.001). But the 
predictive performance of the two models was comparable 
when predicted on the validation set. Additionally, after 
the training set was processed using the SMOTE, the pre-
dictive performance of the ANN and LR prediction mod-
els in the training set both not improved but decreased in 
the validation set (showed in Fig. 4). The calibration plot 
shows good predictive accuracy between the actual prob-
ability and predicted probability (showed in supplemen-
tary Figure A2). For the LR model, we use leave-one-out 
cross-validation to verify the generalization ability, and 
get AUC = 0.7311, additionally we evaluated the model’ 
clinical utility with DCA method, and the results showed 
that when the probability of LREFs is between 0 and 21%, 
the prediction model has good clinical utility (showed in 
Fig. 5). And the prediction performance of ANN and LR 
based on the optimal feature subset is compared through 
the sensitivity, specificity, accuracy, precision, F1 value, 
and AUC that are shown in Table 1.

Discussion

In the analysis of the drug susceptibility results of E. 
faecalis, bacteria that were resistant to vancomycin, peni-
cillin, quinolones, tigecycline, tetracycline, and erythro-
mycin seem to be more likely to be resistant to linezolid. 
Several studies have demonstrated that certain resistance 
genes associated with linezolid resistance, such as cfr 
and optrA, can confer resistance to multiple antibacte-
rial agents simultaneously. Furthermore, the presence 
of IS256-like sequences may obscure additional resist-
ance genes. Therefore, further research is necessary to 
elucidate the relationship between these antibiotic resist-
ances [17, 18]. The probability of linezolid insensitivity 
in patients with the aforementioned antimicrobial drug 
resistance, however, may be increased by risk factors such 
immunocompromised individuals, the administration of 
numerous antibiotics, a prolonged hospital stay, and ICU 
admission[19]. On the other hand, they are increasingly 
resistant not only to antibiotics but also disinfectants 
which is complicating infection control recommendations 
[20, 21]. We must also mention that none of the E. fae-
calis from the 26 medical institutions in this study were 
tested for daptomycin susceptibility, which limits its use 
for E. faecalis infections and increases the options for 
linezolid and resistance to linezolid [22–25].

Our study also found that LREfs in high-income areas are 
higher than those in low-income areas, which is contrary to 
other studies [26, 27]. This may be due to more antimicro-
bial use and environmental contamination selecting for bac-
terial resistance in high-income areas. Additionally, LREfs 
from the community was also high in this study, specifically 
in high-income areas, and LREf intestinal tract colonization 
as a reservoir of LREfs acquired through the community 
may be asymptomatic but may occur infection in hospitals 
[28]. Sometimes LREfs carrying silent cfr and/or optrA from 
the community may be hard to detect in clinical setting [29], 
but may cause nosocomial outbreaks of LREfs infections 
[30, 31], endangering patients’ lives.

According to our multifactor analysis, we included 
eight variables to construct predictive models for LREfs 
using ANN and LR. The ANN model performed better 
on the training set, but both models performed similarly 
on the validation set with good predictive performance 
and robustness. The DCA curve of the LR model showed 
a better net benefit when the threshold probability was 
between 0 and 21%. We also used SMOTE technology 
to balance the data and improve the performance of the 
model in the validation set. After SMOTE processing, 
various performance indicators of the ANN model on the 
training set improved significantly. However, performance 

Fig. 3  Changes in detection rate of LREfs with days of hospitaliza-
tion in different GDP regions. LREFs: linezolid-resistant E. faecalis; 
P0–P50: means GDP ranking in 0–50%; P51-: means GDP ranking 
above 50%
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indicators on the validation set decreased instead. The 
SMOTE technique may cause overfitting and fail to gen-
eralize to new and unseen data. The prediction perfor-
mance of the LR model following SMOTE treatment also 
did not improve.

We believe that our model can help clinical doctors to 
choose drugs reasonably after being applied to clinical 
practice and take effective prevention and control meas-
ures in a timely manner for high-risk populations who are 
insensitive to metronidazole, thereby reducing the burden 
of metronidazole resistance on patients and medical treat-
ment. We also provided a nomogram diagram (showed in 

Fig. 6) for real-world use. This model’s advantages include 
ease of use and affordability, which can promote its use 
and popularity.

This study has some limitations: firstly, we did not 
have more individualized data for patients from each 
medical institution, such as tracheal intubation, central 
venous catheter, urine catheter, or surgery. Therefore, 
we did not include these factors in the study. Secondly, 
since our data comes from a big data platform, this data-
base follows the principle of minimizing data and only 
collects the final results of the MIC values of patho-
genic bacteria judged by various medical institutions’ 

Fig. 4  Receiver-operating characteristic curves (ROC) for the ANN 
and LR predictive models. LR: logistic regression; ANN: artificial 
neural network; SMOTE: synthetic minority oversampling technique; 
LREFs: linezolid-resistant E. faecalis. A ROC of LREFs predictive 
model constructed by artificial neural network and logistic regres-
sion models in training set. Differences between ANN and LR models 
were statistically significant (p < 0.001). B ROC of LREFs predictive 
model constructed by artificial neural network and logistic regression 
models in validation set. Differences between ANN and LR models 

were not statistically significant (p = 0.1505). C ROC of LREFs pre-
dictive model constructed by artificial neural network and logistic 
regression models in training set after the training set was processed 
using the SMOTE. Differences between ANN and LR models were 
statistically significant (p < 0.001). D ROC of LREF predictive model 
constructed by artificial neural network and logistic regression mod-
els in validation set after the training set was processed using the 
SMOTE. Differences between ANN and LR models were not statisti-
cally significant (p = 0.4443)
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Fig. 5  Decision curve analysis (DCA) curve of the LR model for 
predicting LREFs. A The DCA curve of the LR model for predicting 
LREFs in training set. B The DCA curve of the LR model for pre-
dicting LREFs in validation set. The y-axis represents the net income, 
the x-axis represents the threshold probability, and the red line repre-
sents the model. The gray line indicates that no patients are assumed 
to have LREFs, the black line indicates that all patient are assumed 

to have LREFs, and the red line indicates the results of the LREF 
prediction model. In validation set, the final DCA shows that if the 
threshold probability is between 0 and 21%, the strategy based on LR 
model to predict the rate of LREFs in this study produces better net 
benefits than the “all LREFs” and “no LREFs” modes. In this range, 
the prediction effect of the model is the best

Table 1  Performance of the ANN and LR prediction model on 755 LREfs in a north province of China during 2018–2021

Without SMOTE With SMOTE

ANN (95% CI) LR (95% CI) LR vs. ANN ANN (95% CI) LR (95% CI) LR vs. ANN

Train Sensitivity 59.74% 64.65% 84.19% 62.76%
Specificity 84.38% 77.14% 80.29% 83.46%
Accuracy 82.84% 76.36% 50.00% 50.00%
Precision 20.32% 15.86% 81.03% 79.14%
F1-score 30.33% 25.47% 63.66% 70.01%
Youden index J 0.4412 0.4179 0.6448 0.4622
AUROC 0.763

(0.754–0.772)
0.745
(0.735–0.754)

Z = 3.334, p = 0.0009 0.890
(0.883–0.896)

0.764
(0.755–0.773)

Z = 28.415, p < 0.0001

Validation Sensitivity 61.06% 58.85% 59.29% 63.72%
Specificity 82.38% 84.21% 78.94% 75.44%
Accuracy 81.05% 87.87% 77.72% 74.71%
Precision 18.72% 27.71% 15.76% 14.71%
F1-score 28.66% 37.68% 24.91% 23.90%
Youden index J 0.4344 0.4306 0.3823 0.3916
AUROC 0.754

(0.739–0.768)
0.741
(0.726–0.755)

Z = 1.438, p = 0.1505 0.746
(0.732–0.761)

0.736
(0.721–0.750)

Z = 0.765, p = 0.4443
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microbiology laboratories according to CLSI standards. 
Therefore, we regret that we cannot obtain specific MIC 
values for more similar analysis. Thirdly, simple SMOTE 
technology cannot improve the predictive performance 
of the model, and more processing techniques need to 
be tried.

Supplementary information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s10096- 023- 04717-3.
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