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Abstract
We study the problem of determining the maximum size of a spherical two-distance
set with two fixed angles (one acute and one obtuse) in high dimensions. Let Nα,β(d)

denote the maximum number of unit vectors in R
d where all pairwise inner products

lie in {α, β}. For fixed −1 ≤ β < 0 ≤ α < 1, we propose a conjecture for the limit
of Nα,β(d)/d as d → ∞ in terms of eigenvalue multiplicities of signed graphs. We
determine this limit when α + 2β < 0 or (1 − α)/(α − β) ∈ {1,√2,

√
3}.

Our work builds on our recent resolution of the problem in the case of α = −β

(corresponding to equiangular lines). It is thefirst determinationof limd→∞ Nα,β(d)/d
for any nontrivial fixed values of α and β outside of the equiangular lines setting.
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1 Introduction

A set of unit vectors in R
d is a spherical two-distance set if the inner products of

distinct vectors only take two values. The problem of determining the maximum size
of spherical two-distance sets is a deep and natural problem in discrete geometry.
Some of the earliest results in this area date to the seminal work of Delsarte et al.
[4]. They prove that a spherical two-distance set in R

d has size at most 1
2d(d + 3).

This bound is close to the truth, as taking the 1
2d(d + 1) midpoints on the edges of

a regular simplex form a spherical two-distance set in R
d . Recently Glazyrin and Yu

[6] determined that the maximum size of spherical two-distance sets in R
d is indeed

1
2d(d + 1) whenever d ≥ 7 and d + 3 is not an odd perfect square; see [2, 14, 17] for
results in many small dimensions.

Given a set A ⊂ [−1, 1), a spherical A-code is a set S of unit vectors in R
d where

〈x, y〉 ∈ A for all distinct x, y ∈ S. We write NA(d) the maximum size of a spherical
A-code inR

d . In this paper, we are primarily interested in the case A = {α, β} for fixed
−1 ≤ β < α < 1 and large d, in which case we write Nα,β(d) instead of N{α,β}(d).

Let us briefly mention some early developments on this problem. The special case
α = −β corresponds to equiangular lines, whose study in the setting of fixed angle in
high dimensions began with the work of Lemmens and Seidel [12]. For spherical two-
distance sets with fixed angles, Neumaier [15, Corollary 5] showed that Nα,β(d) ≤
2d + 1 unless (1 − α)/(α − β) is an integer. Furthermore, a result of Larman et al.
[11] implies the growth rate Nα,β(d) = �α,β(d2) for all 0 ≤ β < α < 1 such that
(1− α)/(α − β) is an integer.1 The regime −1 ≤ β < α < 0 is less interesting, as an
easy argument shows that N[−1,α](d) ≤ 1 − 1/α for all α < 0.

Recently work [1, 3, 9] culminated in a solution [10] to the problem of determining
the maximum number of equiangular lines with fixed angles in high dimensions. The
papers [1, 3] also address the more general problem of estimating N[−1,β]∪{α1,...,αk }(d)

for fixed β < 0 < α1 < · · · < αk . In particular, Bukh [3] showed that
N[−1,β]∪{α}(d) = Oβ(d), in sharp contrast to the quadratic dependence in dimen-
sion without angle restrictions. Significant progress was made by Balla et al. [1],
whose results in particular imply the bound Nα,β(d) ≤ 2(1 − α/β + o(1))d.
More generally, it was conjectured in [3] and proved in [1, Theorem 1.4] that
N[−1,β]∪{α1,...,αk } = Ok,β(dk), and that there exist choices of α1, . . . , αk, β for which
this upper bound is tight up to a constant factor. Here subscripts in the asymptotic
notation indicate that hidden constants may depend on these parameters.

We focus our attention on the goal of sharpening the above results for spherical
two-distance sets and obtaining tight asymptotics for their maximum sizes.

Problem 1.1 Determine, for fixed −1 ≤ β < 0 ≤ α < 1, and large d, the maximum
number, denoted Nα,β(d), of unit vectors in R

d whose pairwise inner products lie in
{α, β}. In particular determine the limit of Nα,β(d)/d as d → ∞.

1 Using Wilson’s deep result [16] on the existence of balanced incomplete block designs, Larman et al.
[11, Theorem 3] constructed a spherical {0, 1/(λ + 1)}-code Cλ(d) of size �λ(d2) in R

d for any positive
integer λ, from which one constructs a spherical {α, β}-code {√1 − β(v,

√
β/(1 − β)) : v ∈ Cλ(d)} of

size �λ(d2) in R
d+1 for every 0 ≤ β < α with λ = (1 − α)/(α − β) a positive integer.
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We recently solved Problem1.1 in the case of equiangular lines [10]whereβ = −α.
To state the result, we need the following spectral graph quantity, introduced in [9].

Definition 1.2 The spectral radius order, denoted k(λ), of a real number λ > 0 is the
smallest integer k so that there exists a k-vertex graph G whose spectral radius λ1(G)

is exactly λ. Set k(λ) = ∞ if no such graph exists. (When we talk about the spectral
radius or eigenvalues of a graph we always refer to its adjacency matrix.)

Theorem 1.3 (Equiangular lines with a fixed angle [10]) Fix α ∈ (0, 1). Let λ =
(1 − α)/(2α). For all sufficiently large d > d0(α),

Nα,−α(d) =
⎧
⎨

⎩

⌊
k(λ)(d − 1)

k(λ) − 1

⌋

if k(λ) < ∞,

d + o(d) otherwise.

Let us recap some key steps in the proof of the upper bound on Nα,−α(d) in Theorem
1.3. We will build on this framework.

Given a spherical {±α}-code S, we consider the associated graph G with vertex
set S, where x, y ∈ S are adjacent in G if 〈x, y〉 = −α. We are allowed to replace
any x ∈ S by −x without changing the equiangular lines configuration. An argument
introduced in [1] reduces the problem to bounded degree graphs.

Theorem 1.4 ( [1] and [10, Theorem 2.1]) For every α ∈ (0, 1), there exists� depend-
ing only on α, such that given any spherical {±α}-code S in R

n , one can replace some
subset of vectors in S by their negations so that the associated graph G (as defined
above) has maximum degree at most �.

The problem of bounding the size of S is related to the multiplicity of (1−α)/(2α)

as the second largest eigenvalue of the adjacency matrix of G. A crucial contribution
of [10] is that every connected bounded degree graph has sublinear second eigenvalue
multiplicity. More generally, we have the following. (See Definition 1.8 below for the
precise definition of j-th eigenvalue multiplicity.)

Theorem 1.5 ( [10, Theorem 2.2]) For every j and�, there is a constantC = C(�, j)
so that every connected n-vertex graph with maximum degree at most � has j-th
eigenvalue multiplicity at most Cn/ log log n.

Turning to spherical two-distance sets, given a spherical {α, β}-code S (with β <

0 ≤ α as always throughout this paper),we define its associated graphG to have vertex
set S and where x, y ∈ S are adjacent in G if 〈x, y〉 = β. Unlike for equiangular lines,
here we are no longer allowed to negate a subset of vectors in a spherical {α, β}-code.
Instead, we show thatG is very close to a complete p-partite graph. Here p is a specific
constant, with the equiangular lines problem corresponding to p = 2.

Definition 1.6 A graph G is a �-modification of another graph H on the same vertex
set if the symmetric difference of G and H has maximum degree at most �.

123



206 Combinatorica (2023) 43:203–232

Theorem 1.7 For every −1 ≤ β < 0 ≤ α < 1, there exists � depending only on α

and β such that for every spherical {α, β}-code, its associated graph G (as defined
above), after removing at most� vertices, is a�-modification of a complete p-partite
graph, where p = � − α/β + 1.

Remark We allow empty parts in a complete p-partite graph. In particular, a complete
t-partite graph is always a complete p-partite graph for t ≤ p.

It will be helpful to study such graphs using the language of signed graphs.

Definition 1.8 A signed graph is a graph whose edges are each labeled by + or −.
Throughout the paper we decorate variables for signed graphs with the ± superscript.
The signed adjacencymatrix AG± of a signed graphG± on n vertices is the n×nmatrix
whose (i, j)-th entry is 1 if i j is a positive edge, and −1 if i j is a negative edge, and 0
otherwise.Wedenote the eigenvalues of AG± byλ1(G±) ≥ λ2(G±) ≥ · · · ≥ λn(G±).
We write

mult(λ,G±) = ∣
∣{i : λi (G

±) = λ}∣∣

for the the multiplicity of λ as an eigenvalue of G±. The j-th eigenvalue multiplicity
ofG± is defined to be mult(λ j (G±),G±). We use |G| and ∣

∣G±∣
∣ to denote the number

of vertices in the graph.

Given a �-modification G of a complete p-partite graph K , we study the signed
graph G± defined by AG± = AG − AK . The growth rate of Nα,β(d) is related to the
eigenvalue multiplicity of G±. We introduce the following parameter generalizing the
spectral radius order k(λ) for signed graphs.

Definition 1.9 A valid p-coloring of a signed graph G± is a coloring of the vertices
using p colors such that the endpoints of every negative edge are colored using distinct
colors, and the endpoints of every positive edge are colored using identical colors. (See
Fig. 1 for an example.) The chromatic number χ(G±) of a signed graph G± is the
smallest p for whichG± has a valid p-coloring. IfG± does not have a valid p-coloring
for any p, we write χ(G±) = ∞.

Definition 1.10 Given λ > 0 and p ∈ N, define the parameter

kp(λ) = inf

{ ∣
∣G±∣

∣

mult(λ,G±)
: χ(G±) ≤ p and λ1(G

±) = λ

}

.

We say that kp(λ) is achievable if it is finite and the infimum can be attained.

In the definition of kp(G±), it is enough to consider connected G±, since the
eigenvalues of G± are given by the union of the the eigenvalues of its connected
components.

If χ(G±) ≤ 2, then the signed graph G± and its underlying graph G have the same
eigenvalues (including multiplicities), since the signed adjacency matrix ofG± can be
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Fig. 1 A valid 3-coloring of a signed graph. Throughout this paper, the positive edges are represented by
solid segments and the negative edges are represented by dashed segments

obtained by conjugating the adjacency matrix of G by a {±1}-valued diagonal matrix.
By the Perron–Frobenius theorem, the top eigenvalue of a connected unsigned graph
has multiplicity one. Thus,

k1(λ) = k2(λ) = k(λ) for all λ > 0.

However the behavior of kp(λ) is far more mysterious when p ≥ 3. We do not know
any general method of estimating or certifying values of kp(λ). Also, it is not even
clear whether the infimum in the definition of kp(λ) can always be attained whenever
kp(λ) is finite.

Generalizing the construction in [9] relating equiangular lines to k(λ), we can obtain
a lower bound on limd→∞ Nα,β(d)/d (see Proposition 2.2). Our main conjecture,
below, says that this lower bound is sharp.

Conjecture 1.11 Fix −1 ≤ β < 0 ≤ α < 1. Set λ = (1 − α)/(α − β) and p =
� − α/β + 1. Then

lim
d→∞

Nα,β(d)

d
=

⎧
⎨

⎩

kp(λ)

kp(λ) − 1
if kp(λ) < ∞,

1 otherwise.

We see above that the parameters

λ = 1 − α

α − β
and p =

⌊

−α

β

⌋

+ 1

appear to play important roles in the problem. These two parameters λ and p con-
jecturally govern the asymptotic behavior of Nα,β(d). Our main theorem below
establishes Conjecture 1.11 for p ≤ 2, as well as for λ ∈ {1,√2,

√
3}. This is the

first time that some limd→∞ Nα,β(d)/d is determined outside of the equiangular lines
setting (α = −β).

Theorem 1.12 Fix −1 ≤ β < 0 ≤ α < 1. Set λ = (1 − α)/(α − β) and p =
� − α/β + 1.
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(a) If p ≤ 2, then the maximum size Nα,β(d) of a spherical {α, β}-code inR
d satisfies

Nα,β(d) =
⎧
⎨

⎩

k(λ)d

k(λ) − 1
+ Oα,β(1) if k(λ) < ∞,

d + o(d) otherwise.

(b) If λ = 1 and p ≥ 2, then kp(1) = p/(p − 1) and Nα,β(d) = pd + Oα,β(1).
(c) If λ = √

3 and p = 3, then k3(
√
3) = 7/3 and Nα,β(d) = 7d/4 + Oα,β(1).

(d) If λ ∈ {√2,
√
3} and p ≥ λ2 + 1, then kp(λ) = 2 and Nα,β(d) = 2d + Oα,β(1).

Moreover, kp(λ) is achievable for every λ ∈ {1,√2,
√
3} and p ∈ N.

Remark The conditions on λ and p in Theorem 1.12 can be directly translated to ones
on α and β. The condition p ≤ 2 in (a) amounts to α + 2β < 0, which includes
the special case α = −β for equiangular lines. The conditions in both (b) and (d)
amount to (λ + 1)α − λβ = 1 and λ/(λ2 + λ + 1) ≤ α < 1/(λ + 1), where
λ ∈ {1,√2,

√
3}. For example, (α, β) = (2/5,−1/5) satisfies the last two conditions

for λ = 1, yielding N2/5,−1/5(d) = 3d + O(1). It is worth contrasting the last
example to the universal equiangular lines bound Nα,−α(d) ≤ 2d + Oα(1) for all
fixed α > 0 (implied by Theorem 1.3, but proved initially in [1]). Lastly the condition
in (c) amounts to (

√
2 + 1)α − √

2β = 1 and 2/(3
√
2 + 2) ≤ α < 3/(4

√
2 + 3).

We also prove a general upper bound on Nα,β(d), though it is not expected to be
tight except for special values (e.g., it implies Theorem 1.12(a)(b)).

Theorem 1.13 Fix −1 ≤ β < 0 ≤ α < 1. Set λ = (1 − α)/(α − β) and p =
� − α/β + 1 and q = max{1, p/2}. Then

Nα,β(d) ≤
⎧
⎨

⎩

qk(λ)d

k(λ) − 1
+ Oα,β(1) if k(λ) < ∞,

qd + o(d) otherwise.

Our proof of Theorem 1.12 indeed confirms Conjecture 1.11 in all the solved cases,
namelywhen p ≤ 2 orλ ∈ {1,√2,

√
3}.We employ a number of differentmethods for

bounding eigenvalue multiplicities in signed graphs in the different parts of Theorem
1.12:

• For (a) and (b),we apply the sublinear bound on eigenvaluemultiplicity of bounded
degree unsigned graphs (Theorem 1.5 above; see Sect. 4).

• For (c), we develop a forbidden induced subgraph framework (see Sect. 5), and we
apply a careful third moment and triangle counting argument (see Sect. 6).

• For (d) we apply an algebraic degree argument (see Sect. 7). Additionally, we
confirm Conjecture 1.11 for all algebraic integers λwhose degree equals k(λ) (see
the end of Sect. 7).

Remark After this work is completed, building on our forbidden induced subgraph
framework, Jiang and Polyanskii [8] proved Conjecture 1.11 for every λ < λ∗, where
λ∗ = β1/2 + β−1/2 ≈ 2.01980 and β is the unique real root of x3 = x + 1.
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A major obstacle to completely settling Conjecture 1.11 is that bounded degree
signed graphs may have linear top eigenvalue multiplicity.

Theorem 1.14 For every n ≥ 3, there is a connected signed graph with 6n vertices,
maximum degree 5, and chromatic number 3, such that its largest eigenvalue appears
with multiplicity n.

The rest of the paper is organized as follows. In Sect. 2, we explain the connection
with spherical two-distance sets and the spectral theory of signed graphs, and further
proves a lower bound on Nα,β(d). In Sect. 3 we prove the structural result, Theorem
1.7. In Sect. 4 we prove Theorem 1.12(a), Theorem 1.12(b), and Theorem 1.13 using
Theorem 1.5. In Sect. 5 we develop a forbidden induced subgraph framework to bound
Nα,β(d) from above. In Sect. 6we prove Theorem1.12(c) via a thirdmoment argument
under the forbidden induced subgraph framework. In Sect. 7weproveTheorem1.12(d)
via an algebraic argument. In Sect. 8 we give two constructions related to Theorem
1.14.

2 Connection to Spectral Theory of Signed Graphs

The spherical two-distance set problem has the following equivalent spectral graph
theoretic formulation. Here A � 0 means that A is positive semidefinite.

Lemma 2.1 Let −1 ≤ β < α < 1. Set λ = (1 − α)/(α − β) and μ = α/(α − β).
There exists a spherical {α, β}-code of size N in R

d if and only if there exists a graph
G on N vertices satisfying

λI − AG + μJ � 0 and rank(λI − AG + μJ ) ≤ d.

Proof For a spherical {α, β}-code {v1, . . . , vN } in R
d , let G be the associated graph

on vertex set {1, . . . , N }, where i j is an edge whenever 〈vi , v j 〉 = β. The Gram
matrix M = (〈vi , v j 〉)i, j has 1’s on its diagonal and α, β everywhere else, so it equals
(1 − α)I − (α − β)AG + α J , where I is the identity matrix, J the all-ones matrix,
and AG the adjacency matrix of G. We have M/(α − β) = λI − AG + μJ , where
λ = (1 − α)/(α − β) and μ = α/(α − β). Since the Gram matrix M is positive
semidefinite and has rank at most d, the same holds for λI − AG + μJ .

Conversely, for every G, λ and μ for which λI − AG +μJ is positive semidefinite
and has rank d, there exists a corresponding configuration of N unit vectors in R

d ,
with pairwise inner products in {α, β}. ��

We are now ready to establish a lower bound on Nα,β(d) using Lemma 2.1.

Proposition 2.2 Fix −1 ≤ β < 0 ≤ α < 1. Then Nα,β(d) ≥ d for every positive
integer d. Moreover if kp(λ) < ∞, where λ = (1−α)/(α−β) and p = �−α/β+1,
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then

Nα,β(d) ≥

⎧
⎪⎪⎨

⎪⎪⎩

kp(λ)d

kp(λ) − 1
− Oα,β(1) if kp(λ) is achievable,

kp(λ)d

kp(λ) − 1
− o(d) otherwise.

Proof Letμ = α/(α−β). Take G to be d-vertex graph with no edges, so that AG = 0
and λI − AG + μJ is positive semidefinite and has rank at most d. So Nα,β(d) ≥ d
by Lemma 2.1. In fact, the spherical two-distance set constructed here forms a regular
(d − 1)-simplex.

Hereafter assume that kp(λ) < ∞. We first construct, for every signed graph G±
with χ(G±) ≤ p and λ1(G±) = λ, a spherical {α, β}-code of size ∣

∣G±∣
∣ in dimension∣

∣G±∣
∣ − mult(λ,G±) + p. Let V1, . . . , Vp be the color classes of a valid p-coloring.

Consider the unsigned graphG obtained from taking the symmetric difference between
the underlying graph of G± and the complete p-partite graph with parts V1, . . . , Vp.
The adjacency matrix of G is related to the signed adjacency matrix of G± by

AG = AG± + AK ,

where K is the complete p-partite graph with parts V1, . . . , Vp. Therefore,

λI − AG + μJ = (λI − AG±) + (μJ − AK ).

We have λI − AG± � 0 since λ1(G±) = λ. We now note that μJ − AK is positive
semidefinite. Indeed, for every x ∈ R

V (G±), we set si = ∑
v∈Vi xv for each i ∈

{1, . . . , p}, and we see

xᵀ(μJ − AK )x = μ

(
∑

i

si

)2

−
∑

i �= j

si s j = μ
∑

i

s2i − (1 − μ)
∑

i �= j

si s j .

Because
∑

i �= j si s j ≤ (p − 1)
∑

i s
2
i and p ≤ 1/(1 − μ), we conclude that

xᵀ(μJ − AK )x ≥
(

μ − (1 − μ)

(
1

1 − μ
− 1

)) ∑

i

s2i = 0.

Therefore μJ − AK � 0, and so λI − AG + μJ � 0. We conclude by Lemma 2.1
that there exists a spherical {α, β}-code of size ∣

∣G±∣
∣ in R

d , where

d = rank(λI − AG + μJ ) ≤ rank (λI − AG±) + rank(μJ − AK )

≤ ∣
∣G±∣

∣ − mult(λ,G±) + p.

Nowfix an arbitrary ε > 0. Take a signed graphG±
ε such that

∣
∣G±

ε

∣
∣/mult(λ,G±

ε ) ≤
kp(λ) + ε, χ(G±

ε ) ≤ p, and λ1(G±
ε ) = λ. For each positive integer 	, denote by 	G±

ε
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the disjoint union of 	 copies of G±
ε . We have

∣
∣	G±

ε

∣
∣ = 	

∣
∣G±

ε

∣
∣, mult(λ, 	G±) =

	mult(λ,G±), χ(	G±
ε ) = χ(G±

ε ) ≤ p and λ1(	G±
ε ) = λ1(G±

ε ) = λ. Thus we can
apply the above construction to G± = 	G±

ε to obtain a spherical {α, β}-code of size
	
∣
∣G±

ε

∣
∣ in dimension 	(

∣
∣G±

ε

∣
∣ − mult(λ,G±

ε )) + p. We conclude that

Nα,β(d) ≥ ∣
∣G±

ε

∣
∣

⌊
d − p

∣
∣G±

ε

∣
∣ − mult(λ,G±

ε )

⌋

≥ d

1 − mult(λ,G±
ε )/

∣
∣G±

ε

∣
∣

− Oα,β,ε(1)

≥ d

1 − 1/(kp(λ) + ε)
− Oα,β,ε(1) = (kp(λ) + ε)d

kp(λ) − 1 + ε
− Oα,β,ε(1).

Finally notice that when kp(λ) is achievable, we can take ε = 0 in the above
argument. ��

3 Structure of the Associated Graph

In this section we prove Theorem 1.7, which gives a structure characterization of
graphs that can arise from a spherical two-distance set. To that end, we introduce the
following notation.

Definition 3.1 Given a graph G, for sets Y ⊆ X ⊆ V (G), define CX (Y ) to be the set
of vertices in V (G) \ X that are adjacent to all vertices in Y and not adjacent to any
vertices in X \ Y , and for a set X ⊆ V (G) and � ∈ N, define

CX ,� =
⋃

Y⊆X : |Y |≤�

CX (Y ) and CX ,−� =
⋃

Y⊆X : |X\Y |≤�

CX (Y ).

We now present a series of structural lemmas leading to the proof of Theorem 1.7.

Lemma 3.2 For every λ > 0 and μ ∈ (0, 1), there exist � ∈ N and L0 ∈ N such that
for every graph G that satisfies λI − AG + μJ � 0 the following holds.

(a) Neither of the following is an induced subgraph of G:

(a1) The complete graph K�;
(a2) The complete (p + 1)-partite graph K�,...,�, where p = �1/(1 − μ).

(b) For every independent set X of size L in G, if L ≥ L0, then

(b1) The maximum degree of G[CX ,�] is less than �, and
(b2) The number of vertices not in CX ,� ∪ CX ,−� is at most L2L .

(c) For every pair of disjoint vertex subsets X1 and X2, each of size L, in G, if L ≥ L0
and G[X1 ∪ X2] is the complete bipartite graph with parts X1 and X2, then

(c1) Every vertex in CX1,� ∩ CX2,−� is adjacent to all but at most � vertices in
CX1,−� ∩ CX2,�, and

(c2) The number of vertices in CX1,� ∩ CX2,� is less than �.
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Proof of (a1) Suppose on the contrary thatG contains K� as a subgraph.Letv ∈ R
V (G)

be the vector that assigns 1 to vertices in K� and 0 otherwise. Then vᵀ(λI−AG+μJ )v

becomes

λ� − �(� − 1) + μ�2,

which would be negative if we had chosen � > (1 + λ)/(1 − μ). ��
Proof of (a2) Suppose on the contrary that G contains the complete (p + 1)-partite
graph K�,...,� as an induced subgraph. Again let v ∈ R

V (G) be the vector that assigns
1 to the vertices in K�,...,� and 0 otherwise. Then vᵀ(λI − AG + μJ )v becomes

λ(p + 1)� − p(p + 1)�2 + μ((p + 1)�)2 = (p + 1)� (λ − (p − μ(p + 1))�) .

Because p > 1/(1 − μ) − 1 = μ/(1 − μ) or equivalently p > μ(p + 1), the last
factor above would be negative if we had chosen � > λ/(p − μ(p + 1)). ��
Proof of (b1) Suppose on the contrary that a vertex u ∈ CX ,� has � neighbors
v1, . . . , v� ∈ CX ,�. Let v ∈ R

V (G) be the vector that assigns L to u, λL/� to
v1, . . . , v�, −(λ + 1) to the vertices in X , and 0 otherwise. Because u, v1, . . . , v� ∈
CX ,�, we have

1
2v

ᵀAGv ≥ λL2 − (λ + 1)�L − λ(λ + 1)�L = λL2 − (λ + 1)2�L.

Using this bound and the fact that vᵀ1 = 0, we obtain that vᵀ(λI − AG + μJ )v is at
most

λ(L2 + λ2L2/� + (λ + 1)2L) − 2(λL2 − (λ + 1)2�L)

= −λ(1 − λ2/�)L2 + Oλ,�(L),

which would be negative for sufficiently large L if we had chosen � > λ2. ��
Proof of (b2) To show that

∣
∣V (G)\(CX ,� ∪ CX ,−�)

∣
∣ ≤ L2L , it suffices to prove

|CX (A)| < L for every subset A of the independent set X such that |A| > � and
|X \ A| > �.

Write a = |A|, b = |X\A|, and c = |CX (A)|. For any α, β, γ ∈ R, we consider
the vector v ∈ R

V (G) that assigns α to the vertices in A, β to the vertices in X \ A, γ
to the vertices in CX (A), and 0 otherwise, and we have

0 ≤ vᵀ(λI − AG + μJ )v ≤ λ(aα2 + bβ2 + cγ 2) − 2acαγ + μ(aα + bβ + cγ )2.

In particular, taking β = −(aα + cγ )/(b + λ/μ), we obtain that for all α, γ ∈ R,

0 ≤ λ(aα2 + cγ 2) − 2acαγ + μλ

μb + λ
(aα + cγ )2.
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For this quadratic form in α and γ to be positive semidefinite, its discriminant must
be nonpositive:

(μb + λ(1 − μ))2

(μb + λ)2
a2c2 −

(

λa + μλa2

μb + λ

) (

λc + μλc2

μb + λ

)

≤ 0,

which simplifies to

(μb + λ(1 − μ))2ac ≤ λ2(μa + μb + λ)(μb + μc + λ). (1)

By the assumption that a, b > �, if we had taken� ≥ max{λ/μ, 4λ2, 2}, thenλ < μb
and λ2 < b/4, hence (1) would imply the following series of inequalities:

μ2ab2c < (b/4)(μa + 2μb)(2μb + μc) �⇒ abc < (a + b)(b + c)

�⇒ c <
(a + b)b

ab − a − b
≤ a + b = L. ��

Proof of (c1) Suppose on the contrary that a vertex u ∈ CX1,�∩CX2,−� is not adjacent
to v1, . . . , v� ∈ CX1,−� ∩ CX2,�. Let v ∈ R

V (G) be the vector that assigns L to v,
−λL/� to v1, . . . , v�,−1 to the vertices in X1,λ to the vertices in X2, and 0 otherwise.
Because u ∈ CX1,� ∩ CX2,−� and v1, . . . , v� ∈ CX1,−� ∩ CX2,�, we have

1
2v

ᵀAGv ≥ −�L + λ(L − �)L + (λL/�)�(L − �) − λL2 = λL2 − (2λ + 1)�L.

Using this bound and the fact that vᵀ1 = 0, we obtain that vᵀ(λI − AG + μJ )v is at
most

λ(L2 + λ2L2/� + L + λ2L) − 2(λL2 − (2λ + 1)�L)

= −λ(1 − λ2/�)L2 + Oλ,�(L),

which would be negative for sufficiently large L if we had chosen � > λ2. ��
Proof of (c2) Suppose on the contrary that CX1,� ∩ CX2,� contains v1, . . . , v�. Let
v ∈ R

V (G) be the vector that assigns 2L/� to v1, . . . , v�, −1 to the vertices in
X1 ∪ X2, and 0 otherwise. Because v1, . . . , v� ∈ CX1,� ∩ CX2,�, we have

1
2v

ᵀAGv ≥ −(2L/�)2�2 + L2 = −4�L + L2.

Using this bound and the fact that vᵀ1 = 0, we obtain that vᵀ(λI − AG + μJ )v is at
most

λ(4L2/� + 2L) − 2(−4�L + L2) = −2(1 − 2λ/�)L2 + Oλ,�(L),

which would be negative for sufficiently large L if we had chosen � > 2λ. ��
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Proof of Theorem 1.7 Let λ = (1 − α)/(α − β) and μ = α/(α − β) (and so p =
� − α/β + 1 = �1/(1 − μ)). As in Lemma 2.1, the associated graph G of the
spherical {α, β}-set satisfies λI − AG + μJ � 0.

Choose � and L0 as in Lemma 3.2. We shall prove that G, after removing at most
pL2L + (p

2

)
� + R(�, L2pL) vertices, is a p�-modification of a complete p-partite

graph, where L = L0 + (p + 2)� and R(·, ·) is the Ramsey number.
We may assume that |G| ≥ R(�, L) because otherwise G is vacuously a p�-

modification of a complete p-partite graph after removing all its vertices. By Lemma
3.2(a1) and Ramsey’s theorem, there exists an independent set of size L in G. Choose
the maximum t ≤ p such that the complete t-partite graph KL−t�,...,L−t� is an
induced subgraph of G (note that t ≥ 1 since there is an independent set of size L).
Let X1, . . . , Xt ⊂ V (G) be the parts of this t-partite graph.

Define for every i ∈ {1, . . . , t} the vertex subset

Vi = CXi ,� ∩
⋂

j �=i

CX j ,−�.

By (b1) and (c1) in Lemma 3.2, we see that the G[V1 ∪ · · · ∪ Vt ] is a t�-modification
of the complete t-partite graph with parts V1, . . . , Vt .

We bound U := V (G) \ (V1 ∪ · · · ∪ Vt ) as follows. Set

Ui = V (G) \ (CXi ,� ∪ CXi ,−�), U−
i j = CXi ,� ∩ CX j ,�, U+ =

⋂

i

CXi ,−�.

Note that U = (
⋃

i Ui ) ∪ (
⋃

i< j U
−
i j ) ∪ U+. It is enough to bound the cardinalities

ofUi ,Ui j ,U+. Lemma 3.2(b2) says that |Ui | ≤ L2L for each i . Lemma 3.2(c2) says

that
∣
∣
∣U−

i j

∣
∣
∣ ≤ � for i < j .

Finally, we claim thatU+ does not contain a subset of size L2t L that is independent
inG. Indeed, suppose on the contrary thatU+ contains an independent set of size L2t L .
Since every vertex in U+ has at least L − (t + 1)� neighbors in Xi for each i , by the
pigeonhole principle, there exist X ′

1 ⊆ X1, . . . , X ′
t ⊆ Xt and U ′ ⊆ U+, each of size

L − (t +1)�, such that G[X ′
1 ∪· · ·∪ X ′

t ∪U ′] is a complete (t +1)-partite graph with
parts X ′

1, . . . , X
′
t and U

′, which contradicts our choice of t or Lemma 3.2(a2) in case
t = p. This finishes the proof of the claim. In view of Lemma 3.2(a1) and Ramsey’s
theorem, we obtain

∣
∣U+∣

∣ < R(�, L2t L). In total, |U | ≤ t L2L +(t
2

)
�+ R(�, L2t L).

��

4 Graph EigenvalueMultiplicity Argument

We estimate the eigenvalue multiplicity of a signed graph with bounded maximum
degree by that of a (not necessarily connected) graph. Recall Definition 1.2 of the
spectral radius order k(λ).
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Lemma 4.1 For every λ > 0, � ∈ N, and j ∈ N, if G is an n-vertex graph with
maximum degree at most � and λ j (G) ≤ λ, then

mult(λ,G) ≤
{
n/k(λ) + O�, j,λ(1) if k(λ) < ∞,

O�, j (n/ log log n) otherwise.

Proof Let G1, . . . ,Gt be the connected components of G numbered such that
λ1(G1), . . . , λ1(Gs) > λ and λ1(Gs+1), . . . , λ1(Gt ) ≤ λ. Because λ j (G) ≤ λ,
we know that s < j . Set ni = |Gi | and n = ∑

ni = |G|.
For each i ≤ s, since Gi is a connected graph with maximum degree at most �

and λ j (Gi ) ≤ λ, Theorem 1.5 gives a constant C = C(�, j) such that

mult(λ,Gi ) ≤ Cni
log log ni

. (2)

We break the rest of the proof into two cases.
Case k(λ) < ∞. Set N0 = exp(exp(Ck(λ))). For i ≤ s, when ni ≥ N0, we can relax
(2) to mult(λ,Gi ) ≤ ni/k(λ); when ni < N0, clearly mult(λ,Gi ) ≤ ni < N0. To
sum up, for i ≤ s, we always have

mult(λ,Gi ) ≤ ni
k(λ)

+ N0. (3)

For each i > s, when λ1(Gi ) = λ, because Gi is connected, we know that ni ≥
k(λ), and so by the Perron–Frobenius theorem, we obtain

mult(λ,Gi ) ≤ 1 ≤ ni
k(λ)

; (4)

when λ1(Gi ) < λ, clearly (4) holds trivially. We combine (3) and (4) to obtain

mult(λ,G) =
t∑

i=1

mult(λ,Gi ) ≤
t∑

i=1

ni
k(λ)

+ sN0 ≤ n

k(λ)
+ O�, j,λ(1).

Case k(λ) = ∞. For i > s, because λ1(Gi ) ≤ λ and k(λ) = ∞, it must be the case
that λ1(Gi ) < λ, and so mult(λ,Gi ) = 0. Therefore (2) gives

mult(λ,G) =
s∑

i=1

mult(λ,Gi ) ≤ j · max
1≤i≤ j

Cni
log log ni

= O�, j

(
n

log log n

)

. ��

Next we prove Theorem 1.13, which states that

Nα,β(d) ≤
⎧
⎨

⎩

qk(λ)d

k(λ) − 1
+ Oα,β(1) if k(λ) < ∞,

qd + o(d) otherwise,
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where λ = (1 − α)/(α − β) and p = � − α/β + 1 and q = max{1, p/2}.
Proof of Theorem 1.13 In view of Lemma 2.1, consider a graph G̃ on Nα,β(d) vertices
satisfying

λI − AG̃ + μJ � 0 and rank
(
λI − AG̃ + μJ

) ≤ d,

where λ = (1 − α)/(α − β) and μ = α/(α − β). By Theorem 1.7 we obtain a
constant � = �(α, β) such that the graph, denoted G, obtained from G̃ by removing
at most � vertices is a �-modification of a complete p-partite graph, denoted K ,
where p = �1/(1 − μ). Define the signed graph G± by AG± = AG − AK . Notice
that the maximum degree of G± is at most �, and χ(G±) ≤ p.

Now the signed adjacency matrix of G± satisfies

λI − AG± + μJ − AK � 0 and rank(λI − AG± + μJ − AK ) ≤ d.

Note that rank(μJ − AK ) ≤ p. From the first condition above, we deduce using the
Courant–Fischer theorem that λp+1(λI − AG±) ≥ 0 or equivalently λp+1(G±) ≤ λ.
From the second condition above, we deduce using subadditivity of matrix ranks that
rank(λI − AG±) ≤ d + p or equivalently

mult(λ,G±) ≥ ∣
∣G±∣

∣ − (d + p). (5)

We break the rest of the proof into two cases.
Case p = 1. The signed graphG± consists of positive edges only. Lemma4.1 provides
the upper bound

mult(λ,G±) ≤
{∣

∣G±∣
∣ /k(λ) + Oα,β(1) if k(λ) < ∞,

o(
∣
∣G±∣

∣) otherwise.

Combining with (5), we get

∣
∣G±∣

∣ − (d + p) ≤
{∣

∣G±∣
∣ /k(λ) + Oα,β(1) if k(λ) < ∞,

o(
∣
∣G±∣

∣) otherwise,

which implies

∣
∣G±∣

∣ ≤
⎧
⎨

⎩

k(λ)d

k(λ) − 1
+ Oα,β(1) if k(λ) < ∞,

d + o(d) otherwise.

The desired upper bound on Nα,β(d) follows immediately in view of
∣
∣G±∣

∣ ≥
Nα,β(d) − �.
Case p ≥ 2. Let V1 and V2 be the largest parts of the complete p-partite graph K . Let
G±

12 be the signed subgraph of G
± induced on V1 ∪ V2, and let G12 be the underlying
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graph of G±
12. Notice that |G12| = |V1|+ |V2| ≥ 2

∣
∣G±∣

∣ /p, and the maximum degree
of G12 is at most �, and χ(G±

12) ≤ 2. Since χ(G±
12) ≤ 2, the signed graph G±

12 is
isospectral to its underlying graph G12. It follows from Lemma 4.1 that

mult(λ,G±
12) = mult(λ,G12) ≤

{
|G12| /k(λ) + Oα,β(1) if k(λ) < ∞,

o(|G12|) otherwise.

By the Cauchy interlacing theorem, we have

mult(λ,G±) − (
∣
∣G±∣

∣ − |G12|) ≤ mult(λ,G±
12).

Combining (5) and the above two inequalities, we get

|G12| − (d + p)
(5)≤ mult(λ,G±) − (

∣
∣G±∣

∣ − |G12|)

≤
{

|G12| /k(λ) + Oα,β(1) if k(λ) < ∞,

o(|G12|) otherwise,

which implies

|G12| ≤
⎧
⎨

⎩

k(λ)d

k(λ) − 1
+ Oα,β(1) if k(λ) < ∞,

d + o(d) otherwise.

The desired upper bound on Nα,β(d) follows immediately in view of the inequalities
|G12| ≥ 2

∣
∣G±∣

∣ /p and
∣
∣G±∣

∣ ≥ Nα,β(d) − �. ��
As a corollary, we obtain the following general lower bound on kp(λ).

Corollary 4.2 For all λ > 0 and p ≥ 2,

kp(λ) ≥ pk(λ)

pk(λ) − 2λ
.

Proof Comparing Proposition 2.2 and Theorem 1.13, we get

kp(λ)d

kp(λ) − 1
− o(d) ≤ pk(λ)d

2(k(λ) − 1)
+ Op,λ(1),

which implies the desired lower bound. (It is also not hard to prove Corollary 4.2
directly, but we do not do so here.) ��
Remark For general λ, we do not know any algorithm for computing k(λ) (or even
deciding whether k(λ) < ∞), though deciding whether k(λ) < k for each integer k
is a finite problem as can be done by a brute-force search over all graphs up to a fixed
size.
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Fig. 2 The Paley graph of order
9

Fig. 3 The Shrikhande graph

When λ ∈ N, we have k(λ) = λ+ 1 because the complete graph Kλ+1 is the graph
on fewest vertices with spectral radius λ. In contrast, even for λ ∈ N, computing the
exact values of kp(λ) seems to be very difficult for p ≥ 3. For λ = 2, Corollary
4.2 implies that k3(2) ≥ 9/5 and k4(2) ≥ 3/2. Note that both the Paley graph of
order 9 in Fig. 2 and the Shrikhande graph in Fig. 3 are strongly regular graphs with
−2 as their smallest eigenvalue with multiplicity 4 and 9 respectively. Moreover their
chromatic numbers are 3 and 4 respectively. The all-negative signed graphs of these
two strongly regular graphs would yield k3(2) ≤ 9/4 and k4(2) ≤ 16/9. We leave the
determination of kp(2) for p ≥ 3 as an open problem.

Theorems 1.12(a) and 1.12(b) follow easily from Theorem 1.13 and Proposition
2.2.

Proof of Theorem 1.12(a) Because p ≤ 2, we have q = max{1, p/2} = 1 and kp(λ) =
k(λ). Moreover, if k(λ) < ∞ then k(λ) can be achieved for kp(λ) by the smallest
graph whose spectral radius is exactly λ. Thus Theorem 1.13 and Proposition 2.2 give
matching bounds on Nα,β(d). ��

Proof of Theorem 1.12(b) Because λ = 1 and p ≥ 2, we have k(λ) = 2 and q =
max(1, p/2) = p/2. Thus Theorem 1.13 gives

Nα,β(d) ≤ pd + Oα,β(1). (6)

Corollary 4.2 implies that kp(1) ≥ p/(p−1). To see that p/(p−1) can be achieved
for kp(1), consider the all-negative complete signed graph K±

p on p vertices. Clearly
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χ(K±
p ) = p. Since the smallest eigenvalue of the complete unsigned graph Kp is −1

with multiplicity p−1, the largest eigenvalue of K±
p is 1 with multiplicity p−1. Now

Proposition 2.2 provides a lower bound that matches (6) up to an additive constant. ��

5 Forbidden Induced Subgraphs

The next lemma enables us to forbid finitely many induced subgraphs in the signed
graph that arises fromTheorem 1.7. Here an induced subgraph of a signed graph keeps
the original edge signs.

Lemma 5.1 Fix λ > 0, μ ∈ (0, 1), p ∈ N, and � ∈ N. For every signed graph H±
with λ1(H±) > λ, there exists n0 ∈ N such that for every t ≤ p and every graph G
that is a �-modification of a complete t-partite graph K , if λI − AG + μJ � 0, and
the size of each part of K is at least n0, then H± cannot be an induced subgraph of
the signed graph G± defined by AG± = AG − AK .

Proof Suppose that G is a �-modification of a complete t-partite graph K with parts
Ṽ1, . . . , Ṽt , and suppose that the size of each part of K is at least n0. Assume for the
sake of contradiction that H± with λ1(H±) > λ is an induced subgraph of G±. Take
n0 = (

∣
∣H±∣

∣ + pm)�, where m = �λ ∣
∣H±∣

∣ /(λ1(H±) − λ) + 1. We can greedily
find V1 ⊆ Ṽ1, . . . , Vt ⊆ Ṽt such that

(1) each Vi is disjoint from V (H±) and has size m,
(2) G induces a complete t-partite graph with parts V1, . . . , Vt ,
(3) for every vertex v of H±, if v ∈ Ṽi , then, in G, the vertex v is adjacent to every

vertex in Vj for j �= i , and is not adjacent to any vertex in Vi .

Let x ∈ R
V (H±) be a top eigenvector of H±, and set

si =
∑

u∈V (H±)∩Ṽi
xu .

Note that s2i ≤ ∣
∣V (H±) ∩ Ṽi

∣
∣ xᵀx for each i , which implies that

∑

i

s2i ≤ ∣
∣H±∣

∣ xᵀx. (7)

Consider the vector v ∈ R
V (G) extending x that in addition assigns −si/m to each

vertex in Vi for i ∈ {1, . . . , t}. Since v is chosen so that
∑

u∈Ṽi vu = 0 for each
i ∈ {1, . . . , t}, we have Jv = 0 and AK v = 0. Now we can simplify the quadratic
form as follows:

vᵀ(λI − AG + μJ )v = vᵀ(λI − AG± − AK + μJ )v = vᵀ(λI − AG±)v.
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Next, since no vertex in H± is adjacent to V1 ∪ · · · ∪ Vt in G±, we have

vᵀ(λI − AG±)v = xᵀ(λI − AH±)x + λ
∑

i

m(si/m)2

= (
λ − λ1(H

±)
)
xᵀx + λ

∑

i

s2i /m

≤ (
λ − λ1(H

±) + λ
∣
∣H±∣

∣ /m
)
xᵀx, by (7)

which is negative because m > λ
∣
∣H±∣

∣ /(λ1(H±) − λ). This contradicts λI − AG +
μJ � 0. ��

Lemma 5.1 leads us to bound eigenvaluemultiplicities in a restricted class of signed
graphs obtained by forbidding certain induced subgraphs.

Definition 5.2 Given a family H of signed graphs, let Mp,H(λ, N ) be the maximum
possible value of mult(λ,G±) over all signed graphs G± on at most N vertices that
do not contain any member ofH as an induced subgraph and satisfy χ(G±) ≤ p and
λp+1(G±) ≤ λ.

In our application,wewill only be allowed to forbid a finiteH such thatλ1(H±) > λ

for all H± ∈ H.

Remark We could choose H properly so that every signed graph G± considered in
Definition 5.2 ofMp,H(λ, N ) has its maximum degree bounded by a constant depend-
ing only on p and λ. In fact, set D = �λ2, and suppose thatH includes all the signed
graphs H± on D + 2 vertices with χ(H±) ≤ 2 such that the underlying graph of H±
contains the star K1,D+1. One can then show that for every graph G± that does not
contain any member of H as an induced subgraph, the maximum degree of G± is at
most χ(G±)D.

The next statement relates the maximum size of a spherical two-distance set with
the above eigenvalue multiplicity quantity.

Theorem 5.3 Fix −1 ≤ β < 0 ≤ α < 1. Set λ = (1 − α)/(α − β) and p =
� − α/β + 1. Let H be a finite family of signed graphs with λ1(H±) > λ for each
H± ∈ H. Then

Nα,β(d) ≤ d + Mp,H(λ, Nα,β(d)) + Oα,β,H(1).

Proof In view of Lemma 2.1, consider a graph G̃ on Nα,β(d) vertices satisfying

λI − AG̃ + μJ � 0 and rank(λI − AG̃ + μJ ) ≤ d,

where λ = (1−α)/(α −β) and μ = α/(α −β). By Lemma 3.2 we obtain a constant
� = �(α, β) such that G̃, after removing at most � vertices, is a �-modification of
a complete p-partite graph, where p = �1/(1 − μ).
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Let n0 = n0(α, β,H) be the maximum n0 given by Lemma 5.1 when it is applied
to each member ofH respectively with the parameters λ,μ, p, and�. After removing
at most � vertices from G̃, we can further remove at most pn0 vertices from G̃ to
obtain a graph, denoted G, that is a �-modification of a t-partite graph, denoted K ,
with each part of size at least n0, for some t ≤ p. Define the signed graph G± by
AG± = AG − AK . Since λI − AG + μJ � 0, by our choice of n0, we know that the
signed graph G± does not contain any member of H as an induced subgraph. Notice
that χ(G±) ≤ t ≤ p.

Now the signed adjacency matrix of G± satisfies

λI − AG± + μJ − AK � 0, (8a)

rank(λI − AG± + μJ − AK ) ≤ d. (8b)

Note that rank(μJ − AK ) ≤ t ≤ p. From (8a) we deduce using the Courant–Fischer
theorem that λp+1(λI − AG±) ≥ 0 or equivalently λp+1(G±) ≤ λ. Recall that G±
has at most Nα,β(d) vertices, G± does not contain any member of H as an induced
subgraph, and χ(G±) ≤ p. According to Definition 5.2,

mult(λ,G±) ≤ Mp,H(λ, Nα,β(d)).

From (8b) we deduce using subadditivity of matrix ranks that rank(λI − AG±) ≤
d + p or equivalently

mult(λ,G±) ≥ ∣
∣G±∣

∣ − (d + p).

Combining with
∣
∣G±∣

∣ ≥ Nα,β(d) − � − pn0, we get

Nα,β(d) ≤ ∣
∣G±∣

∣ + � + pn0

≤ d + mult(λ,G±) + � + p(n0 + 1)

≤ d + Mp,H(λ, Nα,β(d)) + Oα,β,H(1). ��
For each value of λ and p, if we could prove the following upper bound on the

eigenvalue multiplicity, then it would imply Conjecture 1.11 via Theorem 5.3.

Conjecture 5.4 For every λ > 0 and p ∈ N, there exists a finite family H of signed
graphs with λ1(H±) > λ for each H± ∈ H such that

Mp,H(λ, N ) ≤
{
N/kp(λ) + o(N ) if kp(λ) < ∞,

o(N ) otherwise.

We include the short deduction below that for eachλ > 0 and p ∈ N, Conjecture 5.4
implies Conjecture 1.11. Though, for deducing Theorem 1.12(c) in the next section,
we will prove each bound directly without resorting to Conjecture 5.4, in order to give
a slightly better error term of Oα,β(1) instead of o(d).
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Proof that Conjecture 5.4 implies Conjecture 1.11 for each λλλ > 0 and p ∈ N

Choose H as in Conjecture 5.4. In the case when kp(λ) < ∞, by Theorem 5.3, we
have

Nα,β(d) ≤ d + Mp,H(λ, Nα,β(d)) + Oα,β(1) ≤ d +
(

1

kp(λ)
+ o(1)

)

Nα,β(d).

Therefore

Nα,β(d) ≤
(

kp(λ)

kp(λ) − 1
+ o(1)

)

d,

which matches the lower bound in Proposition 2.2. The case of kp(λ) = ∞ is similar.
��

6 ThirdMoment Argument

For λ = √
3 and p = 3, we give a tight upper bound (verifying Conjecture 5.4) on

mult(λ,G±) for those signed graphs G± in Theorem 5.3, which implies a tight upper
bound on the corresponding Nα,β(d).

Theorem 6.1 There exists a finite family H of signed graphs with λ1(H±) >
√
3 for

each H± ∈ H such that

M3,H(
√
3, N ) ≤ 3N/7.

Proof Let H be the family of all the signed graphs H± on at most 5 vertices with
λ1(H±) >

√
3. For the sake of contradiction, assume that G± is a signed graph with

the minimum number of vertices such that χ(G±) ≤ 3, no member ofH is an induced
subgraph ofG±, andmult(

√
3,G±) > 3

∣
∣G±∣

∣ /7. By our choice ofH, every subgraph
of G± induced by at most 5 vertices has largest eigenvalue at most

√
3. Note that G±

is connected by its minimality. Let V (G±) = V1 � V2 � V3 be a valid 3-coloring of
G± allowing some Vi ’s to be empty, and let G be the underlying graph of G±. The
next four claims reveal the local structure of G±.

Claim 1 The edges of every triangle in G are all negative in G±.

Proof of Claim 1 Since χ(G±) is finite, every signed triangle in G±, other than the all
negative one, contains 0 or 2 negative edges. In either case, the chromatic number of
the signed triangle is 2, hence its largest eigenvalue equals λ1(K3) = 2. However,
every induced triangle of G± has largest eigenvalue at most

√
3. ��

Claim 2 If G induces a star on {v0, v1, v2, v3} centered at v0, then v1, v2, v3 are the
only neighbors of v0 in G, and moreover for every w �= v0 that is adjacent to at least
one of v1, v2, v3, exactly two of v1, v2, v3 are adjacent to w in G.
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Proof of Claim 2 Let w ∈ V (G) \ {v0, v1, v2, v3} be a vertex that is adjacent to at least
one of v0, v1, v2, v3, and consider the vector v ∈ R

W , whereW = {v0, v1, v2, v3, w},
that assigns

√
3 to v0, σ(v0vi ) to vi for i ∈ {1, 2, 3}, ε to w, where σ : E(G) → {±1}

is the signing of G± and ε ∈ R. According to our choice of v, we have

vᵀAG±[W ]v = 6
√
3 + 2ε

∑

viw∈E(G)

σ (viw)vvi .

By the Courant–Fischer theorem, we also have

vᵀAG±[W ]v ≤ λ1(G
±[W ])vᵀv ≤ √

3(6 + ε2).

For the last inequality to hold for all ε ∈ R, we must have

∑

viw∈E(G)

σ (viw)vvi = 0,

which implies that v0w /∈ E(G), and exactly two of v1, v2, v3 are adjacent to w in G.
��

Claim 3 The maximum degree of G is at most 4.

Proof of Claim 3 Suppose on the contrary that v0 is adjacent to at least 5 vertices in
G. Without loss of generality we may assume that v0 ∈ V1, and by the pigeonhole
principle that 3 neighbors, say v1, v2, v3, of v0 are in V1 ∪ V2. As χ(H±) ≤ 2, where
H± := G±[{v0, v1, v2, v3}], by Claim 1, H± contains no triangles. Thus G induces
a star on {v0, v1, v2, v3} centered at v0, and so by Claim 2, v0 has no neighbors other
than v1, v2, v3 in G, which leads to a contradiction. ��
Claim 4 The underlying graph G contains an induced star K1,3.

Proof of Claim 4 Suppose on the contrary that G does not contain any induced K1,3.
For every v ∈ V (G), the subgraph of G induced by the neighbors of v contains
no independent set of size 3, in particular, this induced subgraph contains at most 2
connected components, hence it contains at least dv − 2 edges, where dv is the degree
of v in G. In other words, every v ∈ V (G) is contained in at least dv − 2 triangles.

Recall from Claim 2 that every triangle in G has all its edges negatively signed.
Let λ1, λ2, . . . , λn be the eigenvalues of G±, where n = ∣

∣G±∣
∣, and let t be the total

number of triangles in G. Thus we have

−
∑

i

λ3i = − tr(A3
G±) = 6t ≥ 2

∑

v

(dv − 2).

Note that

∑

i

λ2i = tr(A2
G±) =

∑

v

dv and
∑

i

λi = tr(AG±) = 0.

123



224 Combinatorica (2023) 43:203–232

Thus we have

∑

i

(λ3i + 2λ2i − 7λi ) ≤ −2
∑

v

(dv − 2) + 2
∑

v

dv = 4n.

Since the characteristic polynomial of AG± is a polynomial with integer coefficients,
we obtain mult(−√

3,G±) = mult(
√
3,G±), which is more than 3n/7. For other

eigenvalues λi , by Claim 3, we know that λi ≥ −4, and so

λ3i + 2λ2i − 7λi = (λi − 1)2(λi + 4) − 4 ≥ −4.

Therefore

∑

i

(λ3i + 2λ2i − 7λi ) >
3n

7
· 2 · 2(√3)2 + n

7
· (−4) = 32n

7
> 4n,

which is a contradiction. ��
The following claim imposes restriction on G± with small number of vertices.

Claim 5 The number n of vertices in G is either 6 or at least 8. Moreover, if n ∈ {6, 8}
then G is a 3-regular graph, and the signed adjacency matrix of G± satisfies A2

G± =
3I .

Proof Claim 4 shows that n ≥ 4, and moreover when n = 4, G is precisely K1,3,
in which case mult(

√
3,G±) = mult(

√
3,G) = 1 ≤ 3n/7. Thus n ≥ 5. Because

mult(−√
3,G±) = mult(

√
3,G±) > 3n/7, we obtain

n ≥ mult(
√
3,G±) + mult(−√

3,G±) ≥ 2(�3n/7 + 1), (9)

which rules out n = 5 and n = 7. Therefore n = 6 or n ≥ 8. Suppose that n ∈ {6, 8}.
Note that equality must hold for (9). Thus mult(−√

3,G±) = mult(
√
3,G±) = n/2,

which implies that mult(3, A2
G±) = n. Hence A2

G± = 3I , which in particular implies
that G is a 3-regular graph. ��

Suppose G induces a star on {v0, v1, v2, v3} centered at v0. Let Li be the set of
vertices at distance i from v0 inG. FromClaim 2, we know that L1 = {v1, v2, v3}, and
moreover everyw ∈ L2 is adjacent to exactly two among v1, v2, v3. Because |G| ≥ 6,
it must be the case that L2 �= ∅. We break the rest of the proof into two cases.
Case |L2| = 1. Suppose L2 = {w}. By Claim 2, without loss of generality, w is
adjacent to v1 and v2. Because |G| ≥ 6, it must be the case that L3 �= ∅. Take any
w′ ∈ L3. Note that G induces a star on {w, v1, v2, w

′} centered at w. By Claim 2,
L3 = {w′} and L4 = ∅, which implies |G| = 6. By Claim 5, G is a 3-regular graph,
which is a contradiction.
Case |L2| ≥ 2. For every two w1, w2 ∈ L2, we claim that they do not have the
same pairs of neighbors in L1. Indeed, suppose on the contrary that both w1 and w2
are, without loss of generality, adjacent to v1 and v2 in L1. Since v2 is adjacent to
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Fig. 4 H±
3

v0, w1, w2, by Claim 2, G does not induce a star on {v0, v1, w1, w2} centered at v1,
and so w1w2 ∈ E(G). Now we have two triangles w1w2v1 and w1w2v2, which by
Claim 1 all have negative edges. Thus v1 and v2 are in the same part of the valid
3-coloring. Let H± := G±[v0, v1, v2, w1]. Then χ(H±) ≤ 2 and H± is a signed
4-cycle. Thus λ1(H±) = λ1(C4) = 2, where C4 denotes the 4-cycle, contradicting
λ1(H±) ≤ √

3.
Assume for a moment that |G| = 6. In this subcase, |L2| = 2 and L3 = ∅, and so

the degree of every vertex in L2 is 2. By Claim 5, G is a 3-regular graph, which is a
contradiction. Hereafter |G| ≥ 8.

Because no two vertices in L2 have the same pairs of neighbors in L1, |L2| ≤ (3
2

) =
3. Because |G| ≥ 8, it must be the case that L3 �= ∅. Take w1 ∈ L2 and w′ ∈ L3
such that w1w

′ ∈ E(G). Without loss of generality, suppose that w1 is adjacent to v1
and v2. Since G induces a star on {v1, v2, w1, w

′} centered at w1, by Claim 2, w′ is
the only neighbor of w1 in L3, and w′ has no neighbor in L4. Now take an arbitrary
vertex w2 ∈ L2\{w1}. Since w1 and w2 do not have the same pairs of neighbors in
L1, the vertex w2 is adjacent to only one of v1 and v2, and so w2w

′ ∈ E(G) by Claim
2. We can apply the previous argument to w2 in place of w1, and conclude that w′ is
the only neighbor of w2 in L3. Since w2 ∈ L1\{w1} was chosen arbitrarily, we know
that L3 = {w′} and L4 = ∅, which implies |L2| = 3 and |G| = 8.

Since G is a 3-regular graph by Claim 5, it is easy to see that G must be the cubical
graph. In view of Claim 5, G± is a signed cube that satisfies A2

G± = 3I , which means
that every square of G± contains odd number of negative edges. Because χ(G±) ≤ 3,
G± has no cycle with exactly one negative edge, and in particular every square of G±
contains exactly one positive edge. At this point, it is not hard to deduce that G± is
exactly H±

3 in Fig. 4. However χ(H±
3 ) = 4, which is a contradiction. ��

Proof of Theorem 1.12(c) Theorems 5.3 and 6.1 give

Nα,β(d) ≤ d + 3Nα,β(d)/7 + Oα,β(1),

which implies

Nα,β(d) ≤ 7d/4 + Oα,β(1). (10)

Comparing with Proposition 2.2, we get

k3(
√
3)d

k3(
√
3) − 1

− o(d) ≤ 7d

4
+ Oα,β(1),

123



226 Combinatorica (2023) 43:203–232

Fig. 5 Ĥ±
3

which implies that k3(
√
3) ≥ 7/3. One can check that the signed graph H±

3 in Fig. 4
satisfies

A2
H±
3

= 3I ,

and so mult(
√
3, H±

3 ) = mult(−√
3, H±

3 ) = 4. By the Cauchy interlacing theorem,
the signed graph Ĥ±

3 in Fig. 5, which is an induced subgraph of H±
3 on 7 vertices,

satisfies mult(
√
3, Ĥ±

3 ) = mult(−√
3, Ĥ±

3 ) = 3. Moreover χ(Ĥ±
3 ) = 3. Therefore

7/3 can be achieved for k3(
√
3) by Ĥ±

3 . Now k3(
√
3) = 7/3, and Proposition 2.2

provides a lower bound that matches (10) up to an additive constant. ��

7 Algebraic Degree Argument

We use the following simple observation to derive the asymptotic formula of Nα,β(d)

in the kp(λ) = deg(λ) case, where deg(λ) denotes the algebraic degree of λ. In
particular, the results in this section confirm Conjecture 1.11 when λ ∈ {√2,

√
3} and

p ≥ λ2 + 1.

Proposition 7.1 For every algebraic integer λ > 0 and every signed graph G±,

mult(λ,G±) ≤ ∣
∣G±∣

∣ / deg(λ).

In particular, kp(λ) ≥ deg(λ) for all p ∈ N.

Proof If λ is an eigenvalue of a signed graph G± then each of its conjugates must also
appear with equal multiplicity as eigenvalues of G±. Hence mult(λ,G±) deg(λ) ≤∣
∣G±∣

∣. ��
Proposition 7.2 For −1 ≤ β < 0 ≤ α < 1, set λ = (1 − α)/(α − β) and p =
� − α/β + 1. If λ is an algebraic integer of degree at least 2, then

Nα,β(d) ≤ deg(λ)(d + 1)

deg(λ) − 1
.

If in addition kp(λ) = deg(λ) and is achievable, then

Nα,β(d) = deg(λ)d

deg(λ) − 1
+ Oα,β(1).
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Fig. 6 H±
2

Proof ByLemma2.1,we see that ifG is the graph associated to a spherical {α, β}-code
of size N in R

d , then, setting μ = α/(α − β) as in Lemma 2.1, we have

d ≥ rank(λI − AG + μJ ) ≥ rank(λI − AG) − 1

= N − mult(λ,G) − 1 ≥
(

1 − 1

deg(λ)

)

N − 1,

where the final step applies Proposition 7.1. This yields the first claim. If in addition
kp(λ) = deg(λ) and is achievable, then Proposition 2.2 gives a matching lower bound.

��
Let us consider the case when λ is an algebraic integer of degree 2. Furthermore

suppose that kp(λ) = 2 and can be achieved by a signed graph G±. Note that both λ

and its conjugate element λ′ must have multiplicity
∣
∣G±∣

∣ /2 as the eigenvalues of G±.
Because the trace of AG± is 0, we know that λ + λ′ = 0. Therefore λ = √

n for some
n ∈ N and A2

G± = nI . It is natural to consider a signed n-dimensional hypercube H±
n

used by Huang’s recent spectacular proof of the sensitivity conjecture [7, Lemma 2.2],
in which every square of H±

n contains 1 or 3 positive edges.

Proof of Theorem 1.12(d) For λ ∈ {√2,
√
3} and p ≥ λ2 + 1, from Proposition 7.1 we

know kp(λ) ≥ 2. In view of Proposition 7.2 it suffices to prove that 2 can be achieved
for kp(λ). Consider the signed square H±

2 in Fig. 6 and the signed cube H±
3 in Fig. 4.

In either signed graph, every square contains one positive edge and three negative
edges. As a consequence

A2
H±
n

= nI , for n = 2 and 3,

which implies that the largest eigenvalue of H±
n is

√
n withmultiplicity 2n−1. It is easy

to check that χ(H±
2 ) = 3 and χ(H±

3 ) = 4. Thus kp(
√
2) = 2 for p ≥ 3, kp(

√
3) = 2

for p ≥ 4, and all of them are achievable. ��
Remark The constructions H±

2 and H±
3 in Figs. 4 and 6 do not generalize for λ = √

n
with n ≥ 5 due to the additional constraint on the chromatic number. Suppose that
H± is a signed n-dimensional hypercube such that A2

H± = nI and χ(H±) < ∞.
Because A2

H± = nI , every square of H± contains odd number of negative edges.
Because χ(H±) < ∞, H± has no cycle with exactly one negative edge, and in
particular every square of H± contains exactly one positive edge. Unfortunately, this
puts a great restriction on n. On the one hand, because every positive edge is contained
in n − 1 squares, and each of the 2n−2

(n
2

)
squares in H± contains a positive edge,

the number of positive edges is at least 2n−2
(n
2

)
/(n − 1) = n2n−3. On the other

hand, because the positive edges form a matching, there are at most 2n−1 of them.
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Fig. 7 H±
4

Therefore n2n−3 ≤ 2n−1 and so n ≤ 4. In fact, in addition to H±
2 and H±

3 , the signed
4-dimensional hypercube H±

4 in Fig. 7 satisfies A2
H±
4

= 4I and χ(H±
4 ) = 4.

When k(λ) = deg(λ), the next result determines kp(λ) for all p ∈ N. One can then
derive the corresponding Nα,β(d) fromProposition 7.2. Note that k(λ) = deg(λ) if and
only if there exists a graph with spectral radius λ whose characteristic polynomial is
irreducible. A result ofMowshowitz [13] states that such a graphmust be asymmetric2.
Asymmetric graphs have at least 6 vertices. There are 8 such graphs on 6 vertices [5].
Among these 8 asymmetric graphs on 6 vertices, exactly 7 of them have irreducible
characteristic polynomials,3 hence their spectral radii satisfy k(λ) = deg(λ).

Proposition 7.3 If λ is an algebraic integer and k(λ) = deg(λ), then kp(λ) = deg(λ)

and is achievable for all p ∈ N.

Proof Clearly kp(λ) ≤ k1(λ) = k(λ). Together with Proposition 7.1, we know that
deg(λ) ≤ kp(λ) ≤ k(λ). Thus if k(λ) = deg(λ), then deg(λ) = kp(λ) = k(λ),
and furthermore k(λ) can be achieved for kp(λ) by the smallest graph whose spectral
radius is exactly λ. ��
Corollary 7.4 For −1 ≤ β < 0 ≤ α < 1, set λ = (1 − α)/(α − β) and p =
� − α/β + 1. If λ is an algebraic integer and k(λ) = deg(λ), then

Nα,β(d) = deg(λ)d

deg(λ) − 1
+ Oα,β(1). ��

8 Signed Graphs with Large EigenvalueMultiplicities

In contrast to Theorem 1.5, there exist connected signed graphs with bounded maxi-
mum degree and chromatic number and linear largest eigenvalue multiplicity. In this
section, we show two such constructions. These constructions illustrate an important
obstacle to proving Conjecture 1.11 following the current framework introduced in
[10].

2 An asymmetric graph is a graph for which there are no automorphisms other than the trivial one.
3 It was asserted in [9, Sect. 4] that all 8 asymmetric graphs on 6 vertices have irreducible characteristic
polynomials. However the characteristic polynomial of the asymmetric graph is x(x5 − 8x3 −
6x2 + 8x + 6).
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Fig. 8 G±
6

Example 8.1 Let n ≥ 3. Let G±
n be the signed graph consisting of (see Fig. 8 for an

illustration of G±
6 )

(1) a positive n-cycle on v1, v2, . . . , vn ,
(2) n copies of a signed K5 with 3 positive edges forming a K3, and
(3) for each i ∈ {1, . . . , n}, a positive edge connecting vi and u+

i , a negative edge
connecting vi and u−

i , where u
+
i and u−

i are the two vertices outside the positive
K3 in the i-th copy of K5.

SoG±
n is a signed graph on 6n vertices ofmaximumdegree 5 and chromatic number

3. However the multiplicity of its largest eigenvalue is linear in
∣
∣G±

n

∣
∣. Theorem 1.14

is an immediate consequence of the following result.

Proposition 8.2 The largest eigenvalue of G±
n is (

√
33 + 1)/2 with multiplicity n.

Proof We denote by K±
5 the signed K5 with 3 positive edges forming a K3, and we

compute the spectrum of K±
5 to be (1−√

33)/2,−1,−1, 1, (1+√
33)/2. Because the

largest eigenvalue (
√
33+1)/2 is simple, by symmetry the corresponding eigenvector

assigns the same value to u+
i and u−

i . For the i-th copy of K±
5 in G±

n , we can extend
its top eigenvector to a vector xi on V (G±

n ) by padding zeros. Since.

(Axi )vi = (xi )u+
i

− (xi )u−
i

= 0,

where A denotes the signed adjacencymatrix ofG±
n , the vector xi is also an eigenvector

of G±
n associated with the eigenvalue (

√
33 + 1)/2.

For every vector x ∈ R
V (G±

n ) that is perpendicular to all xi , 1 ≤ i ≤ n, we claim
that xᵀAx ≤ 3xᵀx, and so all the eigenvalues other than the ones corresponding to
x1, . . . , xn are at most 3. Take such a vector x, and set U = {u+

1 , u−
1 , . . . , u+

n , u−
n }

and V = {v1, . . . , vn}. We take the orthogonal decomposition x = y + z such that
y and z are supported respectively on V (G±

n )\V and U ∪ V . In particular, for every
i ∈ {1, . . . , n},

( y)u+
i

= ( y)u−
i

= 1
2

(
xu+

i
+ xu−

i

)
and (z)u+

i
= −(z)u−

i
= 1

2

(
xu+

i
− xu−

i

)
.
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Fig. 9 H6

One can check that yᵀAz = 0. We can simplify

xᵀAx = ( y + z)ᵀA( y + z) = yᵀA y + zᵀAz.

Since x and z are both orthogonal to each xi , so is y = x − z. By the Courant–
Fischer theorem, we obtain yᵀA y ≤ λ2(K

±
5 ) yᵀ y = yᵀ y. As z is supported onU∪V ,

we bound zᵀAz by bounding the spectral radius of G±
n [U ∪ V ]. Since the chromatic

number of G±
n [U ∪ V ] is 2, the induced signed subgraph shares the same spectral

radius with its underlying graph, denoted H , on U ∪ V . Notice that the vector that
assigns 1 toU and 2 to V is an eigenvector of H with positive components associated
with the eigenvalue 3. By the Perron–Frobenius theorem, the spectral radius of H is 3.
Thus zᵀAz ≤ 3zᵀz. Recall that x = y + z is an orthogonal decomposition. Thus

xAx = yᵀA y + zᵀAz ≤ yᵀ y + 3zᵀz ≤ 3( yᵀ y + zᵀz) = 3xᵀx. ��
Even if we restrict the signed graph G± to be all-negative, its largest eigenvalue

multiplicity could still be linear in
∣
∣G±∣

∣. It suffices to construct the underlying graph
G with bounded maximum degree whose smallest eigenvalue multiplicity is linear in
|G|.
Example 8.3 Let n ≥ 3. Let Hn be the (unsigned) graph consisting of (see Fig. 9 for
an illustration of H6)

(1) an n-cycle on v1, v2, . . . , vn ,
(2) n copies of K3,3, and
(3) for each i ∈ {1, . . . , n}, two edges connecting vi to u1i and u2i , where u

1
i and u2i

are two adjacent vertices in the i-th copy of K3,3.

So Hn is a graphon7n vertices ofmaximumdegree 4.Moreover, since the chromatic
number of Hn is 3, the corresponding all-negative signed graph has the same chromatic
number.

Proposition 8.4 The smallest eigenvalue of Hn is −3 with multiplicity n.

123



Combinatorica (2023) 43:203–232 231

Proof We compute the spectrum of K3,3 to be 3, 0, 0, 0, 0,−3. For the i-th copy of
K3,3, we can extend the eigenvector associated with its smallest eigenvalue −3 to an
eigenvector xi on V (Hn) by padding zeros. To prove that all the eigenvalues other
than the ones corresponding to x1, . . . , xn are at least −(1 + √

3), it suffices to show
that xᵀAx ≥ −(1 + √

3)xᵀx for every vector x ∈ R
V (G±

n ) that is perpendicular
to all xi , 1 ≤ i ≤ n. Take such a vector x and take the orthogonal decomposition
x = y + z such that y and z are supported respectively on V (Hn)\V and V , where
V = {v1, . . . , vn}. Because x and z are orthogonal to each xi , so is y = x − z. By the
Courant–Fischer theorem, we obtain yᵀA y ≥ λ5(K3,3) yᵀ y = 0. We can simplify

xᵀAx = ( y + z)ᵀA( y + z) ≥ 2 yᵀAz + zᵀAz, (11)

where A denotes the adjacency matrix of Hn . Let H̄ be the connected graph consisting
of the n-cycle on v1, . . . , vn and two edges connecting vi to u1i and u2i for each
i ∈ {1, . . . , n}. Let x̄ be the restriction of x on V (H̄). Then the right hand side of
(11) is equal to x̄ᵀ Āx̄, where Ā denotes the adjacency matrix of H̄ . Notice that the
vector that assigns 1+ √

3 to vi and 1 to both u1i and u
2
i for every i ∈ {1, . . . , n} is an

eigenvector of H̄n with positive components associated with the eigenvalue 1 + √
3.

By the Perron–Frobenius theorem, the spectral radius of H̄ is 1 + √
3. Thus

xᵀAx ≥ x̄ᵀ Āx̄ ≥ −(1 + √
3)x̄ᵀ x̄ ≥ −(1 + √

3)xᵀx. ��
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