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Abstract
Purpose  Zanubrutinib (BGB-3111) is a potent Bruton’s tyrosine kinase inhibitor with promising clinical activity in B-cell 
malignancies. Zanubrutinib was shown to be mainly metabolized through cytochrome P450 3A (CYP3A) in vitro. We evalu-
ated the effect of steady-state rifampin (a strong CYP3A inducer) and steady-state itraconazole (a strong CYP3A inhibitor) 
on the pharmacokinetics (PK), safety, and tolerability of zanubrutinib in healthy Asian and non-Asian subjects.
Methods  In this open-label, two-part clinical study, 20 participants received a single oral dose of zanubrutinib (320 mg) and 
oral rifampin (600 mg) in Part A, and 18 participants received a single oral dose of zanubrutinib (20 mg) and oral itracona-
zole (200 mg) in Part B. Serial blood samples were collected after administration of zanubrutinib alone and zanubrutinib in 
combination with rifampin or itraconazole for the measurement of PK parameters.
Results  Coadministration with rifampin decreased AUC​0–∞ of zanubrutinib by 13.5-fold and Cmax by 12.6-fold. Coadmin-
istration with itraconazole increased the AUC​0–∞ of zanubrutinib by 3.8-fold and Cmax by 2.6-fold. The PK of zanubrutinib 
was consistent between Asian and non-Asian subjects, and  zanubrutinib was well tolerated in this study.
Conclusions  These results confirm that zanubrutinib is primarily metabolized by CYP3A in humans. The PK of zanubrutinib 
was comparable between Asian and non-Asian subjects and, therefore, no dose modifications are necessary for zanubrutinib 
in these ethnic populations.

Keywords  Clinical pharmacology · Clinical trials · Drug–drug interactions · Oncology · Pharmacokinetics and drug 
metabolism

Introduction

The B-cell receptor signaling pathway is essential for normal 
B-cell development but is also implicated in the survival 
and proliferation of malignant B cells [1–4]. Inhibition of 

B-cell receptor signaling has recently been established as an 
effective approach for the management of B-cell malignan-
cies [2]. Bruton’s tyrosine kinase (BTK) is a key component 
of the B-cell receptor signaling pathway [3], and the first-
generation BTK inhibitor, ibrutinib, has become a standard 
of care in chronic lymphocytic leukemia/small lymphocytic 
lymphoma (CLL/SLL), mantle cell lymphoma, and Walden-
ström macroglobulinemia [5–13].

Zanubrutinib (BGB-3111) is an investigational, highly 
specific, next-generation BTK inhibitor that has demon-
strated encouraging clinical activity in phase 1/2 studies 
[14–17] and is currently in phase 3 testing for multiple 
indications [18–20]. In patients with B-cell malignancies, 
zanubrutinib was generally well tolerated at total daily doses 
ranging from 40 to 320 mg, and the recommended phase 
2 dose is 160 mg administered twice daily [16]. Pharma-
cokinetic (PK) data showed that zanubrutinib was rapidly 
absorbed after oral administration, with Cmax observed at 
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approximately 2 h after dosing in patients with B-cell malig-
nancies. Exposure to zanubrutinib increased in a dose-pro-
portional manner from total daily doses of 40–320 mg and 
the mean half-life of zanubrutinib was approximately 2–4 h 
with minimal accumulation observed after repeated dosing. 
Total exposure was comparable when 320 mg total daily 
dose was administered as 160 mg twice daily or 320 mg 
once daily [21]. In human liver microsomes, the oxidative 
metabolism of zanubrutinib is largely mediated through the 
cytochrome P450 3A (CYP3A) pathway (unpublished data).

Drug–drug interactions (DDI) with CYP3A-mediated 
metabolism are particularly problematic in patients with 
B-cell malignancies such as CLL/SLL because these patients 
are at risk for systemic fungal infections due to underlying 
disease-related immune dysfunction and therapy-related 
immunosuppression [22]. Prophylactic or therapeutic use 
of azole anti-fungals is common in CLL/SLL [23], and the 
agents in this therapeutic class (e.g., voriconazole, posacona-
zole) are moderate-to-strong inhibitors of CYP3A [24, 25]. 
Because of the potential concomitant usage of these agents 
with zanubrutinib, it is important to understand the DDI 
potential between zanubrutinib and CYP3A inhibitors and 
inducers. Hence, the current study was designed to evaluate 
the effect of rifampin (a strong CYP3A inducer) and itracon-
azole (a strong CYP3A inhibitor) on the PK of zanubrutinib 
in healthy subjects. Rifampin and itraconazole were chosen 
because they are a preferred CYP3A inducer and inhibitor, 
respectively, in DDI studies [26, 27].

Due to the anticipated PK variability for zanubrutinib as 
a CYP3A substrate and underlying comorbidities in cancer 
patients, PK comparisons across patient studies to under-
stand potential ethnic differences could be challenging. To 
assess ethnic differences in PK more robustly, it is ideal to 
use a single protocol that controls extrinsic factors and that 
can be uniformly applied to the different ethnic populations. 
To this end, this DDI study included healthy Asian and non-
Asian subjects to facilitate comparison of zanubrutinib PK 
across different ethnic groups and to help support dose selec-
tion of zanubrutinib in clinical studies conducted in Asia.

Methods

Study design and subjects

The study was conducted in accordance with the Interna-
tional Conference on Harmonisation, Good Clinical Prac-
tice, and the Declaration of Helsinki guidelines. All partici-
pants provided written informed consent prior to study entry. 
The protocol was reviewed and approved by the Institutional 
Review Board at the study center.

This was an open-label, parallel-group, fixed-sequence 
study in healthy male and female subjects conducted in two 

parts, Part A and Part B. Part A investigated the effect of 
CYP3A induction by steady-state rifampin on the single-
dose PK of 320 mg zanubrutinib, and Part B investigated 
the effect of CYP3A inhibition by steady-state itraconazole 
on the single-dose PK of 20 mg zanubrutinib.

Healthy male or female subjects, aged between 18 and 
65 years, inclusive, with a body mass index between 18.0 
and 32.0 kg/m2, inclusive, who were of either first- or 
second-generation Asian descent (defined as an individual 
whose biological parents or four biological grandparents 
were born in one of the following East Asian countries 
or territories: China, Japan, Korea, Taiwan, Hong Kong, 
Mongolia, Cambodia, or Vietnam); or non-Asian descent 
(defined as an individual whose biological parents and four 
biological grandparents were not born in one of the previ-
ously listed East Asian countries), were selected according 
to the inclusion and exclusion criteria listed in the protocol.

It was planned that approximately 40 subjects (20 in each 
part) would be enrolled to ensure that at least 36 subjects 
(18 in each part) completed the study. It was planned that 
approximately one-third of subjects enrolled in the study 
would be Asian, and approximately two-thirds would be 
non-Asian.

Treatments

In Part A, participants received a single oral dose of zanu-
brutinib (320 mg) in the fasted state on Day 1 and Day 10. 
Oral rifampin (600 mg/day, Rifampin, VersaPharm Inc., 
Marietta, GA, USA) was administered once daily in the 
fasted state on Days 3 through 11. In Part B, participants 
received a single oral dose of zanubrutinib (20 mg) in the 
fasted state on Day 1 and Day 6. Oral itraconazole (200 mg/
day, Sporanox® capsules, Janssen Pharmaceuticals, Titus-
ville, NJ, USA) was administered once-daily approximately 
30 min after completing a meal on Days 3, 4, 5, and 7, and 
in the fasted state on Day 6.

Study assessments

Sample collection

Serial blood samples were collected with zanubrutinib alone 
and when combined with rifampin or itraconazole for the 
measurement of zanubrutinib plasma concentrations. Plasma 
samples were collected at predose, 0.5, 1, 1.5, 2, 3, 4, 6, 8, 
12, 24, 36, and 48 h postdose on Day 1 and Day 10 in Part 
A and on Day 1 and Day 6 in Part B.

Bioanalytical methodology

Plasma concentrations of zanubrutinib were determined 
using validated high-performance liquid chromatography 
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coupled with tandem mass spectrometry (HPLC–MS/MS) 
(Xenobiotic Laboratories, NJ, USA). Protein precipitation 
was utilized to extract the analyte and internal standard from 
human plasma containing dipotassium ethylenediaminetet-
raacetic acid (K2EDTA) as anticoagulant. The analytical 
method utilized a reversed-phase HPLC column (Supelco 
Ascentis Express C18 20 × 2.1 mm, 2.7 µm) with a gradient 
flow of 0.1% formic acid in water (Mobile Phase A) and 
methanol:acetonitrile (1:1) (Mobile Phase B) at a rate of 
0.5 mL/min. The analyte and internal standard were detected 
using an AB Sciex API-4000 LC–MS/MS system equipped 
with a positive ESI ion detection.

The calibration range of zanubrutinib in the assay was 
1.00 to 1000 ng/mL using a 50 μL aliquot of plasma, with 
the lower limit of quantification of 1.00 ng/mL. The per-
formance of calibration standards showed a good linearity 
from 1.00 to 1000 ng, with the coefficient of correlation 
(r) > 0.990, and the cumulative bias ranged from − 2.00 to 
3.00% and the cumulative precision was ≤ 5.34% coefficient 
of variation (CV). The results indicate the method to be sen-
sitive, selective, accurate, and reproducible.

Pharmacokinetic analysis

Noncompartmental PK analysis was conducted using the 
Phoenix® WinNolin® software (Version 6.4). PK param-
eters were derived for zanubrutinib alone and in combina-
tion with rifampin or itraconazole, including area under 
the plasma concentration–time curve (AUC), maximum 
observed plasma concentration (Cmax), time of the maxi-
mum observed plasma concentration (tmax), apparent termi-
nal elimination half-life (t1/2), apparent total oral clearance 
(CL/F), and apparent volume of distribution during the ter-
minal elimination phase (Vz/F). Log-transformed area under 
the curve from time 0 extrapolated to time t (AUC​0–t), area 
under the curve from time 0 extrapolated to infinite time 
(AUC​0–∞), and Cmax of zanubrutinib were analyzed using a 
mixed model for each part of the study, including treatments 
as a fixed effect and subject as a random effect. Estimates of 
geometric mean ratios (GMRs) and the corresponding 90% 
confidence intervals (CIs) were derived for the comparisons 
of AUC​0–∞, and Cmax as follows:

Part A: zanubrutinib coadministration with rifampin (test) 
versus zanubrutinib alone (reference),

Part B: zanubrutinib coadministration with itraconazole 
(test) versus zanubrutinib alone (reference).

Safety analysis

Treatment-emergent adverse events (TEAEs) are summa-
rized by part, treatment, National Cancer Institute Common 
Terminology Criteria for Adverse Events (v4.03) grade, 
and relationship to study drugs (zanubrutinib, rifampin, 

and itraconazole). The frequency of TEAEs is summarized 
by part, treatment, and Medical Dictionary for Regulatory 
Activities (MedDRA) system organ class (SOC) and pre-
ferred term. The summary and frequency TEAE tables are 
presented for all causalities and for those TEAEs considered 
related to the study drugs.

Results

Demographics

In Part A, 20 subjects were enrolled, and 19 subjects com-
pleted the study; in Part B, 18 subjects were enrolled, and 
17 subjects completed the study. All subjects in Parts A and 
B were included in the safety and PK analysis sets. Base-
line demographics for participants in Part A and Part B are 
shown in Table 1. The mean participant age was 40 years, 
and 76.3% were male. In Part A and Part B, 40.0% and 
44.4%, respectively, were Asian. All Asian patients included 
in the study were of first-generation Chinese descent.

Pharmacokinetics

Part A

The plasma concentration–time profiles and PK parameters 
of zanubrutinib in the absence and presence of rifampin are 
shown in Fig. 1a and Table 2, respectively. Plasma concen-
trations of zanubrutinib were significantly lower follow-
ing coadministration of 320 mg zanubrutinib with 600 mg 
rifampin compared with the administration of 320 mg zanu-
brutinib alone. As shown in Table 2, GMRs (90% CI) of 
AUC​0–∞ and Cmax for zanubrutinib were 7.4% (6.0–9.1) 
and 7.9% (6.6–9.5), respectively. These results represented 
a decreased exposure of 13.5-fold for AUC​0–∞, and 12.6-
fold for Cmax when zanubrutinib was co-administered with 
rifampin. The geometric mean apparent t1/2 of zanubrutinib 
was shorter following coadministration of rifampin (4.8 h) 
compared to administration of zanubrutinib alone (6.8 h). 
AUC​0–t values were consistent with AUC​0–∞ values because 
of the short half-life of zanubrutinib, and hence only AUC​
0–∞ values are presented in this manuscript. Apparent clear-
ance (CL/F) was increased from 93 to 1249 L/h, and this 
likely reflects a significant decrease in bioavailability (F) of 
zanubrutinib when coadministered with rifampin.

The PK parameters of zanubrutinib were comparable 
between Asian and non-Asian subjects following adminis-
tration of 320 mg zanubrutinib alone on Day 1 as well as 
coadministration with 600 mg rifampin on Day 10 (Sup-
plementary Table 1 and Fig. 2a, b).
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Part B

The plasma concentration–time profiles and PK parameters 
of zanubrutinib in the absence and presence of itraconazole 
are shown in Fig. 1b and Table 3, respectively. Plasma con-
centrations of zanubrutinib were significantly higher follow-
ing coadministration of 20 mg zanubrutinib with 200 mg 
itraconazole than the administration of 20 mg zanubrutinib 
alone. As shown in Table 3, GMRs (90% CI) for AUC​0–∞ 
for zanubrutinib was 378% (344–415), respectively. The 
GMR (90% CI) for zanubrutinib Cmax was 257% (226–291). 
These results represented an increased exposure of 3.8-fold 
for AUC​0–∞, and 2.6-fold for Cmax when zanubrutinib was 
co-administered with itraconazole. The geometric mean 
apparent t1/2 of zanubrutinib was longer following coadmin-
istration of 20 mg zanubrutinib with 200 mg itraconazole 
(4.3 h) compared to administration of 20 mg zanubrutinib 
alone (2.2 h). However, as the terminal elimination phase of 
zanubrutinib may not have been adequately characterized 
with the 20-mg dose (due to concentrations being below the 
limit of quantification beyond 12 h post-dose), the increase 
in t1/2 following co-administration with itraconazole should 
be interpreted with caution.

The PK of zanubrutinib was comparable between Asian 
and non-Asian subjects following administration of 20 mg 

zanubrutinib alone on Day 1 and coadministration with 
200 mg itraconazole on Day 6 (Supplementary Table 1 and 
Fig. 2c, d).

Safety

Zanubrutinib was well tolerated in this study. The overall 
incidence of TEAEs was low–less than 30% in both Part A 
and Part B. Single doses of 320 mg and 20 mg zanubrutinib 
administered alone or co-administered with 600 mg rifampin 
and 200 mg itraconazole, respectively, were well tolerated in 
healthy subjects. In both parts, no subject reported a TEAE 
higher than Grade 2 or an SAE, and no subject discontinued 
due to a TEAE. The majority of TEAEs were considered 
not related to the study drugs, were Grade 1 in severity, and 
resolved without treatment. No clinically significant changes 
or findings were noted in clinical laboratory evaluations, 
vital signs, physical examinations, or body weight in this 
study. No subject had a QTcF value > 450 ms or an increase 
from baseline in QTcF of > 60 ms during the study.

Table 1   Summary of participant 
demographics at screening

BMI body mass index, N number of subjects, QD once daily, SD standard deviation
Part A, Day 1: single oral dose of 320 mg zanubrutinib; Days 3 to 9 and 11: oral dose of 600 mg rifampin 
QD. Day 10: single oral dose of 320 mg zanubrutinib coadministered with 600 mg rifampin QD
Part B, Day 1: single oral dose of 20 mg zanubrutinib; Days 3 to 5 and 7: oral dose of 200 mg itraconazole 
QD

Part A (N = 20) Part B (N = 18) Overall (N = 38)

Age, years
 Mean (SD) 39 (9.6) 42 (10.6) 40 (10.1)

Sex, n (%)
 Male 15 (75.0) 14 (77.8) 29 (76.3)
 Female 5 (25.0) 4 (22.2) 9 (23.7)

Race, n (%)
 Asian 8 (40.0) 8 (44.4) 16 (42.1)
 Black or African American 4 (20.0) 1 (5.6) 5 (13.2)
 White 7 (35.0) 9 (50.0) 16 (42.1)
 Multiple 1 (5.0) 0 1 (2.6)

Ethnicity
 Hispanic or Latino 2 (10.0) 3 (16.7) 5 (13.2)
 Not Hispanic or Latino 18 (90.0) 15 (83.3) 33 (86.8)

Weight, kg
 Mean (SD) 76.6 (8.75) 81.0 (15.6) 78.6 (12.5)

Height, cm
 Mean (SD) 173 (8.5) 174 (12.7) 174 (10.6)

BMI, kg/m3

 Mean (SD) 25.5 (1.73) 26.5 (2.93) 26.0 (2.39)
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Discussion

The results from this clinical assessment confirm that zan-
ubrutinib is primarily metabolized by CYP3A in humans 
and is a sensitive CYP3A substrate. Rifampin significantly 
affected the bioavailability and apparent clearance of zanu-
brutinib as reflected by a 13.5-fold decrease in AUC​0–∞, 
12.6-fold decrease in Cmax when co-administered with 
rifampin. Therefore, zanubrutinib should not be co-admin-
istered with strong CYP3A inducers such as rifampin as the 
resulting decrease in zanubrutinib exposure may impact its 
efficacy.

Itraconazole increased the bioavailability and decreased 
the apparent clearance of zanubrutinib, as evident by the 
increased exposure of 3.8-fold for AUC​0–∞, and 2.6-fold for 
Cmax. DDI with strong CYP3A inducers and inhibitors have 
also been reported for other BTK inhibitors such as ibruti-
nib (24-fold increase in AUC with ketoconazole and tenfold 
reduction in AUC with rifampin) and acalabrutinib (5.1-fold 
increase in AUC with itraconazole and 77% decrease in 
AUC with rifampin) [25, 28].

The absolute bioavailability of zanubrutinib is unknown 
and, therefore, based on the magnitude of interaction 
observed in Part A of this study and the known interactions 
between CYP3A inhibitors and other BTK inhibitors, a 

Fig. 1   Arithmetic mean (+ SD) 
zanubrutinib plasma concentra-
tion profiles following a admin-
istration of 320 mg alone and 
coadministration with 600 mg 
rifampin or b administration of 
20 mg alone and coadministra-
tion with 200 mg itraconazole. 
Zanubrutinib plasma concentra-
tions on Y-axis are shown on 
log scale
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dose of 20 mg of zanubrutinib was conservatively chosen 
for Part B to study the CYP3A inhibition with itraconazole. 
Although the 20 mg dose was not studied previously, based 
on the available PK data from this study and other studies 
[21], zanubrutinib exhibits dose-proportional and linear PK 
over the dose range of 20–320 mg. Therefore, the results 
from the 20 mg dose used in this study can be extrapolated 
to clinically relevant doses such as 160 mg BID.

The half-life after administration of the 320 mg dose 
without rifampin was 6.8 h, which was longer than the 2–4 h 
half-life observed in previous studies in patients with B-cell 
malignancies. The difference may be attributed to the differ-
ent PK sampling scheme used in this study where PK was 
followed until 48 h post-dose. In patient studies, PK was 
generally assessed only for 8 h post-dose [21] to improve 
patient convenience, and the half-life may have been under-
estimated in patients.

Asian and non-Asian healthy subjects were enrolled in 
this dedicated DDI study to assess any ethnic differences 
in PK and to support dose selection and clinical develop-
ment of zanubrutinib in Asia. The exposure of zanubruti-
nib in Asian subjects was comparable with the non-Asian 
subjects at both 20-mg and 320-mg doses, and the magni-
tude of interaction with rifampin and itraconazole was also 
comparable between the Asian and non-Asian subjects. 
These results confirm that there are no significant ethnic 
differences in PK of zanubrutinib, and dose-adjustments are 
not required in Asian patients. The current study provides a 
reliable assessment of ethnic comparisons of PK as part of 
a dedicated clinical pharmacology study in healthy subjects 
when cross-study comparisons can be challenging in patients 
because of the variability in PK and underlying comorbidi-
ties for a sensitive CYP3A substrate.

Table 2   Summary of pharmacokinetic parameters of zanubrutinib following administration of 320 mg zanubrutinib alone and coadministration 
with 600 mg rifampin – Part A

AUC​ area under the plasma concentration–time curve, CL/F apparent total oral clearance, Cmax maximum plasma concentration, QD once daily, 
t1/2 apparent terminal elimination half-life, tmax time of the maximum observed plasma concentration, Vz/F apparent volume of distribution dur-
ing the terminal elimination phase
a Geometric mean data (% coefficient of variation) except where otherwise noted
b Median (min–max)
c Ratio of zanubrutinib in combination with rifampin versus zanubrutinib alone

Pharmacokinetic parameter (units)a 320 mg zanubrutinib (n = 20) 320 mg zanubrutinib + 600 mg 
rifampin QD (n = 20)

Geometric ratio of 
adjusted means, % (90% 
CI)c

AUC​0–∞, h·ng/mL (mean CV%) 3524 (36) (n = 18) 261 (43) (n = 18) 7.4 (6.0, 9.1)
Cmax, ng/mL 532 (40) 42 (41) 7.9 (6.6, 9.5)
tmax

b, h 2.0 (0.5–6.0) 2.0 (0.5–4.0) –
t1/2, h 6.8 (54) 4.8 (91) –
CL/F, L/h 93 (36) 1249 (43) –
Vz/F, L 914 (73) 8665 (70) –

Table 3   Summary of 
pharmacokinetic parameters 
of zanubrutinib following 
administration of 20 mg 
zanubrutinib alone and 
coadministration with 200 mg 
itraconazole – Part B

AUC​ area under the plasma concentration–time curve, CL/F apparent total oral clearance, Cmax maximum 
plasma concentration, QD once daily, t1/2 apparent terminal elimination half-life, tmax time of the maximum 
observed plasma concentration, Vz/F apparent volume of distribution during the terminal elimination phase
a Geometric mean data (% coefficient of variation) except where otherwise noted
b Median (min–max)
c Ratio of zanubrutinib in combination with itraconazole versus zanubrutinib alone

Pharmacokinetic 
parameter (units)a

20 mg zanubrutinib 
(n = 18)

20 mg zanubrutinib + 200 mg 
itraconazole QD (n = 18)

Geometric ratio of 
adjusted means, % (90% 
CI)c

AUC​0–∞, h·ng/mL 184 (29) 693 (31) 378 (344, 415)
Cmax, ng/mL 48 (41) 122 (29) 257 (226, 291)
tmax

b, h 1.5 (1.0–4.0) 2.0 (1.0–3.0) –
t1/2, h 2.2 (18.2) 4.3 (45) –
CL/F, L/h 109 (29) 29 (31) –
Vz/F, L 341 (34) 178 (29) –
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Fungal and bacterial infections are commonly observed 
in patients with B-cell malignancies and may require treat-
ment with medications that are strong or moderate inhibi-
tors of CYP3A such as voriconazole and posaconazole. In 
these instances of co-medication with CYP3A inhibitors, 
it would be ideal for patients to continue BTK inhibitor 
therapy, because it has been demonstrated that dose inter-
ruptions with BTK inhibitors can affect their efficacy. For 
example, patients with chronic lymphocytic leukemia/small 
lymphocytic lymphoma missing ≥ 8 consecutive days of 
ibrutinib had a shorter progression-free survival compared 
with those missing < 8 days [29]. Based on the magnitude of 

interaction with the strong CYP3A inhibitor itraconazole in 
this study (< 4-fold increase in AUC), it is anticipated that 
patients taking zanubrutinib may not require dose interrup-
tions and could continue treatment with a lower dose when 
coadministered with a strong inhibitor of CYP3A to avoid 
exceeding exposures associated with the maximum clinically 
tested dose of 320 mg daily.

The results from this DDI study will be used to refine 
existing in silico physiologically-based PK (PBPK) simula-
tions (unpublished) and assess the impact of moderate and 
weak CYP3A inhibitors and inducers on the PK of zanu-
brutinib. Findings from this clinical study and the PBPK 
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Fig. 2   Comparative box plots of area under the plasma concentra-
tion–time curve from 0 h to infinity (AUC​0–∞, ng·h/mL) and maximal 
plasma concentration (Cmax; ng/mL) in Asian and non-Asian) subjects 
in a, b the absence and presence of rifampin and c, d in the absence 

and presence of itraconazole. The box plot represents 25th and 75th 
percentiles; whiskers extend to 5th and 95th percentiles. Median is 
indicated by a line within the box, and circles represent values for 
individual subject



398	 Cancer Chemotherapy and Pharmacology (2020) 85:391–399

1 3

simulations in conjunction with safety and efficacy data from 
clinical studies will be used to recommend appropriate dose 
modifications when patients are required to take zanubruti-
nib concomitantly with moderate or strong inhibitors and 
inducers of CYP3A.

Single doses of 320 mg and 20 mg zanubrutinib admin-
istered alone or co-administered with 600 mg rifampin and 
200 mg itraconazole, respectively, were well tolerated in 
healthy subjects in this study.

Conclusions

The results from this DDI study confirm that zanubrutinib is 
primarily metabolized by CYP3A in humans. PK of zanu-
brutinib was comparable between Asian and non-Asian sub-
jects and, therefore, no dose modifications are necessary for 
zanubrutinib in these ethnic populations.
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