
Vol.:(0123456789)

Abdominal Radiology 
https://doi.org/10.1007/s00261-024-04331-7

HOLLOW ORGAN GI

Deep learning nomogram for predicting neoadjuvant chemotherapy 
response in locally advanced gastric cancer patients

Jingjing Zhang1 · Qiang Zhang2 · Bo Zhao3 · Gaofeng Shi1

Received: 7 March 2024 / Revised: 2 April 2024 / Accepted: 3 April 2024 
© The Author(s) 2024

Abstract
Purpose  Developed and validated a deep learning radiomics nomogram using multi-phase contrast-enhanced computed 
tomography (CECT) images to predict neoadjuvant chemotherapy (NAC) response in locally advanced gastric cancer (LAGC) 
patients.
Methods  This multi-center study retrospectively included 322 patients diagnosed with gastric cancer from January 2013 to 
June 2023 at two hospitals. Handcrafted radiomics technique and the EfficientNet V2 neural network were applied to arterial, 
portal venous, and delayed phase CT images to extract two-dimensional handcrafted and deep learning features. A nomogram 
model was built by integrating the handcrafted signature, the deep learning signature, with clinical features. Discriminative 
ability was assessed using the receiver operating characteristics (ROC) curve and the precision-recall (P-R) curve. Model 
fitting was evaluated using calibration curves, and clinical utility was assessed through decision curve analysis (DCA).
Results  The nomogram exhibited excellent performance. The area under the ROC curve (AUC) was 0.848 [95% confidence 
interval (CI), 0.793–0.893)], 0.802 (95% CI 0.688–0.889), and 0.751 (95% CI 0.652–0.833) for the training, internal valida-
tion, and external validation sets, respectively. The AUCs of the P-R curves were 0.838 (95% CI 0.756–0.895), 0.541 (95% CI 
0.329–0.740), and 0.556 (95% CI 0.376–0.722) for the corresponding sets. The nomogram outperformed the clinical model 
and handcrafted signature across all sets (all P < 0.05). The nomogram model demonstrated good calibration and provided 
greater net benefit within the relevant threshold range compared to other models.
Conclusion  This study created a deep learning nomogram using CECT images and clinical data to predict NAC response in 
LAGC patients undergoing surgical resection, offering personalized treatment insights.
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Introduction

Gastric cancer ranks as the fifth most prevalent malignant 
neoplasm globally and stands as the third most common 
cause of cancer-related mortality worldwide [1]. Approxi-
mately 50% of all gastric cancer cases occur in China [2]. 
Although surgery serves as the cornerstone of treatment for 
locally advanced gastric cancer (LAGC), the 5-year survival 
rate persists at a modest 20–30% [3, 4]. Neoadjuvant chemo-
therapy (NAC) has become a crucial additional treatment 
modality for LAGC, aiming to increase the R0 resection 
rate and improve prognosis by shrinking tumors. Patients 
with LAGC, stage T2 or above, are recommended to have 
NAC [5]. However, studies indicate significant individual 
variability in the response of LAGC patients to NAC, with 
some developing resistance [6]. For such patients, NAC not 
only fails to provide additional survival benefits but also 
introduces unnecessary toxicity and may increase the risk 
of disease progression [7]. The efficacy of NAC in patients 
with LAGC can be assessed through methods such as tumor 
regression grade (TRG) or the Mandard scoring system, 
which evaluate postoperative tissue [8]. The aforementioned 
methods evaluate patients’ response to NAC based on the 

extent of residual tumor in postoperative tissue specimens, 
providing clinicians with crucial information regarding 
patients’ treatment response and guiding further treatment 
strategies. Previous studies have found that for TRG 0 or 1 
patients without adverse prognostic factors, the option of 
no postoperative chemotherapy may be considered, whereas 
for patients with TRG 2 or 3, postoperative chemotherapy 
may be necessary [9, 10]. However, these methods rely on 
pathologic results obtained after tumor surgical resection, 
making them challenging to apply for predictions before 
NAC. Currently, tumor staging (Tumor Node Metastasis, 
TNM) and histological subtype are commonly used for risk 
stratification and treatment decisions [11]. However, even 
in patients with similar staging and receiving similar NAC, 
significant differences in prognosis persist, suggesting that 
the clinical and pathological risk factors currently employed 
may not accurately predict the individual patient prognosis 
after NAC [12]. Therefore, there is an urgent need in clinical 
practice for biomarkers capable of predicting the response 
to NAC, providing better guidance for treatment decisions.

Computed Tomography (CT) is presently the predomi-
nant imaging modality utilized in clinical settings for the 
diagnosis, staging, and post-treatment surveillance of gastric 
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cancer. However, conventional CT examinations, based on 
visual observation, have limited predictive value for NAC 
prognosis [13]. Radiomics is a data computation and analy-
sis method, based on medical imaging, aiming to uncover 
features not visible to the naked eye by extracting numerous 
quantitative features, providing a comprehensive description 
of tumor heterogeneity [14]. A previous study has shown 
that image analysis techniques, based on CT radiomics, can 
offer morphological features, texture, and other character-
istics of tumors in CT images, thereby assisting clinicians 
in predicting the response of gastric cancer patients to NAC 
[15].

However, radiomics requires manual extraction and selec-
tion of features, which may be subject to subjective influ-
ences leading to perceived biases. In contrast, deep learning 
technology, which has been widely utilized across various 
disciplines, has demonstrated significant advantages [16]. 
Deep learning models can automatically identify features 
and representations from raw data through an end-to-end 
learning process, reducing the need for manual feature 
extraction. Previous researchers have successfully applied 
this technology to predict lymph node metastasis, perito-
neal metastasis, molecular subtypes, and prognosis of gas-
tric cancer, achieving satisfactory results with good gener-
alization in validation sets [17–19]. Deep learning models 
exhibit excellent generalization, with features and patterns 
learned from one dataset potentially adapting well to other 
datasets. A previous study has shown that the integration 
of deep learning and handcrafted radiomics features into 
a nomogram can accurately predict the response of locally 
advanced cervical cancer patients to NAC, whose perfor-
mance is significantly superior to that of the clinical model 
and handcrafted radiomics features [20]. Additionally, some 
researchers have combined deep learning and handcrafted 
radiomics for predicting the response of breast cancer to 
NAC, with its efficacy surpassing that of the clinical model 
[21]. This study aimed to utilize multi-phase enhanced CT 
images and leverage both traditional radiomics and deep 
learning techniques to develop a radiomics clinical features 
model for prediction of NAC effectiveness. Moreover, this 
study endeavored to investigate the supplementary value of 
the model in predicting patients’ progression-free survival 
(PFS).

Materials and methods

Patient and inclusion criteria

The subjects of this study were 414 patients diagnosed 
with LAGC at two Chinese hospitals. Both institutions 
had identical inclusion and exclusion criteria. Inclusion 
criteria included: (a) gastric adenocarcinoma confirmed 

through histopathological examination; (b) LAGC diagnosis 
based on preoperative CT scans or laparoscopic examina-
tion according to the American Joint Committee on Can-
cer (AJCC) TNM staging manual (8th edition), defined as 
cT2 ~ 4/N0 ~ N3/M0; (c) undergoing gastrectomy and lymph 
node dissection after NAC, with confirmation of TRG on 
postoperative pathological examination; (d) having under-
gone multi-phase contrast-enhanced CT scans before treat-
ment. Exclusion criteria included: (a) inability to identify the 
primary tumor on CT or bad CT image quality (e.g., severe 
artifacts) preventing accurate measurements; (b) concur-
rent presence of other malignancies; (c) receiving antican-
cer treatment before baseline CT scanning; (d) incomplete 
clinical or pathologic data. Ethical approval was secured 
from the Ethics Review Committees of both participating 
medical centers. Given the retrospective nature of the study, 
informed consent was waived.

This study divided patients into three sets: (1) Train-
ing set and internal validation set: A total of 284 LAGC 
patients who sought medical attention at the Fourth Hospi-
tal of Hebei Medical University from January 2013 to June 
2023 were initially considered. Following the inclusion/
exclusion criteria mentioned above, 225 patients were ulti-
mately included. They were randomly assigned in a 7:3 ratio, 
resulting in a training cohort (n = 157) and an internal vali-
dation cohort (n = 68). (2) External validation set: A group 
of 130 patients with LAGC treated at the First Hospital of 
Qinhuangdao from December 2014 to June 2023 was iden-
tified. After applying the same inclusion/exclusion criteria, 
97 patients with advanced gastric cancer were ultimately 
included. For details of patient inclusion and exclusion, refer 
to Fig. 1.

Baseline characteristics

Baseline clinical features, including age, gender, body mass 
index (BMI), tumor differentiation, carcinoembryonic anti-
gen (CEA), carbohydrate antigen 19–9 (CA 19–9), as well 
as clinical T (cT) and clinical N (cN) staging according to 
the 8th edition of the AJCC TNM staging system, were 
extracted from medical records.

NAC strategy

All enrolled patients underwent 2–4 cycles of neoadjuvant 
chemotherapy (specifically the SOX regimen: oxaliplatin 
130 mg/m2 of body surface area administered intravenously 
on day 1; S-1 administered orally on days 1–14: for indi-
viduals with a body surface area less than 1.25m2, 40 mg 
twice daily; for those with a body surface area between 1.25 
and 1.5m2, 50 mg twice daily; for those with a body surface 
area greater than 1.5m2, 60 mg twice daily) with treatment 
cycles repeated every 3 weeks. NAC was administered to 
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all patients before surgery, and dose or cycle adjustments 
were made based on treatment efficacy and patient toler-
ance. Preoperative treatment efficacy is assessed based on 
improvement in patient symptoms, normalization or continu-
ous decrease in tumor markers, and reduction in the size of 
the primary tumor and suspected metastatic lymph nodes 
observed in CT or magnetic resonance imaging (MRI). All 
patients received at least two cycles of the SOX regimen, 
and there were no cases of premature termination of the 
intended NAC regimen or alterations in the treatment agents. 
Gastric resection surgery was performed within 2 weeks of 
completion of NAC.

NAC response assessment

The assessment of NAC response was conducted collabo-
ratively by two pathology experts with more than 10 years 
of experience in diagnosing gastrointestinal tumors. Both 
were blinded to the imaging and clinical data of the patients. 
The TRG was categorized into four levels based on the most 
recent National Comprehensive Cancer Network (NCCN) 
guidelines (2021, version 4, guideline 26), evaluating the 
extent of tumor regression after preoperative neoadjuvant 
treatment for gastric cancer: TRG 0: No viable cancer cells 
(complete response); TRG 1: Residual cancer cells in sin-
gle or small clusters (moderate response); TRG 2: Residual 

cancer with fibrosis in the stroma (mild response); TRG 3: 
Minimal or no tumor regression, with a significant amount 
of residual cancer cells (poor response). TRG 0 and TRG 1 
were combined into the good response (GR) group, while 
TRG 2 and TRG 3 were categorized as the poor response 
(PR) group.

CT examination

After an overnight fast, patients ingested a small amount of 
warm water and swallowed a gas-producing powder before 
the examination, followed by immediate CT scanning. The 
CT scans covered the entire gastric region and axial images 
were acquired during breath-holding. Contrast-enhanced CT 
scans in the arterial phase, portal venous phase, and delayed 
phase were obtained 30, 60, and 180 s, respectively, after 
injection of contrast agent. The CT image acquisition param-
eters for Centers A and B are detailed in Supplementary 
Table S1.

Image standardization and segmentation

Image standardization in this study involved two steps to 
reduce data variability between centers. Firstly, all CT 
images were resampled using cubic spline interpolation to 
a pixel size of 1 × 1 mm. Secondly, pixel intensities were 

Fig. 1   Inclusion and exclusion flowchart for patients in the study. LAGC​ locally advanced gastric cancer, NAC neoadjuvant chemotherapy, CT 
computed tomography, GR good response, PR poor response
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normalized, transforming the intensity range to − 1024 HU 
to 1024 HU, and applying a consistent abdominal window 
with a window level of 50 and a window width of 350.

A radiologist (Radiologist A) with 5 years of experience 
in diagnosing digestive system tumors manually deline-
ated regions of interest (ROIs) on the three-phase contrast-
enhanced images. The segmentation encompassed tumor 
parenchyma, necrosis, hemorrhage, and cystic areas, result-
ing in multiple ROIs containing tumor regions for each 
patient. For each patient, segmentation was performed on 
arterial, portal venous, and delayed phase images, encom-
passing all slices standardized to 1 mm thickness containing 
CT findings of interest. To assess inter-observer consistency, 
30 randomly selected patients underwent a re-segmentation 
process one month after the initial ROI delineation. This 
time, both Radiologist A and another radiologist (Radiolo-
gist B) with 10 years of experience in diagnosing digestive 
system tumor diagnosis performed the segmentation using 
the same method. Inter-group correlation coefficients and 
intra-group correlation coefficients were calculated for fea-
ture extraction. The process of image segmentation is illus-
trated in Supplementary Fig. S1.

Manual feature extraction

Manual feature extraction was conducted using the PyRadi-
omics software package, a Python-based tool. The extracted 
features comprised 8 first-order statistical features, 18 shape 
features, 75 s-order statistical features, and 1488 transfor-
mation features. Detailed definitions of these features are 
available at http://​PyRad​iomics.​readt​hedocs.​io/​en/​latest/. 
Transformations were applied, including wavelet, Lapla-
cian of Gaussian (LoG) filter, square, square root, logarithm, 
exponential, gradient, and 2D local binary pattern (LBP2D). 
Image features were extracted at various spatial scales by 
adjusting the parameter sigma values of the LoG filter to 3.0 
and 5.0. In total, 1589 manual features were extracted from 
each 2D image. The process of feature extraction is depicted 
in Supplementary Fig. S1.

Deep learning feature extraction

For all patients, we included all 2D images containing tumor 
tissue and their corresponding regions of interest (ROIs) as 
inputs. Subsequently, the image sizes were uniformly trans-
formed to 224 × 224 pixels to match the input size of the 
model. This operation, allows for a more comprehensive uti-
lization of medical images, contributing to the improvement 
of the model’s performance as opposed to selecting only the 
maximum tumor layer as input. Additionally, since effective 
training of deep learning models involves millions of learn-
able parameters for estimation, requiring a large amount of 
image data, and medical image datasets are often limited 

in size, this study employed transfer learning techniques to 
address the issue of insufficient image quantity. Specifically, 
this study employed the EfficientNet V2 architecture of a 
pre-trained deep learning model trained on the ImageNet 
dataset. The final fully connected layer was removed to cre-
ate a feature extractor, and the resulting output values from 
the feature extractor were utilized as deep learning features. 
The images underwent three transformations based on the 
normalization parameters (z-score) of the red/green/blue 
channels to adapt them to the format suitable for the Ima-
geNet dataset. Implementation of the EfficientNet V2 model 
was carried out using the Python timm package (https://​
github.​com/​huggi​ngface/​pytor​ch-​image-​models) in conjunc-
tion with the PyTorch library (https://​www.​pytor​ch.​org/). A 
total of 1280 features were extracted for each 2D image.

During model training, a cross-entropy loss function was 
used, and optimization was performed using the Adam algo-
rithm. A batch size of 64, an initial learning rate of 0.1, and 
a learning rate scheduler (ReduceLROnPlateau) dynami-
cally adjusting the learning rate were employed for train-
ing over 100 epochs. The training process was implemented 
using PyTorch in an environment with an NVIDIA GTX 
3090 GPU, Intel(R) Core(TM) CPU i7-12700F @ 2.10, and 
64 GB of memory. The feature extraction process is illus-
trated in Supplementary Fig. S1.

Feature selection and signature building

To deal with the imbalance between PR and GR samples, 
we use the borderline synthetic minority over-sampling tech-
nique (Borderline-SMOTE) to oversample the training set, 
ensuring an equal number of GR and PR samples. Then, 
the handcrafted and deep learning features from the arte-
rial, portal venous, and delayed phases were combined for 
feature selection and signature building. Firstly, the z-score 
method was applied to normalize the handcrafted and deep 
learning features.

The feature selection in this study comprised five steps. 
Firstly, the ICC value was calculated for both intra-observer 
and inter-observer reliability. Features with ICC val-
ues > 0.75 were considered to have good repeatability and 
were selected for further filtering. Subsequently, the Spear-
man correlation coefficient method was used to select fea-
tures, randomly removing one of two features if their corre-
lation coefficient exceeded 0.9. Next, the variance threshold 
method was employed to further filter the remaining fea-
tures. The basic idea was to eliminate features with low vari-
ance, as these features exhibit minimal changes in the data 
and may contribute less information to modeling or classi-
fication tasks. In this study, a variance threshold of 0.8 was 
set; as commonly employed in previous studies [22]. Follow-
ing that, the ReliefF algorithm, which calculates importance 
scores by considering the distribution of instance weights 

http://PyRadiomics.readthedocs.io/en/latest/
https://github.com/huggingface/pytorch-image-models
https://github.com/huggingface/pytorch-image-models
https://www.pytorch.org/
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based on nearest neighbors, was applied for feature selec-
tion. With n_neighbors set to 10 in this study, the ReliefF 
algorithm selected 10 nearest neighbors of the same class 
and 10 nearest neighbors of a different class for each sample 
to estimate the importance scores of features. Finally, the 
Least Absolute Shrinkage and Selection Operator (LASSO) 
algorithm was employed. Through ten-fold cross-validation, 
the penalty parameter was optimized to select the most use-
ful predictive features with non-zero coefficients. The feature 
selection process is illustrated in Supplementary Fig. S1.

For each gastric cancer patient, as there could be multiple 
layers of CT images and different layers might yield different 
predictive results, a voting method was used to determine 
the final classification. By combining the finally selected 
features and multiplying them by their normalized coeffi-
cients, a multivariate logistic regression model was used to 
calculate the feature identifiers predicting GR. The final out-
come comprised two feature signature; handcrafted feature 
and deep learning feature signature.

Establishment of the deep learning radiomics nomogram

In the training set, univariate analysis was conducted to 
select clinical-pathologic variables with statistical signifi-
cance (P < 0.05). Subsequently, multivariate logistic regres-
sion was performed to integrate the three-phase handcrafted, 
the deep learning signatures, and significant clinical-path-
ologic factors, constructing a fused nomogram model. This 
model was compared with clinical models, handcrafted, and 
deep learning signatures.

Receiver operating characteristic (ROC) curve analysis 
was applied to measure the discriminative performance of 
each model. The Delong test was used to compare the dis-
criminative abilities of different models. Calibration curve 
analysis and the Hosmer–Lemeshow test were employed to 
evaluate the goodness-of-fit of the models. Net Reclassifi-
cation Improvement (NRI) and Integrated Discrimination 
Improvement (IDI) were calculated to compare the perfor-
mance differences between the fused model and the clinical 
model. Decision Curve Analysis (DCA) assessed the clinical 
utility of the models. Kaplan–Meier curves were used to 
evaluate the association between the radiomics nomogram 
score and PFS.

PFS

Patients in the follow-up set (n = 147) underwent follow-up 
every 3–6 months in the first 2 years’ post-surgery, followed 
by annual follow-ups. The follow-up duration extended from 
the time of surgery until March 2023, collecting informa-
tion on PFS up to the last follow-up. PFS was defined as 
the duration from the commencement of tumor NAC to the 
onset of any type of tumor progression or mortality from any 

cause. All occurrences of disease progression, encompassing 
both local recurrence and distant metastasis, were evaluated 
through clinical examination and imaging modalities such 
as CT, magnetic resonance imaging, or positron emission 
tomography-computed tomography scans.

Statistical analysis

Differences in clinical characteristics among various groups 
or cohorts were compared using independent t-tests or 
Mann–Whitney U tests for continuous variables. For cat-
egorical variables, Fisher’s exact test or the chi-square test 
was employed as appropriate. The Akaike Information Cri-
terion (AIC) was served as the stopping criterion for the 
backward stepwise process aimed at determining the optimal 
feature combination. Kaplan–Meier survival analysis and 
log-rank tests were employed to assess the probability of 
PFS. The optimal cutoff values were determined using X-tile 
software, and patients were stratified into high-risk and low-
risk groups. Univariate and multivariate analyses utilizing 
Cox proportional hazards regression, with backward step-
wise elimination and AIC, were conducted to construct the 
PFS prediction model. All statistical analyses were carried 
out using R software (version 3.6.3, http://​www.R-​proje​ct.​
org). Two-sided P value less than 0.05 were considered sta-
tistically significant.

Results

Patient characteristics

The baseline characteristics of 322 patients with LAGC are 
presented in Table 1. The efficacy of NAC demonstrated a 
balanced performance across the three sets, with pathologic 
GR rates of 29.9, 29.4, and 29.9% in the training, internal 
validation, and external validation sets, respectively. Clini-
cal and pathologic features, including age, gender, pre-NAC 
CEA, tumor location, and cN stage, showed no significant 
differences (P > 0.05). Significant differences were observed 
in BMI, tumor differentiation, pre-NAC carbohydrate CA19-
9, and cT stage. Additionally, there was no significant dif-
ference in the time from CT examination to the initiation of 
NAC among the three sets (P = 0.051).

Handcrafted and deep learning signature 
construction

The mean and standard deviation of the number of ROIs 
obtained per individual patient were approximately 
30.4 ± 14.9. The feature selection process in this study 
involved a total of 5 steps. Due to the extraction of 1589 
handcrafted features and 1280 deep learning features from 

http://www.R-project.org
http://www.R-project.org
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each of the arterial phase, venous phase, and delayed phase 
2D images, a total of 4767 (1589 × 3) handcrafted features 
and 3840 (1280 × 3) deep learning features were extracted 
for the same layer. Of these, 2781 and 2196 features were 
found to have high reproducibility and stability (ICC > 0.75), 
respectively. After excluding features with strong correla-
tions using the Spearman method, 2268 and 1755 features 
with weaker correlations were identified. Following the vari-
ance threshold method to remove features with low variance, 
1370 and 1081 features were retained. The ReliefF method 
was then employed to include the 100 features most strongly 
correlated with the intercept variable for each set. Finally, 
LASSO regression analysis was applied, resulting in 9 and 
3 features remaining to construct the handcrafted and deep 
learning signatures, respectively. The selected features for 

constructing the handcrafted and deep learning signatures 
are listed in Supplementary Table S2.

Performance of handcrafted and deep learning 
signature models

As shown in Supplementary Table S3, the AUCs of the 
handcrafted signature in the training, internal valida-
tion, and external validation sets were 0.715 (95% CI 
0.650–0.773), 0.559 (95% CI 0.434–0.680), and 0.536 (95% 
CI 0.432–0.638), respectively. The AUCs of the deep learn-
ing signature in the training, internal validation, and exter-
nal validation sets were 0.809 (95% CI 0.751–0.859), 0.786 
(95% CI 0.670–0.877), and 0.731 (95% CI 0.632–0.816), 
respectively. The deep learning signature demonstrated 

Table 1   Clinical and 
pathological characteristics of 
LAGC patients in the training, 
internal validation, and external 
validation sets

BMI body mass index, CA 19–9 carbohydrate antigen 19–9, CEA carcinoembryonic antigen, CT computed 
tomography, LAGC​ locally advanced gastric cancer, NAC neoadjuvant chemotherapy, SD standard devia-
tion

Characteristics Training set Internal validation set External validation set P

Age (year, mean ± SD) 61.3 ± 9.7 58.3 ± 10.1 61.1 ± 10.1 0.100
BMI (year, mean ± SD) 22.2 ± 3.2 21.6 ± 3.3 23.2 ± 3.4 0.006
Sex (%) 0.794
 Female 49 (31.2%) 23 (33.8%) 28 (28.9%)
 Male 108 (68.8%) 45 (66.2%) 69 (71.1%)

Differentiation 0.021
 Well 2(1.3%) 6(8.8%) 8 (8.2%)
 Moderately 40 (25.5%) 20 (29.4%) 18 (18.6%)
 Poorly 115 (73.2%) 42 (61.8%) 71 (73.2%)

Pre-NAC CEA(%) 0.798
 Normal (≤ 5 ng/mL) 75 (47.8%) 35 (51.5%) 50 (51.5%)
 Abnormal (> 5 ng/mL) 82 (52.2%) 33 (48.5%) 47 (48.5%)

Pre-NAC CA 19–9(%) 0.025
 Normal (≤ 20 U/mL) 73 (46.5%) 45 (66.2%) 52 (53.6%)
 Abnormal(> 20 U/mL) 84 (53.5%) 23 (33.8%) 45 (46.4%)

Locations (%) 0.926
 Cardia/fundus 62 (39.5%) 26 (38.2%) 32 (33.0%)
 Gastric body 21 (13.4%) 8 (11.8%) 16 (16.5%)
 Gastric antrum 66 (42.0%) 30 (44.1%) 42 (43.3%)
 Whole stomach 8 (5.1%) 4 (5.9%) 7 (7.2%)

cT stage 0.009
 T2 6 (3.8%) 5 (7.4%) 0 (0%)
 T3 71 (45.2%) 23 (33.8%) 40 (41.2%)
 T4a 71 (45.2%) 34 (50.0%) 40 (41.2%)
 T4b 9 (5.7%) 6 (8.8%) 17 (17.5%)

cN stage 0.194
 N0 27 (17.2%) 5 (7.4%) 12 (12.4%)
 N1 54 (34.4%) 27 (39.7%) 38 (39.2%)
 N2 46 (29.3%) 27 (39.7%) 36 (37.1%)
 N3 30 (19.1%) 9 (13.2%) 11 (11.3%)

Time from CT to initiation 
of NAC (day, mean ± SD)

7.3 ± 2.7 7.0 ± 3.6 6.5 ± 2.3 0.051
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significantly better performance than the handcrafted signa-
ture in the training and internal validation sets (with P values 
of 0.028 and 0.010, respectively) but showed no significant 
difference in the external validation set (P = 0.051, Fig. 2 and 
Supplementary Figure S2).

Furthermore, due to the significant imbalance in the 
sample sizes between the good response and poor response 
groups, we also plotted P-R curves to assess the models’ 
discriminative performance. Compared to the handcrafted 
feature signature, the deep learning feature signature exhib-
ited a larger area under the P-R curve, and the difference 
was statistically significant (Supplementary Table S4). The 
F1max values of the deep learning signature in the training, 
internal validation, and external validation sets were 0.755, 
0.667, and 0.582, respectively (Supplementary Table S3 and 
Fig. 2).

Construction of the nomogram

In the training set, a stepwise backward multivariate analysis 
using the AIC criterion was performed, and both handcrafted 

features and cT stage independently emerged as predictors 
of PR, as detailed in Table S5 and Figure S3. These factors 
were integrated into the nomogram (Fig. 3A). The AIC of 
the nomogram model was 213.1, which was lower than the 
clinical model, handcrafted signature, and deep learning sig-
nature (with AICs of 303.7, 270.3, and 235.1, respectively).

As depicted in Figs. 3C–E, the nomogram scores exhib-
ited significant differences between the GR and PR groups 
in all datasets (all P < 0.001). Risk scores for all patients 
in the training, internal validation, and external validation 
sets were computed to visually demonstrate the predic-
tive ability of the model (Fig. 3B). The nomogram model 
exhibited good performance in the training set and dem-
onstrated robust generalization in the validation sets, with 
ROC AUCs approximately 0.848 (0.793–0.893), 0.802 
(0.688–0.889), and 0.751 (0.652–0.833), and P-R AUCs 
approximately 0.838 (0.756–0.895), 0.541 (0.329–0.740), 
and 0.556 (0.376–0.722), respectively. Additionally, the 
AUCs of the nomogram were significantly higher than that 
of the clinical model and handcrafted signature in all sets 
(P < 0.05) (Table S3, Fig. 2 and Supplementary Fig. S2). 

Fig. 2   Performance of the four predictive models. A–C Receiver 
operating characteristic curves of three predictive models in A the 
training set, B the internal validation set and C the external valida-
tion set. D–F Precision-recall curves of the predictive models in D 

the training set, E the internal validation set and F the external valida-
tion set. AUC​ area under the curve, DL deep learning, PPV positive 
predictive value
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The NRI and IDI analyses indicated that integrating image 
signatures into the combined nomogram model improved 
the predictive accuracy of the clinical model across all sets 
(Table S6). The nomogram demonstrated significantly better 
performance than the handcrafted signature in the training 
set (P < 0.001), but showed no significant difference in the 
internal and external validation sets (with P values of 0.440 
and 0.490, respectively). Examples of using the nomogram 
to predict the NAC response were presented in Fig. 4.

The calibration curves of the nomogram demonstrated 
good fitting accuracy between the predicted and observed 
PR across all cohorts (P values for the training, internal vali-
dation, and external validation sets were 0.054, 0.430, and 
0.441, respectively) (Fig. 5A). Additionally, DCA revealed 
that the nomogram provided greater net benefit across 
almost the entire threshold range from 0 to 1 compared to 
other models across the entire cohort (Fig. 5B). Our radiom-
ics model exhibited higher net benefit almost throughout 
the entire threshold probability compared to the clinical and 
other models, enhancing the clinical utility of radiomics in 
providing recommendations for NAC to patients.

Predictive factors for PFS in LAGC​

We further assessed the prognostic value of the nomogram 
for patients with LAGC. The median follow-up time and 
average follow-up durations were 27 and 27.6  months, 
respectively, with a range of 1 to 65 months. Schoenfeld’s 
individual test indicated that the Cox model met the pro-
portional hazards assumption (P > 0.05). We determined 
the optimal nomogram score for predicting PFS as 0.1 and 
subsequently stratified patients into high-risk and low-risk 
groups using this threshold. The Kaplan–Meier curves dem-
onstrated a significant association between higher nomogram 
scores and worse PFS (HR = 1.130; 95% CI = 1.016–1.257, 
P = 0.0017) (Fig. 6A). Table 2 presents the findings of uni-
variate and multivariable Cox regression analyses for PFS 
prediction factors in the follow-up cohort, demonstrating 
that the nomogram score is an independent prognostic fac-
tor for PFS (HR = 1.235; 95% CI = 1.099–1.387, P < 0.001), 
along with pre-NAC full stomach tumor, T stage, and N 
stage (Fig. 6B). The Cox regression model demonstrated a 
C-index of 0.673 (95% CI = 0.545–0.802).

Discussion

This study developed and validated an innovative machine 
learning nomogram model that integrates traditional hand-
crafted radiomics and deep learning features to predict the 
response to NAC in patients with LAGC undergoing surgical 
resection. In comparison to clinical and traditional radiomics 
models, this model exhibited more accurate discriminative 

ability in the training, internal validation, and external vali-
dation sets. Therefore, it processes potential clinical utility in 
quantifying the risk of adverse individual responses to NAC.

Previous studies have indicated that NAC helps reduce 
tumor volume, enhances the success rate of surgery [23, 
24]. However, a considerable proportion of patients may not 
derive significant benefits from NAC [25]. Accurately identi-
fying patients who are expected to derive benefit from NAC 
may contribute to improving its effectiveness. Additionally, 
a previous study has shown that approximately one-third 
of LAGC patients may fail to undergo surgical resection 
after NAC due to poor treatment response or disease pro-
gression [26]. For such patients, early identification using a 
non-invasive approach prior to treatment may aid in select-
ing more appropriate treatment modalities, thereby improv-
ing their prognosis. However, the predictive capability of 
conventional contrast-enhanced CT examinations for NAC 
response is limited, making it challenging for clinicians to 
determine potential responses in patients with LAGC. Radi-
omics methods can extract a plethora of hidden features from 
medical images, providing information about tumor micro-
environments such as cell density, hypoxia, and microves-
sel density, significantly expanding the scope of research 
in medical imaging [27]. Previous researchers have found 
that traditional handcrafted radiomics signatures can predict 
the prognosis and NAC response in LAGC patients [28]. A 
model built with radiomics using multiple machine learn-
ing algorithms have shown good discriminative ability in 
predicting the effectiveness of NAC in gastric cancer, with 
AUCs of 0.784 and 0.803 in two validation sets [29]. In the 
study of Zhou et al., handcrafted features were extracted 
from CT images of 323 gastric cancer patients, demon-
strated the discriminative ability of radiomics signatures for 
NAC response in an external cohort, with an AUC of only 
0.679 [15]. Furthermore, the standardization of radiomics 
features is likely one of the key challenges influencing its 
widespread application, as there is a lack of reproducibility 
of radiomics features across different imaging devices and 
radiomics software. Researchers are continuously striving to 
address this issue, with initiatives like the Image Biomarker 
Standardization Initiative (IBSI) proposed by Zwanenburg 
et al. and undergoing ongoing updates [30]. However, some 
researchers still argue that IBSI compliance does not guar-
antee consistency in feature values [31]. In the present study, 
the performance of the handcrafted signature was poorer, 
with ROC AUCs of 0.559 and 0.536 for the two validation 
sets. The reason for this may be that manual feature design 
and extraction are typically based on prior knowledge and 
experience. This approach may sometimes fail to adequately 
capture complex patterns and information in the data, result-
ing in poor model performance.

To enhance the effectiveness of the handcrafted signa-
ture and address its inadequate generalization capability, 
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the emphasis of this study was on examining the contri-
bution of deep learning features. In our research, the deep 
learning signature showed promising performance, with an 
ROC AUC exceeding 0.73. This performance is compara-
ble to deep learning features previously employed to predict 
treatment response in esophageal squamous cell carcinoma 
[32]. In comparison with conventional radiomics and clinical 
models, the deep learning signature demonstrated greater 
predictive efficacy and better generalization. The ROC and 
PR curve AUCs were significantly higher. Currently, deep 
learning has transformed the landscape of medical imaging 
applications. Previous researchers have successfully utilized 
deep learning techniques to predict lymph node metastasis, 
depth of infiltration, and survival outcomes in gastric can-
cer patients, achieving notable results [18, 33]. In the con-
text of predicting response to NAC, researchers previously 
employed deep learning features extracted from a ResNet-50 
network and observed AUC values ranging from 0.752 to 
0.808 in the validation sets [34], which aligns closely with 
the findings of this study. However, that study only extracted 
features from portal venous phase images, potentially over-
looking crucial information present in arterial and delayed 
phase images. Some researchers have noted a close asso-
ciation between DL features extracted from arterial phase 
images and the heterogeneity of gastric cancer [19]. Another 
study utilizing features extracted from a Densenet-121 net-
work accurately predicted NAC response in gastric cancer, 
achieving AUC values ranging between 0.720 and 0.806 
[35]. However, this study only included the maximum tumor 
layer for each patient, potentially limiting the number of 
included images. In contrast, our study included all images 
containing tumors and their corresponding ROCs, greatly 
enriching the sample size and potentially yielding more 
accurate predictions. All these findings indicate that deep 
learning provides rich information reflecting tumor spatial 
heterogeneity and the relationship between the tumor micro-
environment and chemotherapy sensitivity.

In our study, we employed the recently introduced, light-
weight deep learning network known as EfficientNet V2 
[36]. EfficientNet V2 represents an upgraded version of 
the deep neural network model developed by Google, with 
the primary goal of further enhancing model efficiency and 
performance. In comparison to the original EfficientNet, 

EfficientNet V2 incorporates more efficient architectural 
designs and optimization strategies, achieving improved 
performance while maintaining a relatively smaller model 
size. It combines optimizations in model depth, width, and 
resolution to provide enhanced accuracy, particularly in sce-
narios with limited computational resources [37].

Previous studies have indicated that clinical-pathologic 
features, including age, tumor stage, and tumor differentia-
tion, are associated with the response to NAC [38, 39]. How-
ever, these studies were often single-center, had relatively 
small sample sizes, and lacked external validation. Some 
researchers found that tumor T stage was a crucial predictive 
factor for NAC efficacy [34], similar to what was observed 
in our study. The rationale behind this may be that T staging 
reflected tumor burden and invasiveness, with larger or more 
invasive tumors achieving higher staging before treatment, 
implying greater resistance or difficulty in treatment. Addi-
tionally, higher T stage may indicate greater intratumoral 
heterogeneity, leading to inconsistent response to chemo-
therapy drugs [40, 41]. Intratumoral heterogeneity may be 
reflected, to some extent, by unique textures and spatial 
grayscale patterns extracted from pre-treatment CT images. 
However, these theoretical hypotheses have not been fully 
elucidated through radiogenomic and multiomic studies. 
Another multicenter study found no significant correlation 
between clinical-pathologic features and treatment response 
in LAGC patients [15]. Therefore, the relationship between 
treatment response in LAGC still requires large-scale studies 
for validation. Nonetheless, the AUCs of the clinical model 
exhibited significantly lower values compared to those of the 
nomogram model (P < 0.05). This finding indicates that deep 
learning models can reveal intricate imaging features and, 
when combined with clinical features, can more compre-
hensively quantify intratumoral heterogeneity. Furthermore, 
enhanced NRI and IDI further corroborated the effectiveness 
of combining image signatures with clinical features in pre-
dicting NAC response.

The proposed nomogram model based on traditional 
handcrafted, deep learning signatures, and clinical fea-
tures, in this study can provide a quantitative assessment 
of patients’ NAC response. The incorporation of radio-
logical signatures related to CT significantly bolstered the 
predictive capability when added to independent clini-
cal predictive factors. Moreover, it outperformed a single 
deep learning signature. One possible explanation is that 
the nomogram model explores high-dimensional imag-
ing features and subsequently quantifies intratumoral het-
erogeneity comprehensively. In this study, the nomogram 
incorporated imaging features that are not redundant but 
complementary. A previous study found that model based 
on traditional radiomics features could predict the response 
of LAGC to NAC, but their AUC was 0.77 in the valida-
tion set, slightly lower than the nomogram proposed in this 

Fig. 3   Construction and performance of a combined nomogram 
model. A Nomogram composed of deep learning signature, hand-
crafted signature, and clinical T stage. For clinical T stage, a score of 
“0” in the nomogram represents clinical stage T2 or T3, while a score 
of “1” represents clinical stage T4a or T4b. B Waterfall plot illustrat-
ing the distribution of nomogram scores for individual cases based on 
neoadjuvant chemotherapy (NAC) efficacy. C–E Violin plots depict-
ing the relationship between nomogram scores and NAC response in 
the training set (C), internal validation set (D) and external validation 
set (E). GR good response; PR: poor response

◂
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study [42]. This might be due to the fact that the previous 
study did not incorporate a comprehensive analysis of deep 
learning and clinical features. However, the advantage of 
that research is that it validated the model’s efficacy in a 
prospective cohort, achieving favorable results (AUC: 0.72). 
Another novel study used radiomics nomograms based on 
MRI to predict the response of LAGC to NAC, with an AUC 
of about 0.820 in the internal validation set, which is close to 

this study, but it was a single-center study without external 
validation [43]. A recent study discovered that extracting 
deep learning features from the ResNet50 neural network 
and combining them with clinicopathological features could 
more accurately predict the response of LAGC to NAC, 
with AUCs of 0.755 and 0.752 in the internal and external 
validation sets, respectively. Its efficacy was slightly lower 
than the nomogram proposed in this study in the internal 
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validation set, possibly because this model did not include 
manual features [34]. The user-friendly nomogram in this 
study can be utilized by both clinicians and patients which 
aligns with the trend of personalized medicine. Additionally, 
the lowest AIC, along with the enhanced NRI and IDI, also 
indicate that the improved discriminative capability of the 
nomogram is attributed to integration rather than overfit-
ting. To evaluate the clinical utility of the nomogram, DCA 
was conducted. Within a certain threshold range, predicting 
NAC status using the nomogram provided a net benefit for 
patients with higher scores. For these patients, alternative 
treatment strategies with lower toxicity or better tolerance, 
or close monitoring, can be considered. It is anticipated that 
the nomogram may ultimately be combined with established 
clinical-pathologic standards and molecular biomarkers to 
refine risk stratification and guide personalized management 
of gastric cancer.

In addition, we investigated the efficacy of the nomogram 
model for predicting the PFS of patients with LAGC. Our 
analysis revealed that the nomogram model score indepen-
dently served as a risk factor for PFS in patients with LAGC 
following NAC. Patients with lower scores demonstrated 
better PFS, specifically, those achieving pathologic GR 
after NAC experienced a significant extension in survival. 
For gastric cancer, factors influencing the risk of recur-
rence include a combination of various aspects such as the 
pre-treatment clinical and pathological characteristics of 
the tumor, molecular biological features of the tumor, and 

even the patient’s lifestyle habits [44, 45]. A comprehensive 
assessment by clinicians is required in clinical practice. For 
example, patients with larger tumors or higher TNM stag-
ing may have a higher risk of recurrence. For patients with 
lower scores, even those with a high risk of recurrence after 
surgery, adjuvant chemotherapy may be a suitable option. 
On the other hand, for patients with higher scores and a 
lower risk of recurrence, prompt consideration of alternative 
curative-intent treatment options is warranted to mitigate 
unnecessary toxicity and enhance survival outcomes. There 
is still controversy over whether curative resection should be 
performed after NAC treatment for T2-stage LAGC, or if it 
should be performed directly without NAC. Some research-
ers believe that NAC does not prolong recurrence-free and 
overall survival time after curative resection in T2-stage 
patients, thus they do not recommend NAC for these patients 
[46]. The present study may provide guidance on treatment 
options for such patients through nomogram scoring. In 
summary, the proposed nomogram in this study may provide 
a viable approach to facilitate treatment planning. Further-
more, our study identified several independent risk factors 
for the survival of patients with LAGC, including tumor 
location, cT staging, and cN staging which are consistent 
with previous studies [47, 48].

The present study possesses several limitations. Firstly, 
despite the extensive sample size drawn from multiple 
centers, inherent biases are unavoidable given the retro-
spective nature of the study. Patients from different hos-
pitals with varying CT equipment may introduce biases. 
Therefore, well-designed large-scale studies are imperative 
to validate the generalizability and clinical applicability 
of our nomogram model, as prospective validation could 
further ascertain its predictive accuracy and utility in real-
time clinical decision-making. Secondly, different regions 
or countries may employ NAC protocols and drugs dif-
ferent from those used in this study, which could impact 
the consistency and generalizability of the study results. 
Thirdly, tumor delineation was performed on 2D slices 
rather than the entire tumor in three dimensions, which 
may not fully represent the entire tumor, and some radi-
omics features might be influenced by the choice between 
2 and 3D analysis. Further research is needed to analyze 
the entire tumor in three dimensions. In addition, manual 
segmentation of ROI and manual feature extraction may 
introduce subjectivity and operational differences, which 
could affect the accuracy and reproducibility of the results. 
The application of automated segmentation methods and 
end-to-end models may help address the aforementioned 
issues. Fourth, due to the lower pathological complete 
response rate after NAC in the Chinese population, there 
is a significant imbalance in the samples. Although over-
sampling was conducted to compensate for the shortage of 
positive samples, it led to changes in the data distribution. 

Fig. 4   Examples of predicting individual risk for neoadjuvant chemo-
therapy (NAC) using the nomogram proposed in this study involves 
three steps. Firstly, vertical lines are drawn for each patient’s vari-
ables, where the red, yellow, and blue lines represent handcrafted 
score, deep learning score, and clinical T stage, respectively. For 
clinical T stage, a score of “0” in the nomogram represents clinical 
stage T2 or T3, while a score of “1” represents clinical stage T4a or 
T4b. Next, the values intersecting each line with the “Points” scale 
are summed to obtain the total score, referred to as “Total Points”. 
Finally, a vertical green line is drawn on the “Total points” scale to 
read the “Risk” of NAC response. A The nomogram of a 74-year-old 
female patient with locally advanced gastric cancer (LAGC) in the 
gastric antrum. B–D The portal venous phase CT images at differ-
ent slices of the female patient. The female patient’s clinical T stage 
is 2, with a handcrafted score of 0.812 and a deep learning score of 
0.391. By summing the values intersecting the lines with the “Points” 
scale, the total score is calculated as 0 + 22 + 48 = 70. Drawing a ver-
tical line on the “Total points” scale reveals an approximately 22% 
risk of poor NAC response for this patient. The patient’s pathological 
tumor regression grade (TGR) grading after NAC is grade 1. E The 
nomogram of an 52-year-old male patient with LAGC in the LAGC 
in the gastric body. F–H The portal venous phase CT images at dif-
ferent slices of the male patient. The patient’s clinical T stage is 4a, 
with a handcrafted score of 1.735 and a deep learning score of 1.651. 
By summing the values intersecting the lines with the “Points” scale, 
the total score is calculated as 12 + 30 + 69 = 111. Drawing a vertical 
line on the “Total points” scale reveals an approximately 89% risk of 
poor NAC response for this patient. The patient’s pathological tumor 
regression grade (TGR) after NAC is 3

◂
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Fifth, the clear precise biologic significance of the tumor 
internal features from the deep learning remains unknown 
and requires comprehensive elucidation. Finally, both this 
study and several previous studies have only included 
LAGC patients with postoperative pathological results for 
evaluating the effectiveness of NAC. However, in clini-
cal practice, some LAGC patients do not undergo surgical 
resection after NAC, and thus cannot be included in these 

studies. This may affect the generalizability of the model 
in the population, particularly for the aforementioned 
unresectable patients.

This study constructed a personalized prediction model 
for NAC response in patients with LAGC undergoing 
surgical resection, integrating deep learning techniques 
with multi-phase CT images and clinical features. This 
provided valuable information for clinical practice and 

Fig. 5   Calibration curves and decision curve analysis (DCA). A Calibration curves of combined nomogram model in all the three sets. B DCA 
for handcrafted signature, deep learning signature, clinical model and nomogram model

Fig. 6   Kaplan–Meier curves and forest plot of progression-free sur-
vival (PFS) on the complete cohort. A Kaplan–Meier curves of PFS 
between the groups with low and high signature scores in the com-

plete cohort. B Forest plot illustrating multivariable Cox regression 
analyses for PFS in the complete cohort
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processes significant potential for individualized treat-
ment strategies.
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Table 2   Univariate and 
multivariate analysis of 
predictors of PFS

95% CI 95% confidence interval, BMI body mass index, CA 19–9 carbohydrate antigen 19–9, CEA carci-
noembryonic antigen, LAGC​ locally advanced gastric cancer, NAC neoadjuvant chemotherapy, PFS pro-
gression-free survival

Characteristics Univariable analysis Multivariable analysis

Hazard ratio (95% CI) P Hazard ratio (95% CI) P

Age 0.993 (0.973, 1.015) 0.542
BMI 1.000 (0.938, 1.067) 0.993
Sex
 Female Ref
 Male 1.325 (0.859, 2.043) 0.203

Differentiation
 Well Ref
 Moderately 0.738 (0.303, 1.803) 0.506
 Poorly 0.897 (0.387, 2.083) 0.801

Pre-NAC CEA
 Normal Ref
 Abnormal 0.930 (0.626, 1.382) 0.719

Pre-NAC CA 19–9
 Normal Ref
 Abnormal 0.966 (0.646, 1.444) 0.865

Locations
 Cardia/fundus Ref Ref
 Gastric body 0.852 (0.442, 1.640) 0.631 0.843 (0.434, 1.638) 0.615
 Gastric antrum 1.143 (0.732, 1.785) 0.557 1.188 (0.761, 1.857) 0.448
 Whole stomach 2.084 (1.000, 4.342) 0.050 3.603 (1.639, 7.922) 0.001

cT stage
 T2 + T3 Ref Ref
 T4a + T4b 1.717 (1.136, 2.594) 0.010 1.642 (1.070, 2.520) 0.023

cN stage
 N0 + N1 Ref Ref
 N2 + N3 1.779 (1.168, 2.709) 0.007 1.803 (1.159, 2.806) 0.009

Nomogram score 1.126 (1.012, 1.252) 0.029 1.235 (1.099, 1.387)  < 0.001
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