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Abstract
High mountain freshwater systems are particularly sensitive to the impacts of global warming and relevant environmental 
changes. Microorganisms contribute substantially to biogeochemical processes, yet their distribution patterns and driving 
mechanism in alpine streams remain understudied. Here, we examined the bacterial and fungal community compositions in 
stream biofilm along the elevational gradient of 745–1874 m on Mt. Kilimanjaro and explored their alpha and beta diversity 
patterns and the underlying environmental drivers. We found that the species richness and evenness monotonically increased 
towards higher elevations for bacteria, while were non-significant for fungi. However, both bacterial and fungal communities 
showed consistent elevational distance-decay relationships, i.e., the dissimilarity of assemblage composition increased with 
greater elevational differences. Bacterial alpha diversity patterns were mainly affected by chemical variables such as total 
nitrogen and phosphorus, while fungi were affected by physical variables such as riparian shading and stream width. Notably, 
climatic variables such as mean annual temperature strongly affected the elevational succession of bacterial and fungal com-
munity compositions. Our study is the first exploration of microbial biodiversity and their underlying driving mechanisms 
for stream ecosystems in tropical alpine regions. Our findings provide insights on the response patterns of tropical aquatic 
microbial community composition and diversity under climate change.
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Introduction

Exploring elevational patterns of biodiversity has been one 
of the central research topics in ecology and biogeography 
[1, 2]. High mountain areas are home to aggregations of 
small-ranged species [3] and support approximately one 
third of terrestrial and aquatic biodiversity [4]. They are 
also natural laboratories to examine biodiversity patterns 
given its dramatically changes in biotic and abiotic environ-
ments within a relatively small spatial area [5]. Unlike the 
diversity and distribution of macroorganisms that have been 
studied for centuries, elevational patterns of microbial com-
munity have only been explored for less than two decades 
and thus still remain poorly understood [2, 6]. Compared 
to terrestrial environments [7, 8], aquatic microbes such as 
bacteria, fungi, and diatoms are still relatively understudied 
[2]. Therefore, the general diversity patterns and driving 
mechanisms remain to be explored especially for aquatic 
microorganisms on mountainsides.
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Microbes are an important component of ecosystem in 
response to global change [9], and their biodiversity usually 
differs across regional and global scales as driven by vari-
ous environmental variables [10, 11]. Biodiversity consists 
of two complementary facets, i.e., alpha and beta diversity, 
with the former usually measured by species richness and 
species abundance distribution, and the latter by community 
composition variations [12, 13]. For alpha diversity, spe-
cies richness measures the total number of species at local 
sites, whereas species abundance distribution, often exam-
ined as evenness, measures the similarity level of species 
abundances, being both linked to multiple ecosystem pro-
cesses and functioning [13, 14]. Microbes may not always 
follow the decreasing or hump-shaped elevational patterns 
in diversity traditionally observed in plants and animals [7, 
15], but may show unexpected monotonically increasing 
patterns [11]. For beta diversity, it is originally proposed as 
the variation in species richness among communities in a 
geographical region [16] with additional methods developed 
since then, such as to disentangle the similarity decay in 
species composition with spatial distance [17]. Beta diver-
sity has been recognized as an important facet to reveal the 
biodiversity patterns, and the ecological processes in main-
taining the biodiversity [14, 18].

Local and regional environmental variables typically 
shape species occurrence across various spatial and tem-
poral scales and constrain the biodiversity and community 
composition in freshwater ecosystems [19]. Among local 
environmental variables, pH and nutrient concentrations are 
the main factors in shaping the alpha diversity of diatom and 
bacteria in streams [11] or limiting the spatial distribution of 
bacterioplankton in lakes [20]. For regional environmental 
variables, the mean temperature of the warmest season or the 
mean precipitation of the coldest season serving as climatic 
factors is the best predictor of microbial alpha diversity and 
composition in three mountainsides streams across Eura-
sia [21]. Considering multiple aspects of biodiversity and 
their environmental drivers simultaneously may be helpful 
to improve our comprehension of the general biodiversity 
patterns and underlying mechanisms.

Here, we explored the patterns of biofilm bacterial and 
fungal diversity and community composition in the streams 
along an elevational gradient of 745–1874 m on Mt. Kili-
manjaro, Tanzania. Mt. Kilimanjaro is located in a season-
ally dry tropical climate zone, where climatic conditions are 
dominated by the Indian Ocean monsoon and vary greatly 
with elevation [22, 23]. This mountain is one of the world’s 
biodiversity hotspots and refuges for endangered species, 
and offers an outstanding example to investigate microbial 
biodiversity in African tropical habitats along elevational 
gradients due to its unique topographical conditions [24]. 
The mountain is affected by climate change and anthropo-
genic activities in the past decades, such as the pronounced 

decrease in glaciers thickness, leaving only a small portion 
covered by ice cap [25–27]. The unique microbial com-
munities may be gradually compromised and lost with the 
continued recede of the glaciers on top of Mt. Kilimanjaro 
[28]. There is thus an urgent need to systematically study 
microbial diversity and ecosystem functions across the ele-
vational gradients. In 2020, we sampled the bacteria and 
fungi of stream biofilm on Mt. Kilimanjaro and focused on 
three key objectives: (i) Are there general elevational pat-
terns in bacterial and fungal species richness and evenness in 
the stream biofilm on Mt. Kilimanjaro? (ii) How do the com-
munity compositions change along the elevational gradients 
for bacteria and fungi? (iii) What are the key drivers among 
environmental factors underlying biodiversity patterns for 
bacteria and fungi?

Materials and Methods

Study Area and Field Sampling

Mt. Kilimanjaro, the Africa’s highest mountain, is located 
on the Kenya-Tanzania border, about 300 km south of the 
equator [28]. The nature diversity of this site is exceptional: 
from lowland savannah to upper icecap, a massive range of 
ecosystems is presented in its slopes [29]. Our study area (3° 
10′ 27′′–3° 26′ 30′′ S, 37°12′ 19′′–37° 34′ 40′′ E) is located in 
the south slope of Mt. Kilimanjaro with an elevational range 
of 745–1874 m. The whole forest zone above 1700 m has 
been part of Kilimanjaro National Park since 2005 [30]. The 
region is classified as a seasonal dry tropical climate zone, 
with two distinct rainy seasons: long rains from March to 
May and short rains around November [31]. The southern 
slope of Mt. Kilimanjaro can be distinguished into seven 
vegetation zones: natural savanna woodlands (700 – 1100 
m), traditional home gardens (1100 – 1700 m), lower mon-
tane forests (1700 – 2100 m), montane zone that consists 
of a mixture of dense natural and disturbed Ocotea forests 
(2100 – 2800 m), upper montane zone that consists of natu-
ral and disturbed Podocarpus forest (2800 – 3200 m), sub-
alpine zone that consists of natural Erica trimera forest and 
degraded bushland (3500 – 4000 m), alpine zone dominated 
by several species of Helichrysum dwarf shrubs, and grasses 
(above 4000 m) [23, 30].

In February and March 2020, we sampled stream water 
to determine environmental variables, and scraped stream 
biofilm from stone surface for microbial analyses at each 
sampling location. Forty locations were selected along 
elevations, and eventually a total of 40 water and biofilm 
samples were separately collected. Water samples and 
stream biofilm were acquired according to the methods 
reported in previous literature [32]. Briefly, each site was 
divided into five or ten transects depending on the width 
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of streams. Ten stones were randomly selected from the 
shallow/stream habitats along the transects, and biofilms 
were obtained by scarping the upside surfaces (~9  cm2 per 
stone) of each stone with a sterile sponge. The biofilms 
were collected into a composite sample as the microbial 
sample from each site. Water and biofilm samples were 
immediately stored in mobile refrigerator at −20 °C on 
site and were kept at −20 °C in the laboratory until the 
analyses of chemical variables and microbial communities.

Physicochemical and Climatic Variables

The latitude, longitude, and elevation of each sampling 
point were recorded using a GPS device. Physical fac-
tors of streams, including water depth and width, veloc-
ity, shading (% canopy coverage), temperature, and stone 
size, were determined at each sample site as shown in 
previous literature [32]. Briefly, water electrical conduc-
tivity and pH were determined on site by using mobile 
pH meters (Sanxin, China). Nitrogen oxides  (NOx

−-N), 
nitrite  (NO2

−-N), ammonium  (NH4
+-N), and phosphate 

 (PO4
3−-P) were measured using a flow injection analyzer 

(Skalar SA1000). Total nitrogen (TN) and total phos-
phorus (TP) were measured using peroxodisulfate oxida-
tion with the spectrophotometric method [33]. Dissolved 
organic matter (DOM) is a diverse and complex blend of 
labile and persistent ingredient that actively governs the 
biogeochemical cycles of ecosystems [34]. The availabil-
ity of resources, especially nutrients and carbon, shapes 
the structure and function of microbial communities. 
UV-vis absorption spectroscopy is a widely used tool to 
effectively investigate the quantity and quality of light 
absorbing compounds in DOM (i.e., chromophoric DOM, 
cDOM) [35]. Therefore, the water samples were scanned 
in the wavelength ranging from 200 to 800 nm with a UV-
visible spectrophotometer (UV2700, Shimadzu) to obtain 
the absorbance data for cDOM. Mili-Q water was used 
as the blank. The fluorescence excitation-emission matri-
ces (EEMs) offer a plethora of information about various 
fluorophores. The EEMs fluorescence spectroscopy was 
generated with Mili-Q water as the background using a flu-
orescence spectrophotometer (Fluorolog⁃3, Horiba). Scans 
were conducted at excitation wavelengths in the range of 
250–450 nm at 5 nm intervals and emission wavelengths 
in 250–580 nm at 1 nm intervals [36].

Climatic variables were extracted using the package “ras-
ter” V3.6-3 from “WordClim” website, which is a database 
of globally interpolated climate data at a high spatial reso-
lution (approximately 1  km2) [37, 38]. These variables are 
derived from the monthly temperature and rainfall values, 
and represent annual trends, seasonality, and extreme or lim-
iting environmental factors [39].

Bacteria and Fungi Community Analysis

Genomic DNA was extracted from stream biofilm using 
MoBio PowerSoil DNA Isolation Kit (MoBio, Carlsbad, 
USA). The 16S rRNA genes of bacteria were amplified 
using universal primers [515F, 5′-GTG YCA GCM GCC 
GCG GTA A-3′ and 806R, 5′-GGA CTA CNV GGG 
TWT CTA AT-3′] targeting the V4 region [40]. For fungi, 
amplicon of ITS2-2 region was targeted using the primers 
[gITS7F, 5′-GTG ART CAT CGA RTC TTT G-3′ and 
ITS4R, 5′-TCC TCC GCT TAT TGA TAT GC-3′] [14]. We 
obtained amplification products and normalized them at 
equal molar concentration, and then paired-end sequenced 
(2 × 250bp) on the Illumina NovaSeq 6000 sequencing 
platform. Before sequence analysis processes, quality 
control was performed to select high quality sequences 
for bioinformatic and statistical analyses. Briefly, any 
reads that are shorter than 200 bp were excluded, while 
those with over 40% unqualified bases were discarded. 
Sequencing data for each bacterial or fungal sample were 
included in an individual fastq file. The raw sequence 
data were obtained after removing the barcode sequence 
and divided it into paired-end read files. Raw sequence 
data were firstly removed potential primers from the 
obtained 16S rRNA and ITS2-2 using qiime2-cutadapt 
in QIIME2[41, 42], and then were denoised and quality 
control using DADA2 for obtaining high-quality amplicon 
sequence variants (ASVs). The taxonomic assignment of 
each ASV for both bacteria and fungi was performed using 
the q2-feature-classifier, by comparing to the databases 
of SILVA 138 and UNITE (99% threshold levels, release 
10.05.2021) [43], respectively. The fragments that could 
not be mapped were defined as unknown sequences. 
ASV tables were then generated based on the mapped 
sequences. All above analyses were performed in QIIME2 
software (version 2022.8) [44]. The mapped ASV results 
for each dataset in USEARCH tabular format were 
imported directly into the R software and merged into the 
integrated ASV tables for further analysis. Our study was 
currently focused on bacteria and fungi, and the ASVs 
designated as “mitochondria”, “chloroplasts”, “archaea”, 
and “eukaryotes” were removed from the bacterial 
communities before further analyses. The sequences were 
rarefied to 30,007 and 51,166 per sample for bacteria 
(30,007–73,717 sequences) and fungi (51,166–106,161 
sequences), respectively, using the “rrarefy” function in R 
package “vegan” V 2.6-2. 

Statistical Analyses

The stream chromophoric dissolved organic matter (cDOM) 
spectroscopic data of absorbance and fluorescence were 
analyzed using the R package “staRdom” V1.1.25. Briefly, 
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we used “staRdom” to perform parallel factor analysis 
(PARAFAC) of excitation-emission matrices (EEMs) [45], 
including “peak picking” of EEM. Fluorescence indices, 
absorbance indices and absorbance slope indices were cal-
culated from EEMs and absorbance spectra [46]. The indices 
of cDOM included classical peaks based on manual peak 
picking: B (tyrosine-like), T (tryptophan-like), A (humic-
like), M (marine humic-like), C (humic-like), which are 
proxies for tyrosine-like, tryptophan-like, UV humic-like, 
microbial-derived and visible humic-like DOM, respectively 
[47, 48]. Other indices were also included to reflect various 
aspects of DOM: Humification index (HIX) ranges from 0 
to 1, and higher values mean greater degree of DOM humi-
fication [49]. Autochthonous productivity index (BIX) has 
values < 1 suggesting the presence of autochthonous and 
fresh DOM, and < 0.6 indicating low or zero autochthonous 
DOM production [50]. Fluorescence index (FI) is proxy of 
the DOM origin, with high values suggesting the prevalence 
of stream-produced DOM [51]. Absorbance coefficient at 
254 nm  (a254) is used to indicate the concentration of cDOM 
[52]. Spectral slope  (S275–295) is a reliable proxy of and neg-
atively correlated with cDOM average molecular weight 
(MW) [53]. More details of these indices could be found in 
the Supporting Information (Tables S2 - S4). A four-com-
ponent model was validated via split-half test and random 
initialization analysis along with the residuals analysis in our 
study, with the components being identified according to the 
shapes and locations of the spectral peaks [46, 54, 55]. The 
components identified by PARAFAC were compared with 
previous studies based on their Ex/Em maxima online at the 
“OpenFluor” database [35, 56].

We firstly examined the elevational patterns of environ-
mental variables through linear or quadratic model based on 
lower value of Akaike’s information criterion (AIC) [57]. 
We grouped the environmental variables into four catego-
ries: that is, climatic, physical, chemical, and cDOM. The 
variables for these categories were: for climatic, including 
mean annual temperature and precipitation; for physical, 
including water temperature, speed, stream width, water 
depth, shading, and stone size; for chemical, including 
pH, conductivity, TN, TP,  NOx

−-N,  NO2
−-N,  NH4

+-N, and 
 PO4

3−-P; for cDOM, including B, T, A, M, C, HIX, BIX, FI, 
 a254, and  S275–295. Pearson correlations were used to deter-
mine the covariation among environmental variables, and 
the highly correlated variables (|r| > 0.75) were excluded to 
minimize collinearity in the subsequent analyses.

The metrics of species richness and evenness were 
calculated to characterize the two aspects of bacterial or 
fungal alpha diversity using the R package “vegan” V 2.6-2 
[58]. Chao1 is a good measure for species richness, and 
Pielou’s evenness for distribution of relative abundance 
in a community [59]. Pielou’s evenness was calculated by 

J = H/log (S), where H is the Shannon-Weaver diversity 
index and S is the number of species [60]. The relationship 
between elevation and Chao1 or evenness was explored 
with linear or quadratic model. The better fitting model 
was selected based on lower value of AIC. The elevational 
patterns of dominant phyla/genera were also explored 
using a similar approach. Nonmetric multidimensional 
scaling (nMDS) based on the pairwise Bray-Curtis 
dissimilarity was carried out using the “metaMDS” 
function to visualized the variation in the community 
composition of bacteria and fungi across elevations [61, 
62]. The distance-decay relationships between Bray-Curtis 
dissimilarity and geographical distance were estimated 
for bacteria or fungi [63]. In addition, we calculated the 
Spearman correlation between environmental factors and 
the relative abundance of dominant phyla using “corr.
test” function. The bacterial and fungal ASVs with the 
threshold of incidence > 50% were separately selected, 
and then Spearman correlations between these ASVs and 
the environmental variables were calculated using “corr.
test” function.

Mantel test with Spearman’s rank correlation [64] 
was deployed to determine the impacts of environmen-
tal variables on the bacterial and fungal community. We 
also calculated the Spearman’s rank correlation between 
environmental variables and microbial biodiversity by 
considering species richness and the community compo-
sition represented by nMDS1, that is, the first axis of the 
nonmetric multidimensional scaling (nMDS). Random 
Forest modeling was then used to predict the importance 
of the climatic and physicochemical factors on the species 
richness, evenness, and community composition of bacte-
ria and fungi. Model cross-validation for random forests 
was performed using 75% of the dataset for training, with 
the remainder validated at each resampling iteration. We 
trained the model using 500 trees and sampled 2 predic-
tors per node for splitting selected to minimize the root-
mean-squares (measures of variance, RMSE) [65]. The 
R packages included “vegan” V2.6-4, “raster” V3.6-23 
[66], “FactoMineR” V2.7 [67], “caret” V6.0-93 [68], and 
“randomForest” V4.7-1.1 [69]. Finally, the variation of 
microbial biodiversity was partitioned into pure effects 
of the four environmental categories (that is, climatic, 
physical, chemical, and cDOM), and their joint effects 
using variation partitioning analysis [70]. We used for-
ward selection model to identify a best explained subset of 
environmental variables to avoid overloading the model, 
by using “ordiR2step” function in R package “vegan” V 
2.6-2 [71]. Variation partitioning was conducted using 
the “varpart” function in the R package “vegan” V 2.6-2. 
All statistical analyses were performed in R version 4.2.1 
unless otherwise indicated.
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Results

Climate and Environmental Variables 
along Elevation Gradients

There were considerably variations of the measured envi-
ronmental variables across the 40 sampling sites, such as 
temperature, stream morphology, and nutrient conditions 
(Table S1). For instance, water temperature ranged from 
16.50 to 28.20 °C (SD = 2.83), conductivity from 16 to 
251 mS  m−1 (SD = 47.68), total nitrogen from 0.23 to 1.68 
mg  L−1 (SD = 0.44), and total phosphorus from 0.03 to 
0.15 (SD = 0.03). There were generally significant (P < 
0.05) elevational patterns for more than half of the climate 
and environmental variables (Figs. 1, S1). For instance, 
phosphate and nitrite showed a significant decreasing 
pattern towards higher elevations, whereas total nitrogen 
and nitrogen oxides first increased slightly then decreased 
towards higher elevations (Figs. 1, S1).

For cDOM, we found that humic substances (A, C), 
tyrosine (B) and absorption coefficient  (a254) showed sig-
nificantly decreasing elevational patterns (Figs. 1, S1). 
Across the 40 sampling sites, HIX value ranged from 0.09 

to 0.45, and only five samples had BIX values larger than 
1, which indicates that most of DOM was input from sur-
rounding terrestrial lands and showed a lower degree of 
humification. This is because HIX values ranged from 0 
to 1 with increasing degree of humification [49], and high 
BIX values (>1) suggest the presence of autochthonous 
and fresh DOM [72] (Table S2).

The Structure and Composition of Bacteria 
and Fungi

The bacterial and fungal groups dominant at different 
taxonomic levels, i.e., phylum and genus, demonstrated 
multiple elevational patterns which illustrated the strong 
influence of elevation on community (Figs. 2, S2). For 
bacteria, the most dominant phylum was Proteobacteria, 
which accounted for 56.9% of the bacterial community, 
followed by Cyanobacteria (25.61%) and Deinococcota 
(4.16%). The relative abundance of Proteobacteria varied 
from 28.15 to 66.67% in the bacterial communities across 
the 40 sampling sites, but showed a nonsignificant eleva-
tional pattern (P > 0.05). Four dominant phyla showed 
significant elevational trends (P < 0.01, Fig. S2), such as a 
decreasing trend for Deinococcota, while U-shaped trends 

Fig. 1  Map of stream sampling sites on the Mt. Kilimanjaro, Africa, 
and the elevational trends of partly main climatic and local variables 
The lines were fitted with linear or quadratic models. The model was 

chosen based on the lower value of Akaike’s information criterion. 
The significant (P < 0.05) models are shown as solid lines, and non-
significant trends (P > 0.05) are shown as dotted lines
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for Acidobacteriota, Planctomycetota, and Actinobacte-
riota. Although Proteobacteria was the most dominant 
bacterial phylum, the genera belonging to the Cyanobac-
teria occupied the top four positions in the dominant gen-
era. The genera Chroococcopsis showed a significantly 
hump-shaped elevational pattern (P < 0.05), while Pleu-
rocapsa_PCC−7319, Chamaesiphon_PCC−7430, and 
SpeB-3 were nonsignificant (P > 0.05, Fig. 2). For fungi, 
the most dominant phylum was Ascomycota (34.86%), 
followed by Basidiomycota (4.02%). The proportion of 
Ascomycota fluctuated between 14.49% and 66.01% in 
fungal communities across 40 sampling sites, with a non-
significant elevational pattern (Fig. S2). Except for Rozel-
lomycota and Mortierellomycota, the other dominant fun-
gal phyla showed non-significant elevational trends. The 
most dominant genera for fungi all belong to the members 

of Ascomycota (Fig. 2). The drivers for the dominant phyla 
of bacteria and fungi differed greatly, such as Ascomycota 
primarily driven by water depth, whereas Cyanobacteria 
by total phosphorus (Fig. S4).

At the ASV level, the Spearman correlations between 
the relative abundance of microbial ASVs with incidence 
> 50% and the environmental variables were mainly posi-
tive, which was particularly true for fungi with over 62.30% 
ASV showing positive correlations (Figs. S5, S6). Further 
analysis revealed that negative correlations were prevalent 
between elevation and the dominant ASVs for bacteria and 
fungi, e.g., ASVs belonging to the genera Chroococcopsis 
and Truepera in the bacterial community, and Penicillium 
and Pyrenochaetopsis in the fungal community, whereas 
positive correlations prevailing with other environmental 
factors (Fig. S7).

Fig. 2  The elevational trends of the relative abundance of the top 10 
genera for bacteria (a) and fungi (b) The lines were fitted with linear 
or quadratic models. The model was chosen based on the lower value 

of Akaike’s information criterion. The significant (P < 0.05) mod-
els are shown as solid lines, and nonsignificant trends (P > 0.05) are 
shown as dotted lines
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Bacteria and Fungi Diversity Patterns

The elevational trends of species richness and evenness 
showed different elevational trends between bacteria and 
fungi (Fig. 3). The bacteria had significant, monotonically 
increasing elevational patterns in both species richness and 
evenness (R2 = 0.16, P < 0.01; R2 = 0.09, P < 0.05), while 
non-significant elevational patterns for fungi. There were 
significant correlations between species richness and even-
ness for both bacteria and fungi (Fig. S7).

The bacterial or fungal communities were more similar at 
lower elevations than those at higher elevations indicated by 
Bray-Curtis dissimilarity (Fig. 4). Specifically, both micro-
bial groups showed more pronounced separation toward 
higher elevations in nMDS plots, implying higher micro-
bial community dissimilarity. The community compositional 
dissimilarity significantly increased with larger elevational 
distance for bacteria and fungi with Mantel’s r of 0.35 and 
0.23, respectively (P = 0.0001 and 0.0004), indicating there 
were predictable turnover patterns of microbial assemblage 

composition along the elevational gradients (that is, eleva-
tional distance-decay relationship).

Drivers of Bacterial and Fungal Biodiversity

The Spearman correlations between fungal and bacterial 
diversity indices and environmental variables were mainly 
negative, with only four positive correlations (Fig. S8). For 
instance, the Chao1 for bacteria negatively correlated with 
Comp.1 (rho = 0.47, P < 0.01)  a254 (rho = −0.46, P < 0.01), 
and  PO4

3−-P (rho = −0.45, P < 0.01). The bacterial and fun-
gal assemblage compositions represented by nMDS1 were 
strongly correlated with mean annual temperature with rho 
values of −0.86 and −0.90, respectively (P < 0.001). It was 
worth noting that bacterial and fungal nMDS1 had positive 
Spearman correlation with mean annual precipitation with 
rho values of 0.42 and 0.40 (P < 0.05).

Compared to fungi, the community of bacteria generally 
exhibited stronger correlations with various environmen-
tal variables with rho values ranging from 0.15 to 0.41 in 

Fig. 3  Elevational alpha diversity patterns for bacteria (a–b) and 
fungi (c–d) For each group, we considered two indicators: Chao1 (a, 
c) and Evenness (b, d). The relationships between elevation and alpha 

diversity were modeled by linear models. The significant (P < 0.05) 
models are shown as solid lines, and nonsignificant trends (P > 0.05) 
are shown as dotted lines
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Mantel test (P < 0.05, Fig. 5). Specifically, the bacterial 
communities were more correlated with several chemical 
and climatic variables such as conductivity and mean annual 
temperature (Mantel’s r = 0.41 and 0.35, P = 0.0001), while 
the fungal communities were with the physicochemical vari-
ables, i.e., water depth (Mantel’s r = 0.27, P = 0.0001) and 
conductivity (Mantel’s r = 0.31, P = 0.002). In addition, 
bacterial and fungal communities were both significantly 
related to cDOM, such as  a254 (Bacteria: Mantel’s r = 0.28, 
P = 0.0001; Fungi: Mantel’s r = 0.16, P = 0.026) and FI 
(Bacteria: Mantel’s r = 0.17, P = 0.022; Fungi: Mantel’s r 
= 0.26, P = 0.001).

Bacterial and fungal alpha diversity were mainly driven 
by chemical and physical variables, respectively, while 
community compositions by climatic factors, according to 
random forest analysis (Fig. 6). Regarding bacteria, total 
nitrogen was the most important factors governing species 
richness and evenness (Fig. 6a, b). Further research revealed 

a significantly negative correlation between total nitrogen 
and both bacterial species richness and evenness (Fig. 
S7). Regarding fungi, shading was the best driver for spe-
cies richness, and stream width for evenness, with shading 
showing a positive significant correlation with both indices 
(Figs. 6d, e; S7). Different from the diversity indices, the 
microbial community compositions were mainly driven by 
climatic variables with mean annual temperature being the 
strongest driver for both bacterial and fungal community 
compositions (Fig. 6c, f).

The alpha diversity were explained by different categories 
of explanatory variables between bacteria and fungi, while 
variations in community composition were mainly explained 
by the climatic variables, as revealed by the variation par-
titioning analysis (Fig. 6). Regarding alpha diversity, the 
physical (9.3%) and climatic variables (5.2%), and the joint 
effect of the them (8.7%) accounted for most of the varia-
tion in bacterial species richness, and the climatic variables 

Fig. 4  The variation of community composition along the eleva-
tional gradient The nMDS of bacterial (a) and fungal (c) communi-
ties and the elevations of the sample points were distinguished by 
color. The relationships between community dissimilarity and eleva-
tional change for bacteria (b) and fungi (d). The regression slope of 

the linear relationship based on the Gauss generalized linear model is 
expressed by a solid line. According to the Mantel test (9999 permu-
tations, P < 0.05), the relationships of bacteria and fungi and eleva-
tion were statistically significant
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(13.4%) explained most in bacterial evenness (Fig. 6g, h). 
For fungi, physical variables explained most of the variation 
in species richness (27.0%) and evenness (27.6%) (Fig. 6j, 
k). Regarding community composition, the climatic vari-
ables explained the largest variation in both bacteria and 
fungi with 23.2% and 34.6%, respectively (Fig. 6i, l).

Discussion

Despite the increasing number of studies on the distribu-
tion, characteristics, and diversity of microorganisms along 
elevational gradients, studies on freshwater ecosystems are 
still scarce, but are an important part of understanding the 
global microbial geographic distribution patterns. Here, by 
examining the elevational biodiversity patterns and drivers 
of stream bacteria and fungi on the southern slope of Mt. 
Kilimanjaro, we had three main findings: (1) The species 
richness and evenness of bacteria increased significantly 
towards higher elevations, whereas fungi showed non-sig-
nificant trends. (2) The dissimilarity of assemblage composi-
tion increased significantly with greater elevational distances 
for both bacteria and fungi. (3) Bacterial and fungal alpha 
diversity were predominantly driven by chemical and physi-
cal factors, respectively, whereas community compositions 
by climatic factors.

Microbial Community Structure in the Streams

For bacterial groups, we found that the most dominant phy-
lum in the streams biofilms was Proteobacteria, with the 
prevalence of class Alphaproteobacteria (Figs. S2, S3), 
while Betaproteobacteria was not detected in our stream 
samples. Generally, Alpha-, Beta-, and Gammaproteobac-
teria, as members of Proteobacteria, are typically the main 
classes in the freshwater ecosystems [73, 74]. Our unusual 
findings are partly consistent with previous study in the 
Cloghoge River, County Wicklow, Ireland, where Alphapro-
teobacteria was the key component of freshwater biofilms , 
while Betaproteobacteria also occurred [75]. In addition, the 
relative abundance of Cyanobacteria, as a dominant phylum 
second to Proteobacteria, was significantly correlated with 
total phosphorus and  PO4

3−. This may be attributed to the 
large phosphorus accumulation capacity of Cyanobacteria 
at low phosphorus concentrations [76].

For fungi groups, Ascomycota had the broadest distribu-
tion in the stream ecosystems (Figs. S2, S3). This finding 
is consistent with Hulun lake that the Ascomycota was the 
most dominant phyla in the lake water and sediment [77]. 
Ascomycota is probably a potentially critical structuring ele-
ment of stream biofilms that facilitates the decomposition 
of submerged organic matter [78, 79], hence typically plays 
an important role in aquatic ecosystems. Previous studies 

Fig. 5  Relationship between environmental factors and bacterial and 
fungal community The color gradient is used to represent Spearman’s 
correlation coefficient of pairwise comparisons of environmental 
variables. Spearman’s correlation was used to analyze the correlation 
of bacterial and fungal community with each environmental factor. 
EC, electrical conductivity; TN, total nitrogen; TP, total phosphorus; 

 PO4
3−-P, orthophosphate;  NOx

−-N, nitrogen oxides; Depth, water 
depth; Shading, riparian shading; Speed, stream flow speed; MAP, 
mean annual precipitation; and MAT, mean annual temperature. BIX, 
autochthonous productivity index; HIX, humification index; FI, fluo-
rescence index;  a254, absorbance at 254 nm;  S275–295, spectral slope; 
Comp.1, microbial humic-like; Comp.2, Dark-incubation peak
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Fig. 6  Relative contribution of climate, physical, chemical, and 
cDOM variables in shaping the Chao1 diversity, Evenness diversity, 
and assemblage composition of bacteria and fungi The independent 
effects of the selected variables on the biological indices for bacteria 
(a)–(c) and fungi (d)–(f) examined by random forest. The variances 
in Chao1 diversity, Evenness diversity, and assemblage composition 
for bacteria (g)–(i) and fungi (j)–(l) associated with the climatic and 

local non-climatic variables were obtained using variation partition-
ing. The values in the diagrams refer to the coefficient of determina-
tion. Negative variance components were not displayed. The assem-
blage composition was estimated using first axis coordinates from 
nonmetric multidimensional scaling (nMDS) based on Bray-Curtis 
dissimilarity matrices. Purple, green, yellow, and blue colors repre-
sent climatic, physical, chemical, and cDOM factors, respectively
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in soil have demonstrated that the Ascomycota are mostly 
saprophytes, which breakdown difficult-to-degrade organic 
matter and play an important role in nutrient cycling [80]. 
The relative abundance of Ascomycota was significantly 
negatively correlated with water depth (P < 0.001, Fig. S4), 
which could be attributed to the fact that Ascomycota are 
aerobic fungi [81], while the oxygen availability gradually 
may decrease with depth. It should be noted that our findings 
are different from a global survey of terrestrial ecosystems 
showing the dominance of Basidiomycota [82].

The most abundant ASVs in the subset of ASVs with > 
50% incidence in bacterial communities in stream biofilm 
were mainly belong to the genus Pleurocapsa_PCC−7319, 
followed by the genus Chroococcopsis. Significant correla-
tions (P < 0.001) were observed between  NH4

+ and two 
prominent ASVs belonging to the genus Pleurocapsa_
PCC−7319, which could be the potential nitrogen-fixing 
bacteria that fix atmospheric nitrogen gas to ammonia serv-
ing nitrogen in ecosystem [83]. Furthermore, four of the 
ten ASVs with the highest relative abundance in the sub-
set of ASVs with >50% incidence in fungal communities 
were belonged to the genus Plectosphaerella and correlated 
negatively with  PO4

3−, while several ASVs from the genera 
Cladosporium, Pyrenochaetopsis, and Penicillium showed 
positive correlations with  PO4

3−. This phenomenon indi-
cates that some taxa of fungi were sensitive to phosphorus 
conditions, which is likely relevant to human activities with 
phosphorus inputs. This highlights the importance of the 
further research on functional fungal genes such as those 
governing the phosphorus cycle.

Elevational Patterns of Microbial Diversity

Our results showed the contrasting elevational patterns in 
species richness or evenness of bacteria and fungi in the 
alpine stream ecosystems (Fig. 3). Regarding species rich-
ness, the monotonically increasing patterns towards higher 
elevations for bacteria are consistent with the previous 
observations for stream bacteria in the Pyrenees Mountain 
of Spain and the Haba Mountain of China [11], and con-
trary to biofilm microbial communities in the glacier-fed 
streams in Austria [84]. This increasing pattern does not 
follow the traditional ecological theory that the relationship 
between species richness and elevation generally shows a 
hump-shaped or decreasing pattern with increasing eleva-
tion for plants and animals in terrestrial ecosystems [85, 86]. 
The elevation-based increase in species richness observed 
may be linked to the sampling scale effect, as the extent of 
the geographical area or gradient of sampling has been con-
firmed to significantly affect the resulting species richness 
patterns [85, 87].

As for evenness, an index directly linked to ecosys-
tem stability [88], there were also an increasing trend for 

bacteria towards higher elevations (Fig. 3). This may be 
largely because high species evenness usually contributes 
to ecosystem stability, while the ecosystem at high altitudes 
is more vulnerable, and therefore they require high evenness 
for the maintenance of related functions [89]. Furthermore, 
we found that there was a significantly positive correlation 
between evenness and species richness for both bacteria and 
fungi (Fig. S7), which is opposite to the typically negative 
correlation for macroorganisms in stream ecosystems [90]. 
This could be explained by the lower extinctions of microor-
ganisms, arising from the high dispersal capacity and large 
population, compared to macroorganisms [11, 91].

We found that the bacterial and fungal communities at 
the lower elevations exhibited greater similarity compared 
to those at higher elevations and showed a significant eleva-
tional distance-decay pattern (Fig. 4). This result suggested 
that elevation had crucial effects on structuring the com-
position of microbial communities, because elevation as 
a geographic factor has always been a complex and direct 
driving force for different climatic gradients, leading to the 
succession of habitats along gradients [85, 92]. The habi-
tats at lower elevations are more benign that could allow 
many similar species to survive, while relatively harsher 
environments at higher elevations may be causing special-
ized species surviving in our study streams. For elevational 
distance-decay pattern, one possible explanation is that com-
munities in close spatial proximity are likely to experience 
more similar environmental and climate condition and share 
more species through localized dispersal, resulting in more 
similar community structure than those located further apart 
in space [93].

Environment Effects on Microorganisms

The diversity patterns of bacterial community were primar-
ily influenced by chemical factors, such as total nitrogen 
and phosphorus (Fig. 6), which are fundamental nutrient in 
aquatic ecosystems. For instance, the species richness and 
evenness of bacteria were both strongly driven by the total 
nitrogen, with a negative correlation observed between them 
(Figs. 6, S8). This may be related to the different strategies 
that the dominant groups in bacterial communities respond 
to environmental nutrient status. For example, Gammapro-
teobacteria prefer to high nutrient concentrations because 
they are typical R-strategists and are able to use the extra 
nutrients quickly (Shafi et al. 2021). In contrast, Alphapro-
teobacteria likely thrive in more oligotrophic environ-
ments as most of its species prefer to grow in oligotrophic 
environments [75]. At the ASV level, the ASVs sharing 
the same phylum also exhibited varying correlation to the 
environmental nutrient variables (Figs. S5, S6), further sup-
porting that various dominant bacterial groups differently 
responded to environmental nutrient status. Furthermore, the 
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productive activities of microorganisms in the region may be 
limited by nitrogen levels, as the nutrient inputs East Africa 
are generally lower than in the densely populated subtropi-
cal and temperate zones of the Northern Hemisphere [94].

Bacterial evenness was also strongly driven by total 
phosphorus and showed negative correlations with total 
phosphorus, the concentrations of which typically correlate 
with human influence and are stronger at lower elevations 
[11]. The intensity of human activities, such as agricultural 
cultivation and domestic wastewater discharges, positively 
influences nitrogen and phosphorus contents in the aquatic 
environments, leading to changes in the diversity of micro-
bial communities. On the slopes of Mt. Kilimanjaro, most of 
savanna woodlands have been converted to agriculture and 
thousands of hectares of forest were destroyed by slashing 
and burning, driven by human activity in search of resources 
[95]. Our sampling area gets closer to Kilimanjaro National 
Park as elevation increases; a gradual reduction in human 
impact may happen.

For fungi, both species richness and evenness were 
strongly driven by physical variables, such as riparian 
shading, with a significant positive correlation between 
both indices and riparian shading (Figs. 6, S8). Fungi are 
the primary decomposers of the leaf litter, therefore, more 
sensitive to variation in the litter environment [96]. Ripar-
ian shading could have important effects on stream organic 
inputs by directly affecting the amount of litter entering 
[97, 98], accordingly becoming a crucial driver of fungal 
species richness. The fungal species richness and even-
ness were also driven by other physical factors, such as 
flow speed and width, which characterized the hydrological 
changes (Fig. 6). This finding was consistent with previous 
researches that have demonstrated the significant influence 
of hydrological conditions in shaping bacterial diversity [99, 
100]. This is because regional hydrological transport can 
directly influences the community, with microorganisms 
being actively or passively dispersing along hydrological 
flow paths, thereby reaching downstream habitats [101]. 
Stream width may also reflect human influence, as wider 
streams have larger catchments and more complex human 
impacts or nutrient conditions [17].

It should be noted that the community assemblages for 
bacteria and fungi were strongly driven by climatic factors 
(Figs. 6, S8). For instance, the mean annual temperature 
was the strongest driver for the dissimilarities of bacte-
rial and fungal community compositions, which could be 
attributed to the effect of temperature on microbial enzyme 
activity and its role as a primary driver of biological meta-
bolic processes [102, 103]. In addition, mean annual pre-
cipitation was also a predictor of fungal community com-
position in the streams, although its relative importance 
is relatively lower than that observed in other ecosystems 
such as soils [82]. Precipitation could arouse higher stream 

flow, which causes increasing riparian soil input and sedi-
ment resuspension in rivers, eventually acting on microbial 
communities [17]. Generally, mean annual temperature 
and precipitation could directly regulate bacterial diver-
sity and composition through speciation, competition, and 
dispersal of microbial communities, or indirectly through 
mediating other environmental factors [104].

Conclusion

In conclusion, we conducted a comprehensive study on 
the elevational patterns of stream bacteria and fungi in the 
Mt. Kilimanjaro region, and revealed the potential mecha-
nisms underlying the observed patterns. We found that 
there were no consistent elevational patterns in species 
richness and evenness for the two microbial taxonomic 
groups bacteria and fungi, with the former showing a 
rarely monotonically increasing trend while the latter a 
nonsignificant trend. However, the beta diversity between 
the two taxonomic groups showed a consistent trend, i.e., 
significant elevational distance decay in community simi-
larity. The inconsistency of species richness or evenness 
patterns between bacteria and fungi may be attributed to 
their different underlying drivers, with bacteria mainly by 
chemical factors such as total nitrogen and phosphorus, 
while fungi by physical factors such as riparian shading. 
For beta diversity, the consistent patterns may be related 
to the drivers of regional factors such as mean annual tem-
perature and precipitation. Our study shows a new genetic 
data collection for better understanding the effects of mul-
tiple environmental stressors on stream microbes in this 
rarely studied region in Africa, and further provides novel 
insights on the response patterns of tropical aquatic micro-
bial community composition and diversity under climate 
change.
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