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tational theories whose emergent space is the target space of a holographic dual. In the
well studied duality of two-dimensional non-critical string theory and c = 1 matrix model,
this question has been studied earlier using fermionic many-body theory in the space of
eigenvalues. The entanglement entropy of a subregion of the eigenvalue space, which is
the target space entanglement in the matrix model, is finite, with the scale being provided
by the local Fermi momentum. The Fermi momentum is, however, a position dependent
string coupling, as is clear in the collective field theory formulation. This suggests that
the finiteness is a non-perturbative effect. We provide evidence for this expectation by
an explicit calculation in the collective field theory of matrix quantum mechanics with
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tropy is calculated using exact eigenstates and eigenvalues of the collective Hamiltonian,
yielding a finite result, in precise agreement with the fermion answer. Treating the theory
perturbatively, we show that each term in the perturbation expansion is UV divergent.
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1 Introduction

The entanglement entropy of a subregion in a relativistic quantum field theory is UV
divergent because of short range correlations across the entangling surface. This is evident
from the continuum limit of the earliest calculations on a lattice [1, 2], or in calculations
using the replica trick [3–5]. Another way to understand this divergence is to realize that
the entanglement entropy of e.g. half space can be understood in terms of the standard
thermodynamic entropy of quantum fields in Rindler space. The latter is divergent since
the local temperature at the horizon diverges and the entropy of relativistic fields increases
as a power of the temperature at high temperatures.

It is expected that if one can properly define entanglement entropy in string theory,
the result should be finite [6]. In string theory, it is not clear how one could go about
defining the entanglement of a region in a precise manner. However, if one has access to a
dual description in terms of a non-gravitational theory one could try to identify a quantity
in the dual theory which provides a notion of entanglement in the gravitational theory in
an appropriate approximation.

This issue was addressed in [7] for two-dimensional bosonic non-critical string theory,
whose dual formulation is double scaled gauged quantum mechanics of a single N × N

Hermitian matrixM with a Hamiltonian corresponding to an inverted harmonic oscillator.1

As is well known, the singlet sector of the model becomes a theory of N non-relativistic
fermions in 1 + 1 dimensions moving in this potential, whose coordinates are eigenvalues

1For reviews and references see refs. [8–11].
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of the matrix. This can be in turn re-expressed as a second-quantized fermionic many-
body theory, and in this case the notion of entanglement of a spatial region can be defined
unambiguously. It was found in [7] that when the external potential is absent, the leading
term in the entanglement entropy for large enough interval ∆x is log(kF∆x)/3, where kF is
the Fermi momentum. This is equal to the entanglement entropy of a relativistic massless
scalar 1 + 1 dimensions where the UV cutoff is replaced by the inverse Fermi momentum
kF . It was speculated in [7] that in two-dimensional non-critical string theory, the UV
cutoff will be the local Fermi momentum kF (x). A concrete calculation in the inverted
harmonic potential was carried out in [12] where it was indeed found that the cutoff is the
position-dependent Fermi momentum.

From the point of view of the fermion theory, this is easy to understand. The behavior
of the entanglement entropy ∼ log[kF (x)∆x] reflects the fact that the low energy excitations
around the Fermi level have a linear dispersion relation, exactly like a massless relativistic
boson with the speed of light replaced by the Fermi momentum. However, when the
momenta becomes of the order of kF the quadratic term in the dispersion relation becomes
important. Furthermore, the presence of a finite Fermi sea means that excitations have an
effective UV cutoff given by the Fermi level. Likewise, at high temperatures the entropy of
non-relativistic fermions increases logarithmically rather than a power law. In the Rindler
calculation this leads to a finite contribution from the region near the horizon [7].

However, in the dual string theory 1/kF (x) is proportional to the (position dependent)
string coupling gst. This means that the UV scale which makes the entanglement entropy
finite is not simply the string length, but involves the string coupling. For the same reason,
as emphasized in [13], the finiteness of the entanglement entropy should be invisible in any
finite order in perturbation theory.2

Generally collective field theory offers a reformulation of matrix and vector models,
providing a systematic 1/N expansion field theory. The two-dimensional string perturba-
tion expansion likewise is generated through the collective field formulation. The dynamical
degree of freedom in this case is a massless scalar field (“massless tachyon”) and one has an
interacting quantum field theory. Although the higher string modes are non-propagating:
they can, however, lead to non-trivial backgrounds. The collective field representation for
the dynamics of the massless scalar is simply obtained by rewriting the matrix quantum
mechanics

H = Tr
[
−1

2

(
∂

∂M

)2
+ V (M)

]
(1.1)

in terms of the density of eigenvalues - the collective field φ(x)

φ(x) = Tr δ(x · I −M) = ψ†(x)ψ(x) (1.2)

and its canonically conjugate momentum [18]. This represents a non-relativistic bosoniza-
tion and has been studied thoroughly. Fluctuations of the collective field around its classical

2In [14–17] the replica trick has been used to define an entanglement entropy in critical string theory.
The string theory then lives on a cone, and the perturbative worldsheet partition function is finite with the
string length providing the UV cutoff. While the relationship between this calculation and that of [7, 12]
is not very clear, it appears that this calculation is quantifying a different kind of entanglement.
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value behave as a massless scalar in 1 + 1 dimensions with a position-dependent couplings
proportional to inverse of the double-scaled Fermi level [19]. The space dimension descends
from the space of eigenvalues. Thus to the lowest order in perturbation theory in this cou-
pling the result for the entanglement entropy is UV divergent. The form of the answer
from the fermionic description indicates that this would continue to be divergent if one
truncates perturbation theory to any finite order, as will be clear in the following. It is
therefore natural to ask how does the finiteness of the entanglement entropy shows up in
collective field theory. This is the central issue which we address in this paper.3

It should be noted that the finiteness is due to the finiteness of the Fermi momentum
kF , which is proportional to the number density N/L where L is the size of a large box in
which the fermions live. This means that the entanglement entropy remains finite in the
limit N →∞, L→∞ with N/L fixed. Likewise in the c = 1 matrix model the quantity is
finite in the double-scaling limit. What is important is that the coupling should be finite.

In this paper we calculate the entanglement entropy in the ground state as defined
in the fermionic many-body theory using the collective field theory. For d-dimensional
mutually non-interacting fermions, this entanglement entropy SA of a region A has a well
known expansion in terms of cumulants of the particle number [20, 21],

SA = limM→∞

M∑
m=1

α2m(M)C2m, Cm = (−i∂λ) log〈[exp(iλNA)]〉|λ=0, (1.3)

where NA is the particle number operator in the region A,

NA =
∫
A
dd~x ψ†(~x)ψ(~x). (1.4)

The coefficients α2m are pure numbers given in [20, 21]. In many situations C2 is the
leading contribution,4 and this is what we evaluate. Since the collective field is (1.2), we
have (using α2 = π2/3), for a single interval a ≤ x ≤ b in one space dimension,

S
(2)
A = π2

3

∫ b

a
dx

∫ b

a
dx′

[
〈F |φ(x)φ(x′)|F 〉 − 〈F |φ(x)|F 〉〈F |φ(x′)|F 〉

]
, (1.5)

where |F 〉 is the ground state. This is simply the integral of the connected Green’s function.
In this paper we calculate this quantity using the collective field theory Hamiltonian.5 The
quantity S(2)

A is finite only if the short distance behavior of the collective field correlator
is soft. As discussed above, in the lowest order in perturbation theory this correlator is
exactly the same as that of a free massless relativistic scalar and therefore divergent.

3It turns out that the fluctuation of the collective field is related to the massless tachyon of string
theory as defined in worldsheet string theory by a spatial transform (the leg pole transform) whose kernel is
non-local at the string scale [8–11]. This fact is not relevant to the discussion of whether the result is finite.

4There is no general proof of this: in fact there is no parametric suppression of the higher cumulants.
However in many systems, including the systems considered in this paper the higher cumulants are never-
theless suppressed.

5For Slater determinant states all the terms in the cumulant expansion can be expressed in terms of the
expectation value of the fermion phase space density [22–24]. This can be easily evaluated in a Thomas-
Fermi approximation [22, 23, 25, 26]. It remains to be seen if a theory of the phase space density regarded
as an operator along the lines of [27–29] is useful to proceed further.
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Since the short distance behavior of the correlator is independent of the potential, we
examine in detail the theory with no external potential. The interactions of the fluctuations
of the collective field are then characterized by a coupling which is proportional to 1/kF .
In this case the exact eigenstates and eigenvalues of the collective Hamiltonian have been
obtained in [30–32]. Using this exact solution we calculate the momentum space correlator
and demonstrate agreement with the known answer obtained using fermions. We then
calculate this quantity perturbatively and show that the perturbation expansion can be
resummed. The resummed answer is in exact agreement with the result in the fermionic
many-body theory which then leads to an agreement of the entanglement entropy. The
expression (1.5) involves an integral over the equal time correlator. We find that in mo-
mentum space the exact result is |k|/π for |k| < 2kF which is also the leading perturbative
result. For |k| > 2kF the result is a constant 2kF /π. The perturbation expansion in the
collective field theory is a low momentum expansion in powers of k/kF . The exact result
shows that perturbatively there is no correction to the lowest order result which is inde-
pendent of kF . This means that the entanglement entropy is divergent perturbatively, and
the finiteness of the result is a non-perturbative feature.

While our explicit calculation is for the matrix model without a potential, we expect
that the same conclusion will hold in the presence of a potential, in particular the double
scaled c = 1 matrix model. The collective field theory in these cases provides a field
theory of strings with 1/N expansion being systematically generated [33–35]. It needs to
be treated with care and singular counter terms present in the collective Hamiltonian will
probably play a role.

As emphasized above, we are calculating the entanglement entropy as defined in the
fermionic many-body theory, which we perform using collective field theory. On the other
hand one could define a notion of entanglement in the collective field theory itself. We need
to determine if these two notions of entanglement agree with each other since bosonization
involves a non-local transformation. This question has been investigated for lattice theories
leading to relativistic fermions and conformal field theories in the literature [36, 37], and is
non-trivial when the subregion of interest consists of disconnected intervals. We will argue,
however, that for non-relativistic fermions with a conserved fermion number, the situation
is somewhat different. This is because now there is a first-quantized description, where the
entanglement in the fermionic many-body theory becomes a target space entanglement [38]–
[43]. In this first-quantized description, the operators which make sense are many-body
operators involving a sum over all the identical particles. The latter can be in turn expressed
either in terms of a second-quantized fermion field or in terms of the collective field and its
momentum conjugate. For free fermions, and for Slater determinant states, it was shown
in [39] that the reduced density matrix in the first-quantized description is exactly the
same as that obtained in the second-quantized description. In the following we will argue
that this implies that the entanglement entropy in terms of fermions is in fact the same as
that in terms of the collective field.

While the singlet sector of single matrix quantum mechanics becomes a theory of
free fermions, non-singlet sectors lead to models of interacting fermions, notably the Spin-
Calogero models, particularly in the study of the long string sector [44, 45]. Collective field
theory for Calogero models have been developed in [46–49]. In these cases, the entanglement
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entropy can no longer be expressed in terms of fermion number cumulants. However, the
collective formulation should be useful.

Our results should have implications for higher dimensional string theories whose holo-
graphic duals are matrix models with multiple matrices, e.g. the BFSS matrix model [50]
or the BMN matrix model [51]. The notion of target space entanglement for multiple
matrices has been formulated and explored in [39]–[42]. In terms of matrices explicitly, en-
tanglement is discussed in [52, 53]. On the other hand, a collective formalism for the BMN
matrix model has been established in [54, 55]. Here, the collective variables are ingredients
of string fields. Since the gauge invariant matrix operators can be directly expressed in
terms of the collective variables, a formulation of entanglement in terms of the latter will
provide an understanding of the string theoretic meaning of target space entanglement.

In section (2) we calculate the connected correlator of the collective field and hence
the leading term in the entanglement entropy of a single interval for fermions without any
external potential. The correlator is calculated first by using exact eigenstates and eigen-
values and then by resumming the perturbation expansion as well as exactly. In section (3)
we discuss the relationship of entanglement in the collective field and fermionic description.
We also discuss possible applications to the long string sector which involves non-singlet
states and multi-matrix models dual to higher dimensional strings. Section (4) contains a
discussion. The appendix provides some details of the derivation of the expression of the
exact eigenstates and eigenvalues of the Hamiltonian.

2 Entanglement entropy for a vanishing potential

In this section we consider the singlet sector of matrix quantum mechanics (1.1) and the
associated entanglement entropy. In the collective field formalism, the Hamiltonian is given
by6

H = 1
2

∫
dx

[
∂xΠφ∂xΠ + π2

3 φ
3 − 2µFφ

]
(2.1)

where Π(x) is the canonically conjugate momentum to φ(x) defined in (1.2) and µF is a
Lagrange multiplier which imposes the condition∫

dxφ(x) = N. (2.2)

The classical solution features a uniform distribution

φ0 = kF
π
, µF = 1

2k
2
F . (2.3)

To study quantum fluctuations, we expand the collective field around the classical solution

φ(x) = φ0 + η(x), ∂xΠ(x)→ ∂xΠ(x). (2.4)
6In addition the general collective Hamiltonian contains a singular subleading counterterm. In this case

this counterterm does not play much of a role, except to ensure that the O(1/N2) corrections to the ground
state energy vanish.
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The fluctuation Hamiltonian becomes

H = 1
2

∫
dx

{
kF
π

[
(∂xΠ)2 + (πη)2

]
+
[
∂xΠ η ∂xΠ + 1

3(πη)3
]}

. (2.5)

Writing η = ∂xϕ and ∂xΠ = Πϕ we see that it is evident that such a perturbation expansion
is essentially a low energy expansion. For a process with momentum k we see that (2.5)
is a theory of a massless scalar field in 1 + 1 dimensions with cubic interactions. The
cubic terms are small when the momenta k are small compared to kF so that there is a
perturbative expansion in powers of k/kF The quantity S(2)

A can be now expressed entirely
in terms of the connected equal time Green’s function G(x, x′) ≡ 〈η(x)η(x′)〉 leading to

S
(2)
A = π2

3

∫ b

a
dx

∫ b

a
dx′G(x, x′). (2.6)

In lowest order in the perturbation expansion, the Green’s function is that of a massless
field, so that the coincident Green’s functions which appear in (2.6) are logarithmically
divergent, leading to a logarithmically divergent result for S(2)

A - exactly as expected. The
detailed form of S(2)

A depends on the boundary conditions. For example when the theory
lives in a large box of size L, the integrated Green’s function is∫

dx

∫
dx′G(x, x′) = − 1

2π2 log
∣∣x− x′∣∣ . (2.7)

leading to the entropy

S
(2)
A = 1

3 log b− a
ε

. (2.8)

On the other hand, the answer in the fermionic many-body theory is not divergent.
The underlying reason is the fact that the fermions are non-relativistic. Fluctuations of
the collective field are particle-hole pair excitations around the Fermi sea. In the exact
theory the energy of such an excitation is

ω = kF

(
k + 1

2kF
k2
)
. (2.9)

The perturbative spectrum of the collective field is linear. As expected, this captures
only the low energy spectrum, valid for k � kF . On the other hand, the divergence
of the entanglement entropy comes from the UV. Since 1/kF is the coupling constant in
the collective theory, this would mean that the correct answer with a finite kF has to be
non-perturbative in the collective theory.

In the next subsection we will demonstrate the exact spectrum with eigenstates in the
collective formulation [30, 31] and [32]. The result is complete agreement with the known
result in the fermionic many-body theory, featuring the poles corresponding to (2.9). This
means that at non-perturbative level the finite entropy is obtained in an exact calculation.
We then consider the theory perturbatively. We show that the perturbation expansion can
be resummed, again yielding the exact result.

– 6 –
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2.1 Direct evaluation using exact eigenstates

In this section we will obtain the Green’s function of the collective field using exact eigen-
states of the full Hamiltonian, using [30, 31]. If we express the Hamiltonian as H = H2+H3,
where H2, H3 are the quadratic and cubic parts, it follows from the commutation relations
that

[H2, H3] = 0 (2.10)

so that they can be simultaneously diagonalized. The eigenstates of H2 are characterized
by the total momentum k in the emergent space direction x which can be distributed
among any number of particles in multiple ways. Thus these eigenstates are degenerate.
It is useful to consider the coordinate x to be in a periodic box of length L so that the
momenta

k = 2πn
L

, n = 0,±1,±2, · · · . (2.11)

Then the degeneracy of H2 can be characterized by partitions of an integer. The exact
eigenstates of H are then obtained by transforming to a basis which also diagonalizes H3.

The construction of exact eigenstates and eigenvalues follows from the connection of
the matrix model Hamiltonian and the Laplacian on U(N). Consider the unitary matrix U

U = exp
(2πi
L
M

)
. (2.12)

Then the Hamiltonian is given by

H = −1
2Tr

(
∂

∂M

∂

∂M

)
=
(2π
L

)2∑
α

CαCα, (2.13)

where
Cα = Tr

(
tα

∂

∂U

)
. (2.14)

Here tα, α = 1 · · ·N2 are the generators of U(N). The Hamiltonian is therefore the Lapla-
cian on U(N). Let us introduce the collective variables

φn = TrUn. (2.15)

These are Fourier transforms of the collective field φ(x) of the previous section. Using
the standard procedure in [18] the collective Hamiltonian is

H2 = 2π(N − 1)
L

∑
n

|n|φn
∂

∂φn
,

H3 = 1
2

(2π
L

)2 ∑
n,m

nmφn−m
∂

∂φn

∂

∂φm
+
∑
n,m

|n|φmφn−m
∂

∂φn
.

(2.16)

The eigenstates can be now expressed in terms of characters of representations of U(N).
Consider a representation described by a Young tableau with n boxes with λj boxes in the
j-th row

λ ≡ {λ1, λ2, · · · }, λ1 > λ2 ≥ λ3 ≥ · · · ,
∑
j

λj = n. (2.17)

– 7 –
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The eigenstates of H are then given by the Schur polynomials of (φ1 · · ·φn). Denote a
conjugacy class of the permutation group Sn by

ν = {1ν1 , 2ν2 , · · · }. (2.18)

This corresponds to a partition of n where j appears νj times. Then the Schur polynomials
may be written as

sλ({φ}) =
∑
ν

χλν
∏
m

φνmm
νm!mνm

, (2.19)

where χλν denotes the character of the irreducible representation λ for ν of Sn. This Fock
space representation of this state may be obtained by the representation

φn →
√
na†n,

∂

∂φn
→ 1√

n
an, [am, a†n] = δmn. (2.20)

and the fluctuation of the collective field is

δφn =
∫ ∞
−∞

dx e−
2πin
L η(x) =

√
n(an + a†n). (2.21)

In terms of these annihilation and creation operators the Hamiltonian reads

H2 = 2π
L
kF
∑
n 6=0
|n|a†nan,

H3 = 2π2

L2

∑
n,m>0;n,m<0

√
nm|n+m|(a†na†man+m + a†n+manam).

(2.22)

The eigenstate in question is then expressed in terms of the Fock vacuum |0〉

|λ〉 = sλ(
√
ja†j) |0〉 . (2.23)

The eigenvalue of the Hamiltonian H can be then computed to yield

Eλ = E2 + E3,

E2 = 1
2

(2π
L

)2
Nn, E3 = 1

2

(2π
L

)2∑
j

λj(λj − 2j + 1). (2.24)

In this equation E2 is the eigenvalue of H2 and E3 is the eigenvalue of H3.
A particular class of these states play a special role in the following. These are single

particle states. For a given n these states are labelled by an integer m, leading to a λ given
by

λ(n,m) = {m+ n−M, 1, 1, · · · , 1︸ ︷︷ ︸
M−m

}. (2.25)

where we have taken the number of fermions N to be odd, and M = (N − 1)/2
Using (2.24) the energy of this state above the ground state is given by

Eλ(n,m) = 1
2

(2π
L

)2
(n2 + 2nm). (2.26)

– 8 –
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In terms of continuous momenta k = 2πn/L, p = 2πm/L for a large box, we have

Eλ(p,k) = 1
2(k2 + 2pk) = 1

2[(p+ k)2 − p2]. (2.27)

Similarly for negative k we have the particle-hole branch which has the dispersion rela-
tion (2.27) with k → −k.

The Weyl formula expresses Schur polynomials as ratios of Slater determinants - this
means that these exact eigenstates are precisely states of an N = 2M+1 fermion system [30,
31]. The ground state is the filled Fermi sea where the states labelled by −M,−M+1, · · ·M
are filled. The Fermi momentum kF is given by

kF = π(N − 1)
L

= 2πM
L

. (2.28)

The state represented by (2.24) is a state where a fermion is removed from the m-th level
and moved to the (n + m)-th level. Note that the collective Hamiltonian (2.22) is the
Hamiltonian of fluctuations so that the energies are the excitation energies of the fermionic
many-body theory. This correspondence immediately implies that the states |λ(p, k)〉 are
the only states which have non-vanishing matrix elements

〈0|δφ(k)|λ(p, k)〉. (2.29)

Without any reference to the fermions, this result can be proven as follows. According to
the Frobenius characteristic formula, in order to give single particle states, the cycle type
must be

ν = {n1}. (2.30)

Therefore, any Schur polynomial sλ with non-vanishing character χλν of the particular
cyclic type ν contributes to the Dirac bracket. We can compute χλν using the Murnaghan-
Nakayama rule

χλν =
∑

Y ∈BST(λ,ν)
(−)ht(Y ), (2.31)

where BST(λ, ν) denotes all border-strip tableaux of the shape λ and the type ν, and ht(Y )
denotes the sum of the heights of the border strips in Y . The height of a border strip is
one less than the number of rows it touches. For a given Young tableau of the shape λ,
we start to fill the boxes with n integers ‘1′. Those Young tableaux not of the hook form
must contain at least one 2× 2 square of ‘1′, thus they fail to form border-strip tableaux,
which means the combination of λ and ν gives

χλν = 0. (2.32)

Hence only the Young tableaux of the hook form survive from the integral. In this case,
the leading term of the Schur polynomial is equal to

sλ = (−)kF−pφk
k

+ · · · → (−)kF−p 1√
k
a†k + · · · . (2.33)

We have identified φk with creation operator
√
ka†k.

– 9 –
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Consider now the (retarded) two-point function of collective field fluctuations obtained
by taking the zero temperature limit of the Matsubara correlator,

G̃(ω, k) =
∫ ∞

0
dτ eiωτ 〈ρ(τ, k)ρ(0,−k)〉 =

∫ kF

−kF

dp

2π
| 〈0| δφ(k) |λ(p, k)〉 |2

iω − Eλ(p, k) . (2.34)

Using (2.27), performing the integral, and adding the contributions for positive and negative
k we get

G̃(ω, k) = 1
2πk

(
log iω − kFk + k2/2

iω − kFk − k2/2 − log iω + kFk + k2/2
iω + kFk − k2/2

)
. (2.35)

After analytic continuation back to real time, this expression clearly displays the dispersion
relation (2.9) and is in exact agreement with a direct calculation in the fermionic many-
body theory (see e.g. [56]).

2.2 Perturbative calculation and resummation

It is convenient to define left and right moving chiral bosons

αL = 1√
2π

(∂xΠ + πη), αR = 1√
2π

(∂xΠ− πη), (2.36)

with commutation relations [
αL(x), αL(x′)

]
= −i∂xδ(x− x′), (2.37)[

αR(x), αR(x′)
]

= +i∂xδ(x− x′), (2.38)[
αL(x), αR(x′)

]
= 0. (2.39)

We can rewrite the Hamiltonian in terms of the new fields

H = HL +HR, (2.40)

HL = kF
2

∫
dx

(
α2
L +
√

2πg
3kF

α3
L

)
, (2.41)

HR = kF
2

∫
dx

(
α2
R −
√

2πg
3kF

α3
R

)
. (2.42)

Here we have introduced a small parameter g to keep track of the terms in an perturbation
expansion, which we will set to 1 at the end of the calculation. As mentioned above the
true expansion parameter is k/kF where k is the momentum in the Green’s function. The
following calculation is similar to that in [56]. Using mode expansions

αL,R(τ, x) = i

∫ ∞
0

dk

√
k

2π
[
aL,R(k)e−k(kF τ±ix) − a†L,R(k)ek(kF τ±ix)

]
, (2.43)

we can compute the propagators of chiral bosons. In Euclidean signature,

DL(τ, x) ≡ 〈αL(τ, x)αL(0, 0)〉 = 1
2π

1
(kF τ + ix)2 , (2.44)

DR(τ, x) ≡ 〈αR(τ, x)αR(0, 0)〉 = 1
2π

1
(kF τ − ix)2 . (2.45)
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Figure 1. Leading order.

Figure 2. Subleading order.

In momentum space, by doing contour integral we obtain

DL,R(ω, k) = −
∫ ∞

0
dτ

∫ ∞
−∞

dx ei(ωτ−kx)DL,R(τ, x) = ∓k
iω ± kFk

. (2.46)

Therefore we can read off the Feynman rules. Apart from propagators, the left and right
vertices are given by ±

√
2πg respectively. The main ingredient of calculating entanglement

entropy is the Green’s function of η, which we define in the following way

〈η(τ, x)η(0, 0)〉 ≡ G(τ, x) = −
∫ ∞
−∞

dω

2π

∫ ∞
0

dk

2π e
−i(ωτ−kx)G̃(ω, k), (2.47)

with
G̃(ω, k) = 1

2π
[
G̃L(ω, k) + G̃R(ω, k)

]
. (2.48)

The leading order {1} of G̃R(iω, k) is simply

G̃
(0)
R (ω, k) = DR(ω, k) = k

iω − kFk
, (2.49)

while the subleading order {2} in g gives

G̃
(1)
R (ω, k) = DR(ω, k)ΓR(ω, k)DR(ω, k). (2.50)

The self-energy can be computed again using contour integral

ΓR(ω, k) = 1
2
(√

2πg
)2 ∫ ∞

−∞

dω̃

2π

∫ k

0

dk̃

2π DR(iω̃, k̃)DR(iω − iω̃, k − k̃)

= g2

12
k3

iω − kFk
.

(2.51)
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Figure 3. Sub-subleading order:A.

Figure 4. Sub-subleading order:B.

Figure 5. Sub-subleading order:C.

Plugging it back, we get

G̃
(1)
R (ω, k) = g2

24
k5

(iω − kFk)3 . (2.52)

The sub-subleading order {3, 4, 5} contains three Feynman diagrams, which give

g4

144
k9

(iω − kFk)5 ,
g4

504
k9

(iω − kFk)5 ,
g4

280
k9

(iω − kFk)5 (2.53)

respectively.
Collecting all of the contributions, we obtain

G̃
(2)
R (ω, k) = g4

80
k9

(iω − kFk)5 . (2.54)
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This series can be resummed, leading to

G̃R(ω, k) = G̃
(0)
R (ω, k) + G̃

(1)
R (ω, k) + G̃

(2)
R (ω, k) + · · ·

= 2
gk

 gk2/2
2(iω − kkF ) + 1

3

(
gk2/2

2(iω − kkF )

)3

+ 1
5

(
gk2/2

2(iω − kkF )

)5

+ · · ·


= 1
gk

log iω − kFk + gk2/2
iω − kFk − gk2/2 .

(2.55)

Sending g to 1, we have

G̃R(ω, k) = 1
k

log iω − kFk + k2/2
iω − kFk − k2/2 . (2.56)

Similarly, the Green’s function of left chiral bosons is equal to

G̃L(ω, k) = −1
k

log iω + kFk + k2/2
iω + kFk − k2/2 , (2.57)

thus
G̃(ω, k) = 1

2πk

(
log iω − kFk + k2/2

iω − kFk − k2/2 − log iω + kFk + k2/2
iω + kFk − k2/2

)
. (2.58)

This is in agreement with the exact answer (2.35).

2.3 Entanglement entropy of a single interval

We are now ready to obtain an expression for the entanglement entropy of a single interval
(a, b), equation (2.6). Notice that the only dependence on x and x′ is in the Fourier
transformation, so we can integrate out them first,∫ b

a
dxdx′ eik(x−x′) = 4

k2 sin2 k(b− a)
2 . (2.59)

We now need to integrate (2.58) to extract the equal time correlator. Performing a partial
integration and using residue theorem, one gets∫ ∞

−∞
dω log(ω + ic) = 2π|c|+ I1 + I2. (2.60)

Here

I1 = limΛ→∞[ω log(ω + ic)− ω]Λ−Λ,

I2 = ic

∫
semicircle

dω

ω + ic
, (2.61)

where the integral in I2 is along an infinite radius semicircle in the lower- or upper-half
plane depending on the sign of c. In the integral over the four terms contained in G̃(ω, k) it
may be checked that these divergent contributions cancel. After simplifying the expression,
we obtain

S
(2)
A = 2

3

∫ ∞
0

dk

k3 sin2 k(b− a)
2

(∣∣∣kFk + k2/2
∣∣∣− ∣∣∣kFk − k2/2

∣∣∣)
= 2

3

∫ 2kF

0

dk

k
sin2 k(b− a)

2 + 4kF
3

∫ ∞
2kF

dk

k2 sin2 k(b− a)
2 .

(2.62)
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After performing the integral, the entanglement entropy can be recast into the form

S
(2)
A = 1

3 {−Ci[2kF (b− a)]− 2kF (b− a) Si[2kF (b− a)] + log[kF (b− a)]

+πkF (b− a) + 2 sin2[kF (b− a)] + γ + log 2
}
,

(2.63)

where γ is Euler’s constant. This is our final result. This, of course, is in exact agreement
with the result obtained directly in the fermionic many-body theory.

It is now clear that this answer requires a resummation of the perturbative expansion.
In fact, rather remarkably, the perturbative corrections to the leading order result exactly
vanish. This may be seen explicitly by expanding the Fourier transform of the equal time
correlator,

G0(k) =
∫ ∞
−∞

dω

2π G̃(ω, k) = G
(0)
0 (k) +G

(1)
0 (k) + · · · (2.64)

and using the expansion of G̃(ω, k). Performing the integrals explicitly one finds, for k > 0

G
(0)
0 (k) = k

π
,

G
(m)
0 (k) = 0, m = 1, 2, 3 · · · . (2.65)

This means that there is no perturbative correction to the divergent lowest order result for
the entanglement entropy. The answer is inherently non-perturbative. In fact the exact
G0(k) obtained by integrating (2.58) over ω is

G0(k) =
{
|k|/π for |k| < 2kF

2kF /π for |k| > 2kF
. (2.66)

In position space, the exact equal time correlator is given by

G(x− y) =
(
kF
π

)
δ(x− y)

(sin[kF (x− y)]
kF (x− y)

)
−
(
kF
π

)2 (sin[kF (x− y)]
kF (x− y)

)2
. (2.67)

Integration of this quantity over the interval A yields the result (2.63).
The perturbation expansion is in powers of k/kF . Thus for all k < 2kF the result is

indeed given exactly by the lowest order result (2.65), consistent with what we found. The
result for k > 2kF , which is responsible for the finiteness of the entanglement entropy, is
inaccessible in perturbation theory.

In the large interval limit kF (b− a)� 1, the entanglement entropy is given by

S
(2)
A = 1

3{log[kF (b− a)] + 1 + γ + log 2 + · · · }. (2.68)

Notice that this result agrees with the lowest order calculation, except that the UV cutoff
ε has been replaced by a finite number 1/kF . This can be understood as follows. In
the large interval limit, the small momentum G0(k) contributes which can be calculated
perturbatively. However the exact result (2.65) shows that the low momentum behavior
changes at k ∼ kF - thus kF acts as a cutoff.
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In the small interval limit kF (b− a)� 1, the entanglement entropy is given by

S
(2)
A = 1

3{πkF (b− a) + k2
F (b− a)2 + · · · }. (2.69)

Unlike the large interval limit, this is extensive in the interval size. In this limit G0(k) is
a constant so that the position space equal time correlator is a Dirac delta function, and
the expression for the leading entanglement entropy (1.5) leads to this extensive behavior.

3 Entanglement in the collective and eigenvalue descriptions

As emphasized in the introduction, the preceding calculations are those of entanglement
entropies as defined in the fermionic description, but calculated using the collective theory.
In this section we discuss the connection of this quantity with the entanglement directly
defined in terms of the bosonic collective field. This is the question of the relationship of
the notion of entanglement of a region and bosonization.

In bosonization a fermion field is related to the boson field by a transformation which
is non-local in space. Therefore, a priori the notion of locality in terms of bosons could
be generally quite different for the notion of locality in terms of fermions and may lead to
different entanglement entropies. For relativistic fermions and spin models this issue has
been discussed in the literature [36, 37].

For a non-relativistic fermionic many-body theory which is considered in this paper,
the situation is rather different. This is because there is conserved number of fermions
and a first-quantized description where the fermion coordinates are the dynamical vari-
ables. In fact, this is the basic description which comes from matrix quantum mechanics.
Second-quantized fermionic many-body theory and collective field theory are two different
formulations of this many-body system. The operators in the first-quantized formalism are
of the type

Omn =
N∑
i=1

λ̂mi p̂
n
i , (3.1)

where p̂i are the momenta conjugate to the position operators λ̂i, and various orderings of
these operators. In terms of the second-quantized fermion field ψ(x) this is

Omn =
∫
dx ψ†xm(−i∂x)nψ, (3.2)

while the expression in terms of the collective field should be obtained by making a change
of variables from {λi} to φ(x),

φ(x) = 1
N

N∑
i=1

δ(x− λ̂i) (3.3)

and using the chain rule [18].
The notion of entanglement of a subregion A is best understood in terms of a subalgebra

of operators. In the fermionic many-body theory the set of operators are simply those which
are made out of the fermion fields ψ(x), ψ†(x), with x ∈ A . In the first-quantized language,
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specifying the subalgebra requires a constraint on the target space. This is best done by
defining a projection operator for each i [40]

Pi =
∫
A
dy δ(y − λ̂i). (3.4)

The subalgebra of operators are then obtained by replacing

(λ̂i, p̂i)→ (Piλ̂iPi, Pip̂iPi). (3.5)

This projection breaks up the Hilbert space into a direct sum of super-selection sectors
characterized by the number of particles k which are in the subregion A. This is most
easily seen by computing the expectation value of many-body operators of the form Omn
in some state described by a properly anti-symmetrized wavefunction Ψ(λ1, λ2, · · ·λN ).
Consider operators of the form

Om =
N∑
i=1

λ̂mi , (3.6)

whose projected version is

OPm =
N∑
i=1

Piλ̂
m
i . (3.7)

It is straightforward to see that the expectation value of the projected operator is

〈Ψ|OPm|Ψ〉 =
N∑
k=1

(
N

k

)
k∑
i=1

∫
A

k∏
a=1

dλa

∫
Ā

N∏
α=k+1

dλα Ψ?(λ1 · · ·λN )λmi (λ1 · · ·λN ) (3.8)

where Ā is the complement of the region A. This contains a sum over the sectors mentioned
above. In each sector labelled by k the result can be obtained from an (un-normalized)
reduced density matrix ρ̃k which is an operator in the k-particle Hilbert space of particles
living in the region A. The trace tr ρ̃k is the probability of finding k particles in A. The
reduced density matrix of the entire system is block-diagonal

ρ = diag(ρ̃1, ρ̃2, · · · ρ̃N ) (3.9)

and normalized (since the sum of probabilities is unity) and the target space entanglement
entropy is given by the von Neumann entropy of ρ.

In the second-quantized fermionic many-body theory the Hilbert space is a direct
product as usual and the reduced density matrix is obtained simply by integrating out the
fermion fields in Ā. This density matrix which evaluates fermion bilinears in this region is
identical to ρ defined in (3.9) - as was explicitly shown for Slater determinant states in [39].

Let us now come to collective field theory. The subalgebra of operators pertaining to
a region A is the subalgebra of operators formed by taking products of {φ(x),Π(x)}, with
x ∈ A. The restriction to A can be implemented again by a projector, i.e.

φP (x) =
∫
A
dy δ(y − x)φ(y), (3.10)
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and similarly for πP (x). Focusing on many-body operators of the form (3.6) the subalgebra
now consists of operators of the form

ÕPm =
∫
R
dxφP (x)xm =

N∑
i=1

∫
A
dy ymδ(y − λ̂i). (3.11)

Clearly the subalgebra of operators ÕPm is identical to the subalgebra of operators OPm, as
may be checked explicitly by computing expectation values in arbitrary states. Therefore
the reduced density matrices which evaluates these are identical as well.

The same projector can be used to obtain the projected versions of many-body opera-
tors which involve momenta pi. In terms of the collective field these involve integrals over
the collective field and powers of the conjugate momentum, and the discussion above can
be generalized.

We now discuss further applications of the collective field approach to the problem of
target space entanglement in several problems of direct interest to string theory.

3.1 Field theory of long strings

A single matrix quantum mechanics with inverted oscillator potential V (M) = −M2/2 is
defined by the Hamiltonian

H = Tr
[
−1

2

(
∂

∂M

)2
− 1

2M
2
]
. (3.12)

Here M is a Hermitian N ×N matrix, which can be polar-decomposed in the form

M = Ω†ΛΩ (3.13)

for some matrix Ω ∈ SU(N)/H with H being the stablizer, where Λ = diag(λ1, · · · , λN ) is
diagonal. The invariance of the theory under SU(N) transformation implies that we can
rewrite the Hamiltonian as

H = −1
2

(
1
∆
∑
i

∂2

∂λ2
i

∆ +
∑
i

λ2
i

)
+−
∑
i,j

QRijQ
R
ji

(λi − λj)2 , (3.14)

associated with wavefunction Ψ(Λ,Ω) invariant under SNnU(1)N gauge redundancy, where

∆ =
∏
i<j

(λi − λj) (3.15)

is the Vandermonde determinant, and QRij is the ij generator of SU(N) under the repre-
sentation R.
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While the singlet sector of matrix quantum mechanics reduces to a theory of non-
interacting fermions, non-singlet sectors lead to interacting fermions whose coordinates
are again given by the eigenvalues. In particular the long string sector is described by
the adjoint sector and becomes related to the spin-Calogero model [46]. The problem of
target space entanglement in the many-body quantum mechanics of these particles can be
formulated exactly as above. In fact there is a well known collective field theory formulation
of the Calogero model using its bosonized current-algebra representation, so that this can
be reformulated in terms of collective fields [46–49]

H =
∫
dx

[
1
2∂xΠ(x)φ(x)∂xΠ(x) + π2

6 φ
3(x)− 1

2x
2φ(x)− ∂xΠ(x)ψ̄(x)∂xψ(x)

]

−−
∫
dxdy ψ̄(y) φ(x)

(x− y)2ψ(x)−−
∫
dx ψ̄(x)

[
∂x−
∫
dy

φ(y)
x− y

]
ψ(x)

+ 1
2−
∫
dxdy ψ̄(x)ψ̄(y)

[
ψ(x)− ψ(y)

x− y

]2
,

(3.16)

where boson φ and fermion ψ represent closed string and long string respectively.
Since this is a model of interacting fermions, there is no direct connection between

counting statistics [57, 58] and entanglement entropy. Nevertheless the short distance
behavior of collective field correlators determines the behavior of the entanglement entropy.
Preliminary results suggest that this can be obtained in a manner similar to the case
detailed in this paper.

3.2 Multi-matrix models and higher dimensional strings

In [38, 39] the notion of target space entanglement has been generalized to multi-matrix
models, e.g. the BFSS or the BMN matrix models.

A Kaluza-Klein expansion of the N = 4 super Yang-Mills theory on R×S3 in terms of
spherical harmonics on S3 leads to matrix model reduction. Keeping only the zero mode
degrees of freedom, for the Higgs sector the Lagrangian reads

L = Tr

1
2
∑
i

(
Φ̇2
i −

1
R2 Φ2

i

)
+ 1

4−
∑
i,j

[Φi,Φj ]2
 , i, j = 1, · · · , 6. (3.17)

The holomorphic notation introduces SU(3) triplet Zi = Φi + iΦi+3 and their complex
conjugates Z̄i. Restriction to 1/2-BPS configurations corresponds to single trace operators
involving only the chiral primary operators of the general form TrZn. This model is
essentially a one-matrix model described in this work. More generally addressing two-
matrix problem, we may consider the simplest case of the complex matrix model with

Z = A+B†, Z̄ = A† +B. (3.18)

A gauge invariant notion of target space entanglement can be formulated in the fol-
lowing way. In a theory of several Hermitian matrices M I , I = 1 · · ·K consider a function
f(M) which is itself a Hermitian matrix. Then define a projector

P fij =
∫
A
dy [δ(y · I − f(M))]ij . (3.19)
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A set of gauge invariant operators are of the form

OI1I2··· = Tr
[
M I1M I2 · · ·

]
. (3.20)

The projector (3.19) can be then used to define a subalgebra of operators

OI1I2···
f = Tr

[
P fM I1P fM I2P f · · ·

]
. (3.21)

There is a reduced density matrix which evaluates expectation values of operators belonging
to this subalgebra, and an associated entanglement entropy. This is a completely gauge
invariant specification of the subalgebra. In a gauge in which f(M) is diagonal, the operator
P f projects out the eigenvalues of f(M) which lie in some specified interval A. A simple
example involves f(M) = M1. Then the eigenvalues of M1 which lie in the interval A
are retained. In a sector where n of the eigenvalues lie in A, P f projects onto an n × n
block of the other matrices M I , I 6= 1 the operator projects out. In the BFSS or BMN
model, we have a K dimensional target space x1 · · ·xK and the eigenvalues of the matrices
represent the locations of D0 branes in this target space. The reduced density matrix
then evaluates measurements made on D0 branes whose x1 lies in an interval A and the
projection amounts to integrating out the open strings joining branes which do not lie in
this region. Target space entanglement provides a concrete notion of entanglement in the
string field theory dual to these matrix models.

The BMN matrix model has a collective field formulation [54, 55]. One has the general
collective loops of W,X and Y

Tr (Wn1Xm1Y k1Wn2Xm2 · · · ). (3.22)

These invariant loops variables denoted collectively by φC constitute all the observables
in the full string field theory, where C stands for word index. The collective Hamiltonian
can be expressed in terms of φC and its conjugate πC . The emergent spacetime is again
seen through collective density [59]. In a way analogous to our treatment of the one-matrix
problem one should then be able to consider entanglement in terms of this collective field.
Potential evaluation of entanglement entropy can be done through numerical methods
introducing in [60].

4 Discussion

In this paper we explored the question of finiteness of entanglement entropy in theories
whose spatial dimensions emerge out of matrix degrees of freedom. More specifically, we
addressed the question concretely in collective field theory of matrix quantum mechanics
which becomes equivalent to two-dimensional non-relativistic fermions in an external poten-
tial. When the external potential is a regulated inverted harmonic oscillator this collective
field theory is a string field theory of non-critical strings and the perturbation expansion is a
string loop expansion. In the fermionic description the entanglement entropy is manifestly
finite for a finite particle number density. However the collective field theory fluctuations
are described by a self-interacting relativistic massless scalar field whose coupling is pro-
portional to k/kF . Thus to the lowest order in a perturbation expansion the result has the
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usual logarithmic divergence. The question is to understand how the interactions render
the answer finite. This question is independent of the nature of the external potential.

We have answered this question unequivocally for the case where the potential is van-
ishing. In this case, the collective theory can be solved exactly [30, 31] and the exact eigen-
values of the Hamiltonian are known to reproduce the fermion dispersion relation. Here we
verified that the connected two-point function exactly reproduces the fermion four-point
function. Since the leading term in the entanglement entropy involves an integral of this cor-
relator this also leads to the correct exact answer. If we treat the interaction perturbatively
we show that the leading order divergence is not cured in any finite order of the perturbation
expansion. However the series can be resummed (as noted in [56]) yielding the exact answer.
The finiteness of the entanglement entropy is therefore essentially non-perturbative.7

When the external potential is an inverted harmonic oscillator, this system is a descrip-
tion of string field theory of bosonic non-critical string and the perturbation expansion is
the string loop expansion. In this case, the collective field theory is more subtle. In particu-
lar in Hamiltonian has additional singular counter-terms which are subleading in 1/N , and
these are essential for a detailed correspondence to string theory. Nevertheless, we expect
that the same mechanism will work in this case, i.e. the divergence is present in all finite or-
ders of perturbation theory and its cure is non-perturbative. In the string theory this means
that the scale which renders the entanglement entropy finite involves the string coupling gst.

The main reason why the entanglement entropy is finite in the theories we consider is
that the dynamics of the target space of these matrix models is non-relativistic in nature.
This drastically alters the short distance behavior of correlations. We have not performed
any explicit calculation for theories with multiple matrices which are relevant to higher
dimensional strings. However in known examples, e.g. the BFSS or BMN models, the
target space is again non-relativistic. As conjectured in [39, 40] one would expect a similar
mechanism for these models.

In the examples we investigated in this paper, the finiteness of the entanglement en-
tropy persists in a double scaling limit where N → ∞ and some other parameter (e.g.
the size of the box for fermions in a box with no potential, or the Fermi level measured
from the top of an inverted harmonic oscillator potential) also tuned keeping the coupling
fixed. The treatment in section 2.1 is valid for any finite N . However only N of the φm are
independent variables because of trace relations. Naively this fact, also called the “stringy
exclusion principle”, did not play a role in the subsequent analysis where we took both
N → ∞ and L → ∞ keeping kF fixed. This point demands further investigation. It will
be interesting to see if there are similar limits in these higher dimensional models.

Finally it will be interesting to investigate the connection of the origin of finiteness
discussed in this paper to other recent discussions based on the types of von Neumann
algebras.8

7It should be noted that we have performed a canonical perturbation expansion using the Hamiltonian.
The conjugate momenta is non-polynomial in the time derivative of the field, so that there are an infinite
number of vertices. A perturbation expansion using the Lagrangian will be rather complicated. However, a
careful calculation should display cancellations and establish agreement with the Hamiltonian perturbative
expansion.

8See e.g. [61, 62] and references therein.
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A Proof of exact dispersion relation

In this appendix we will provide the proof of the exact dispersion relation (2.24). This
result follows from two fusion rules. The first is the Littlewood-Richardson rule, which
states that the fusion of Schur polynomials is determined by the equation

sλsµ =
∑
ν

fνλ,µsν , (A.1)

with coefficients fνλ,µ equal to the number of the Littlewood-Richardson tableaux of skew
shape ν/λ and of weight µ. The second is the fusion rule of characters of permutation
group Sn

Cρ
dλ
χλρ
Cµ
dλ
χλµ =

∑
ν

gνρ,µ
Cν
dλ
χλν , (A.2)

where the depth dλ of a Young tableau λ is the number of boxes that do not belong to the
first row. And the number of different permutations in the conjugacy class ν is given by

Cν = n!∏
j νj !jν

, (A.3)

where n! is the total number of elements in the permutation group Sn. The idea is to
choose

ρ =
(
1n−2, 21

)
. (A.4)

With this choice, we have
Cρ = n(n− 1) (A.5)

and
Cρ
dλ
χλρ =

∑
j

λj(λj − 2j + 1) (A.6)

which is exactly the eigenvalue E3(λ) of H3. We then have the eigenequation representing
a special case of the multiplication formula

H3Cµχ
λ
µ =

∑
ν

gνρ,µCνχ
λ
ν . (A.7)

Working out the special structure constant gνρ,µ one gets

∑
k

k
k−1∑
l=1

Cν,sχ
λ
ν,s +

∑
k<l

klCν,jχ
λ
ν,j , (A.8)

– 21 –
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where ‘s’ denotes splitting of the conjugacy class Cν

φk → φl, φk−l, (A.9)

while ‘j’ denotes joining of the conjugacy class Cν

φk, φl → φk+l. (A.10)
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