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1 Introduction

Scattering amplitudes in string theories are derived from moduli-space integrals over punctured
worldsheets of various genera. The integrands are correlation functions in the conformal
field theory on the worldsheet of vertex operators encoding the scattering data. Simplified
representations of these integrated correlators became increasingly important, not only for the
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sake of computational efficiency but primarily to unravel elegant structures and relations of
string amplitudes and their field-theory limit. It proved particularly rewarding to decompose
these correlators into basis functions of the moduli using integration by parts in the punctures
along with algebraic manipulations of the integrand.

In n-point tree-level amplitudes of various string theories, the basis of functions can
be spanned by so-called Parke-Taylor factors

PT(1, 2, . . . , n) := 1
z1,2z2,3 . . . zn−1,nzn,1

, zi,j = zi − zj (1.1)

depending on n punctures z1, z2, . . . , zn on a sphere or disk. Permutations of (1.1) in the
external-state labels 1, 2, . . . , n are related by integration-by-parts relations and, as firstly
derived by Aomoto [1], fall into (n−3)!-dimensional bases. The underlying integration-by-parts
relations at genus zero are driven by the universal Koba-Nielsen factor

Itree
n =

n∏
1≤i<j

|zi,j |α
′ki·kj , (1.2)

which accompanies (1.1) and depends on the inverse string tension α′ as well as the external
momenta ki. Moreover, the Koba-Nielsen factor aligns genus-zero string integrals into
the setup of twisted (co)homologies, see [2–4] and [5–8] for references in the physics and
mathematics literature.

The integration-by-parts relations among permutations of Itree
n PT(1, 2, . . . , n) and related

building blocks of genus-zero correlators have profound implications for field theory, string
theory and mathematics, see [9] for a review: first, they determine the Kleiss-Kuijf [10]
and Bern-Carrasco-Johansson [11] relations among gauge-theory amplitudes [12, 13] and
reduce Einstein-Yang-Mills tree amplitudes to gauge-theory ones [14]. Second, (n−3)!-term
representations of genus-zero correlators reveal field-theory double-copy structures in open-
and closed-string tree amplitudes [12, 15–17] that resemble the Kawai-Lewellen-Tye relations
between gravity amplitudes and squares of gauge-theory ones [18]. Third, in deriving the
α′-expansion of string tree-level amplitudes from the Drinfeld associator [19], the constituting
braid matrices [4, 20] are obtained from integration-by-parts manipulations of genus-zero
correlators with an additional unintegrated puncture.

The variety of tree-level insights resulting from Parke-Taylor bases motivate the quest for
analogous integration-by-parts bases for loop-level correlators. In one-loop string amplitudes,
the correlators on a genus-one surface such as the torus or the cylinder can be expressed in
terms of Jacobi theta functions. In particular, genus-one correlators involve a ubiquitous
uplift of the Koba-Nielsen factor (1.2) including |θ1(zi,j , τ)|α′ki·kj in the place of |zi,j |α

′ki·kj ,
where θ1 is the odd Jacobi theta function depending on the modular parameter τ of the
surface. The main focus of this work lies on the leftover functions of zj , τ that accompany
the one-loop Koba-Nielsen factor. These functions may be viewed as one-loop analogues of
the Parke-Taylor factors (1.1) and will be systematically reduced to conjectural bases under
integration by parts and so-called Fay relations among the theta functions. The entirety of
Fay and integration-by-parts relations will be referred to as F-IBP.

Genus-one correlators for massless bosonic, heterotic and supersymmetric string am-
plitudes can be expressed via coefficients f (w)(zi,j , τ) of the Kronecker-Eisenstein series

– 2 –



J
H
E
P
0
5
(
2
0
2
4
)
2
5
6

with modular weights w ≥ 0 [21–23]. While specific string amplitudes impose multiplicity-
dependent upper bounds on the weight w of f (w), a recent proposal for F-IBP bases at genus
one [24–26] is built at the level of generating series, i.e. products of Kronecker-Eisenstein
series. The necessity of generating series is plausible by the fact that τ -derivatives effectively
add two units of modular weight, so any bounded collection of f (w)(zi,j , τ) cannot close
under moduli derivatives.

More specifically, the conjectural genus-one bases of [24–26] are built from chains

Ω(z1,2, η2+η3+ . . . +ηn, τ)Ω(z2,3, η3+ . . . +ηn, τ) . . . Ω(zn−1,n, ηn, τ) (1.3)

of Kronecker-Eisenstein series Ω(z, η, τ ) = ∑∞
w=0 ηw−1f (w)(z, τ), whose permutations in the la-

bels j = 2, 3, . . . , n of zj , ηj yield (n−1)!-component vectors. By isolating different orders in the
Laurent expansion w.r.t. the bookkeeping variables ηi ∈ C, one recovers the combinations of
f (w)(zi,j , τ) in the integrands of string amplitudes. In particular, correlators in different string
theories reside at different orders in ηj , e.g. integrands for bosonic string amplitudes are typi-
cally found at four subleading orders in ηj as compared to their supersymmetric counterparts.

Under τ -derivatives, the vector of Koba-Nielsen integrals over chains (1.3) obeys a
first-order differential equation of KZB type. The homogeneity of this equation not only
substantiates the claim that the (n−1)!-vectors of chains yield a Koba-Nielsen integral basis
but also leads to powerful techniques to extract the α′-expansions of configuration-space
integrals at genus one: based on the solution of the respective KZB-type equations via Picard
iteration, the elliptic multiple zeta values in the expansion of open-string integrals [22, 27]
are determined in terms of iterated integrals over holomorphic Eisenstein series [24, 25].1 In
the closed-string case, similar first-order equations [26] and their perturbative solution [30]
clarified the relation between modular graph forms [31, 32] and iterated Eisenstein integrals.
This in turn paved the way for identifying modular graph forms [33] with Brown’s equivariant
iterated Eisenstein integrals [34, 35]. In view of these mathematical developments, it is a
burning question if the closure of the chains (1.3) under ∂τ is merely a coincidence or really
identifies an F-IBP basis at genus one.

Instead of attempting a mathematically rigorous proof, we gather further evidence
for (1.3) to form a basis by decomposing cyclic products and more general arrangements of
Kronecker-Eisenstein series into the chain form. In this way, we not only add further credence
to the conjectural basis but also arrive at practical tools to

• simplify the genus-one correlators in heterotic- and bosonic-string amplitudes (say
converting their cycles of f (w)(zi,j , τ) into chains) and set the stage to investigate
physical interpretations of the basis coefficients,

• reduce the α′-expansions of genus-one integrals with Kronecker-Eisenstein integrands
beyond the chain form to the all-order results of [24, 25, 30] and thereby facilitate the
computation of low-energy effective couplings in heterotic and bosonic string theories.

The explicit basis decompositions in this work via F-IBP relations generalize the tree-level
computations in [14, 36–38] and should be useful in placing the (n−1)!-bases on rigorous

1See [28] for an alternative method to obtain the α′-expansion of open-string integrals at genus one from
elliptic associators and [29] for its reformulation in terms of generating series.
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footing. It would be exciting if the expansion coefficients in our basis decompositions can be
interpreted as suitable generalizations of intersection numbers which need to accommodate
differential operators in the bookkeeping variables ηj [24, 25, 30].

While the original motivation for this work arises from conventional string theories
with infinite spectra, our results can be exported to both ambitwistor strings [39, 40] and
chiral strings [41, 42]: as for instance discussed in [37, 38, 43–45], the integration-by-parts
manipulations of moduli-space integrands can be smoothly translated between these types
of string theories (possibly involving a formal α′ → ∞ limit). It is also conceivable that
our results shed further light on massive loop amplitudes in conventional and chiral string
theories as done at tree level in [46] based on Parke-Taylor decompositions.

The computation of closed-string loop amplitudes greatly simplifies in the framework of
chiral splitting [47, 48]: the introduction of loop momenta reduces closed-string correlators
to double copies of meromorphic open-string building blocks known as chiral amplitudes.
However, F-IBP simplifications of chiral amplitudes are more subtle than those of the
manifestly doubly-periodic f (w)(zi,j , τ)-integrands that arise after loop integration. Certain
total derivatives in the punctures of chiral amplitudes may integrate to non-vanishing boundary
terms in a closed-string context. We will discuss the role of these boundary terms in the
quest for a chiral-splitting analogue of the (n−1)! genus-one bases of f (w)(zi,j , τ)-integrands.

A Mathematica implementation of our results as well as chain decompositions of more
general classes of genus-one string integrands can be found in a companion paper [49].

Outline. The present work is organized as follows: the conjectural chain bases of genus-one
integrals and their building blocks are reviewed in section 2. We then reduce a single cycle
of Kronecker-Eisenstein series to combinations of chains, with a detailed discussion of the
two-point case in section 3 and the n-point generalization in section 4. In section 5, the
results and techniques are reformulated in the framework of chiral splitting, with a discussion
of boundary terms beyond an (n−1)! basis. Section 6 is dedicated to basis decompositions
for products of two or three cycles of Kronecker-Eisenstein series. We present our conclusions
and provide an outlook in section 7. Additional examples relevant for applications to specific
one-loop heterotic-string amplitudes can be found in appendix A, and intermediate steps
for the reduction of double cycles are given in appendix B. Moreover, the reader is referred
to section 2.3.5 for a more detailed outline of this work.

2 Review, notation and conventions

2.1 Basic definitions

One-loop string amplitudes are computed from moduli-space integrals over correlation func-
tions of certain worldsheet fields that carry the external-state information. All the dependence
of these genus-one correlators on the punctures z ∈ C and modular parameter τ ∈ C with
Im τ > 0 can be deduced from the Kronecker-Eisenstein series [50]

F (z, η, τ) := θ′1(0, τ)θ1(z+η, τ)
θ1(z, τ)θ1(η, τ) , (2.1)
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where the standard odd Jacobi theta function with q := exp(2πiτ) is given by

θ1(z, τ) := 2q1/8 sin(πz)
∞∏

n=1
(1 − qn)

(
1 − qne2πiz

) (
1 − qne−2πiz

)
. (2.2)

Based on a non-holomorphic admixture in the exponent of [51]

Ω(z, η, τ) := exp
(

2πiη
Im z

Im τ

)
F (z, η, τ) , (2.3)

we attain a doubly-periodic completion of the meromorphic Kronecker-Eisenstein series (2.1)
subject to Ω(z, η, τ) = Ω(z+1, η, τ) = Ω(z+τ, η, τ). Laurent expansions in the bookkeeping
variables η ∈ C define Kronecker-Eisenstein coefficients g(w), f (w) with w ∈ N0,

F (z, η, τ) =:
∞∑

w=0
ηw−1g(w)(z, τ) and Ω(z, η, τ) =:

∞∑
w=0

ηw−1f (w)(z, τ) , (2.4)

for instance g(0)(z, τ) = f (0)(z, τ) = 1 as well as g(1)(z, τ) = ∂z log θ1(z, τ) and f (1)(z, τ) =
g(1)(z, τ) + 2πi Im z

Im τ . While the meromorphic g(w) feature B-cycle monodromies generated by
F (z+τ, η, τ ) = e−2πiηF (z, η, τ ), the doubly-periodic f (w) have non-vanishing antiholomorphic
derivatives2

∂

∂z̄
Ω(z, η, τ) = − πη

Im τ
Ω(z, η, τ) ⇒ ∂

∂z̄
f (w)(z, τ) = − π

Im τ
f (w−1)(z, τ) , w ≥ 1 . (2.5)

Laurent expansion of (2.3) relates the two types of Kronecker-Eisenstein coefficients via

g(w)(z, τ) =
w∑

k=0

(−ν)k

k! f (w−k)(z, τ) , f (w)(z, τ) =
w∑

k=0

νk

k! g(w−k)(z, τ) , (2.6)

with ν := 2πi Im z
Im τ . Iterated integrals of the g(w) and f (w) give rise to different descriptions

of elliptic polylogarithms [22, 51, 52] which had dramatic impact on recent developments
in both string perturbation theory [53] and particle physics [54].

2.1.1 Holomorphic Eisenstein series

Evaluating the f (w)(z, τ) at the origin produces holomorphic Eisenstein series

Gw(τ) :=
∑

(m,n) ̸=(0,0)

1
(mτ + n)w

= −f (w)(0, τ) , w ≥ 4 (2.7)

of modular weight (w, 0), represented via absolutely convergent double sums over integers
m, n if w ≥ 4. While the analogous z → 0 limit of f (2)(z, τ) is ill-defined, we will later
encounter a non-holomorphic but modular variant of the weight-two Eisenstein series

Ĝ2(τ) := lim
s→0

∑
(m,n) ̸=(0,0)

1
(mτ + n)2 |mτ + n|s

= G2(τ) − π

Im τ
. (2.8)

The factor of |mτ+n|−s is necessary for absolute convergence of the double sum, and the
meromorphic counterpart G2(τ) of Ĝ2(τ) is defined through the Eisenstein summation
prescription

G2(τ) := lim
M→∞

lim
N→∞

M∑
m=−M

N∑
n=−N

1
(mτ + n)2 . (2.9)

2Delta-function contributions to antiholomorphic derivatives (2.5) and ∂
∂z̄

g(w)(z, τ) = ∂
∂z̄

F (z, η, τ) = 0 are
not tracked in this work.

– 5 –



J
H
E
P
0
5
(
2
0
2
4
)
2
5
6

2.1.2 Properties of the Kronecker-Eisenstein series

The Kronecker-Eisenstein series as well as its doubly-periodic completion satisfy the an-
tisymmetry property

F (−z,−η, τ) = −F (z, η, τ) , Ω(−z,−η, τ) = −Ω(z, η, τ) (2.10)

as well as Fay identities

F (z1, η1, τ)F (z2, η2, τ) = F (z1, η1+η2, τ)F (z2−z1, η2, τ) + F (z2, η1+η2, τ)F (z1−z2, η1, τ) ,

(2.11)
which hold in identical form for F (z, η, τ) → Ω(z, η, τ) and can be thought of as quasi- and
doubly-periodic generalizations of the partial-fraction relation 1

zizj
= 1

zi−zj
( 1

zj
− 1

zi
).

By carefully taking the limit z1 → z and z2 → −z in (2.11), one can derive the following
identities

F (z, η1, τ)F (−z, η2, τ) = F (z, η1−η2, τ)
(
g(1)(η2, τ) − g(1)(η1, τ)

)
+ ∂zF (z, η1−η2) , (2.12)

Ω(z, η1, τ)Ω(−z, η2, τ) = Ω(z, η1−η2, τ)
(
ĝ(1)(η2, τ) − ĝ(1)(η1, τ)

)
+ ∂zΩ(z, η1−η2) , (2.13)

where the main difference between the meromorphic and the doubly-periodic case concerns
the Eisenstein series G2(τ) or Ĝ2(τ) in the expansions

g(1)(η, τ) = ∂η log θ1(η, τ) = 1
η
− ηG2(τ) −

∞∑
n=4

ηn−1Gn(τ) , (2.14)

ĝ(1)(η, τ) := ∂η log θ1(η, τ) + πη

Im τ
= 1

η
− ηĜ2(τ) −

∞∑
n=4

ηn−1Gn(τ) . (2.15)

One can employ the ηj-expansions of (2.12) and (2.13) to rewrite derivatives ∂zg(w)(z, τ)
and ∂zf (w)(z, τ) in terms of bilinears in undifferentiated Kronecker-Eisenstein coefficients
and Eisenstein series. Similar rewritings of ∂zg(w)(z, τ) and ∂zf (w)(z, τ) can be attained
from the expansion of

∂zF (z, η, τ) − ∂ηF (z, η, τ) =
(
g(1)(η, τ) − g(1)(z, τ)

)
F (z, η, τ) , (2.16)

∂zΩ(z, η, τ) − ∂ηΩ(z, η, τ) =
(
ĝ(1)(η, τ) − f (1)(z, τ)

)
Ω(z, η, τ) , (2.17)

which straightforwardly follow from the definition (2.1). Upon isolating fixed orders in η,
we obtain identities such as

∂zf (1)(z, τ) = 2f (2)(z, τ) −
(
f (1)(z, τ)

)2 − Ĝ2(τ) (2.18)

and more generally

∂zf (w)(z, τ) = (w+1)f (w+1)(z, τ) − f (w)(z, τ)f (1)(z, τ) (2.19)

− Ĝ2(τ)f (w−1)(z, τ) −
w+1∑
n=4

Gnf (w+1−n)(z, τ) .
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2.1.3 Shorthand notation

Since the main results of this work concern configuration-space integrals over several punctures
z1, z2, . . ., it will be convenient to use the shorthand notation

∂j := ∂

∂zj
, g

(w)
ij := g(w)(zi−zj , τ) , f

(w)
ij := f (w)(zi−zj , τ) , (2.20)

and similarly

Fij(η) := F (zi−zj , η, τ) , Ωij(η) := Ω(zi−zj , η, τ) . (2.21)

In this notation, (2.16) and (2.17) for instance take the alternative form

∂iFij(η) = −g
(1)
ij Fij(η) +

(
g1(η) + ∂η

)
Fij(η) , (2.22)

∂iΩij(η) = −f
(1)
ij Ωij(η) +

(
ĝ1(η) + ∂η

)
Ωij(η) , (2.23)

where fixed orders in η allow to eliminate ∂ig
(w)
ij and ∂if

(w)
ij in favor of undifferentiated

Kronecker-Eisenstein coefficients, cf. (2.19). Similarly, the expansion of the Fay identity (2.11)
in η1, η2 yields quadratic relations involving three points z1, z2, z3 [22]

f
(n)
12 f

(m)
23 = −f

(m+n)
13 +

n∑
j=0

(−1)j

(
m − 1 + j

j

)
f

(n−j)
13 f

(m+j)
23 (2.24)

+
m∑

j=0
(−1)j

(
n − 1 + j

j

)
f

(m−j)
13 f

(n+j)
12

which hold in identical form for f
(w)
ij → g

(w)
ij .

2.2 The structure of one-loop string amplitudes

Open-string n-point amplitudes at one loop descend from worldsheets of cylinder- and
Moebius-strip topologies with modular parameter τ and punctures zi on the boundary,

An =
∑
top

Ctop

∫
Dτ

top

dτ

(Im τ) D
2

∫
Dz

top

dz2 . . . dzn︸ ︷︷ ︸
dµop

n

Iop
n (zi, τ, ki) Kop

n (f (w), τ, ki, ϵi, · · · ) , (2.25)

see [55] for the color (or Chan-Paton) factors Ctop as well as the associated integration
domains Dτ

top and Dz
top for τ and zi. The exponent of Im τ depends on the number D of

spacetime dimensions, and the contributions Iop
n and Kop

n to the n-point integrands depend
on the moduli τ, zi as well as the momenta ki and polarizations ϵi of the external legs.

Closed-string one-loop amplitudes in turn are given by

Mn =
∫
F

d2τ

(2Im τ) D
2

∫
Tn−1

τ

d2z2 . . . d2zn︸ ︷︷ ︸
dµcl

n

Icl
n (zi, τ, ki) Kcl

n (f (w), f̄ (w), τ, ki, ϵi, ϵ̄i, · · · ) , (2.26)

where the modular parameter τ of the torus worldsheet is integrated over the fundamental
domain F of SL2(Z). The punctures z2, . . . , zn are integrated over the torus Tτ , parametrized
by the standard parallelogram with corners 0, 1, τ+1, τ in the complex zi-plane depicted
in figure 1. The contribution Kcl

n to closed-string integrands depends on two species of
polarizations ϵi and ϵ̄i associated with left- and right-moving worldsheet degrees of freedom.

Although we fixed z1 = 0 using translation invariance on open- and closed-string
worldsheets at genus one, we shall keep z1 generic throughout this work.
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Re(z)

Im(z)

0

τ τ+1

1

A-cycle

B-cycle

z

Figure 1. The parametrization of the torus worldsheet Tτ through a parallelogram where the
non-contractible A- and B-cycles are taken to be the path from the origin to 1 and the modular
parameter τ , respectively.

2.2.1 Koba-Nielsen factors In

In the integrands of both open- and closed-string amplitudes (2.25) and (2.26), we separate
universal Koba-Nielsen factors

Iop
n = Iop

n (zi, τ, ki) := exp
(
−

n∑
i<j

sij

[
log |θ1(zij , τ)| − π

Im τ
(Im zij)2

])
,

Icl
n = Icl

n (zi, τ, ki) := exp
(
−

n∑
i<j

sij

[
log |θ1(zij , τ)|2 − 2π

Im τ
(Im zij)2

])
, (2.27)

from theory-dependent factors Kop
n and Kcl

n to be described below. Our conventions for the
dimensionless Mandelstam invariants are fixed by,

sij = −ki · kj , si1i2...ir = −
∑

1≤p<q≤r

kip · kiq , α′ =
{

1/2 : open strings ,

2 : closed strings .
(2.28)

We will study the Koba-Nielsen factors (2.27) at independent values of all the sji = sij with
1 ≤ i < j ≤ n even though the amplitudes (2.25) and (2.26) are eventually evaluated on the
support of on-shell conditions for k2

j and momentum-conserving delta functions.3 In this
way, Koba-Nielsen factors at n = 2 and n = 3 points are taken to depend on one variable
s12 and three variables {s12, s13, s23}, respectively.

2.2.2 Theory dependent integrands Kn

The theory-dependent open- and closed-string integrands Kop
n and Kcl

n carry the entire
polarization dependence of the amplitudes (2.25) and (2.26), and the main goal of this
work is to provide tools for their systematic simplification. As a key result of [21–23], their

3For massless two- and three-point amplitudes, momentum conservation together with the on-shell conditions
k2

j = 0 would enforce all the sij to vanish. Starting from [56], it proved convenient to relax momentum
conservation and on-shell conditions in intermediate steps of studying string amplitudes.
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dependence on the punctures in massless amplitudes of type I, type II and heterotic theories4

is entirely expressible in terms of the Kronecker-Eisenstein coefficients f (w) reviewed in
section 2.1. Closed-string integrands Kcl

n may additionally feature powers of π
Im τ due to

Wick contractions between left- and right-movers. Hence, the theory-dependent integrands
take the schematic form

Kop
n = Zop(τ, D, . . .)

∑
Nop(ϵi, ki)

(
f

(k1)
i1j1

f
(k2)
i2j2

· · ·
)

, (2.29)

Kcl
n = Zcl(τ, D, . . .)

∑
w

∑
N cl

w (ϵi, ϵ̄i, ki)
(

π

Im τ

)w(
f

(k1)
i1j1

f
(k2)
i2j2

· · ·
)(

f̄ (r1)
p1q1 f̄ (r2)

p2q2 · · ·
)

,

where the numerators Nop(ϵi, ki) and N cl(ϵi, ϵ̄i, ki) separate the polarization dependence
from the moduli zi, τ . In heterotic or bosonic string amplitudes as well as (toroidal or
orbifold) compactifications, one additionally encounters zi-independent partition functions
Zop(τ, D, . . .) and Zcl(τ, D, . . .). The latter depend on the number D of spacetime dimensions
and compactification details if D < 10 such as radii of circular dimensions or twist parameters
of orbifolds, see for instance [60].

The structure (2.29) of genus-one integrands Kop
n and Kcl

n is established for massless
external states, but expected to also capture one-loop amplitudes of massive modes.

2.3 One-loop string integrals and their F-IBP relations

In order to simplify the Koba-Nielsen integrals over the expressions (2.29) for Kop
n and Kcl

n ,
it is essential to minimize the number of independent products f

(k1)
i1j1

f
(k2)
i2j2

. . . of Kronecker-
Eisenstein kernels. To some extent, this can be achieved via algebraic identities at the level of
the integrand such as Fay relations (2.24) or the removal of zi-derivatives of f

(w)
ij via (2.19).

However, the main driving force for reductions of open- and closed-string integrands (2.29) to
a basis is integration by parts to be reviewed in this section. We reiterate that the entirety of
integration-by-parts relations and Fay identities will be referred to as F-IBP.

2.3.1 Koba-Nielsen derivatives and IBP relations

The integration domains Dtop in open-string amplitudes (2.25) only leave one real degree
of freedom for each modulus zj and τ . Accordingly, there is no separate reference to their
complex conjugates z̄j and τ̄ as in the closed-string setting (2.26) where the integration
domains F and Tτ have two real dimensions. We can therefore write the derivatives w.r.t.
punctures zi of both Koba-Nielsen factors (2.27) in the unified form

∂iI•
n = −

( n∑
j ̸=i

xi,j

)
I•

n , xi,j := sijf
(1)
ij , (2.30)

with derivatives ∂i in the sense of real analysis for • → op and holomorphic derivatives ∂i

(as opposed to ∂̄i = ∂
∂z̄i

) in case of • → cl.
4The analogous decompositions of n-point one-loop integrands in orbifold compactifications with reduced

supersymmetry to combinations of f (w) are discussed in [57] building upon earlier results in [58, 59]. For
bosonic strings, the Kop

n and Kcl
n at genus one straightforwardly boil down to derivatives f

(1)
ij and ∂if

(1)
ij of

the bosonic Green function.
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In the context of open- and closed-string amplitudes (2.25) and (2.26), total derivatives ∂i

w.r.t. the punctures typically act on the zi-dependence of Kop
n and Kcl

n besides the respective
Koba-Nielsen factor. These two types of contributions are gathered in the notation

∇iφ := ∂iφ −
( n∑

j ̸=i

xi,j

)
φ = 1

I•
n

∂i(φ I•
n) , (2.31)

for arbitrary contributions φ = φ(zi, τ) to open- or closed-string integrands (2.29). The
images of these operators ∇i integrate to zero within both open- and closed-string settings,∫

Dz
top

dµop
n Iop

n ∇iφ = 0 =
∫
Tn−1

τ

dµcl
n Icl

n ∇iφ , (2.32)

which relies on the following two salient points:

(i) Both I•
n and the φ of interest descend from correlation functions on the torus and are

therefore doubly-periodic under zi → zi+1 and zi → zi+τ . As will be illustrated in
section 5.1, this is particularly important in a closed-string context.

(ii) The Koba-Nielsen factors Iop
n and Icl

n exhibit local behaviour |zi,j |−sij and |zi,j |−2sij

when pairs of punctures zi, zj collide. Upon analytic continuation to the kinematic
region where Re(sij) < 0, boundary terms zi → zj are suppressed (and similarly
zi → zj + mτ + n for m, n ∈ Z by double-periodicity).

Since the images of these total derivative do not contribute to open- and closed-string
amplitudes (2.25) and (2.26), we identify

∇iφ := ∂iφ −
( n∑

j ̸=i

xi,j

)
φ ∼= 0 , ∀ doubly periodic φ(zj , τ) (2.33)

in the simplification of Kop
n and Kcl

n . Note that the operator ∇i does not obey the Leibniz
rule known from ∂i but instead acts on products via

∇i(φ1φ2) = (∇iφ1)φ2 + φ1∂i(φ2) = (∂iφ1)φ2 + φ1∇i(φ2) . (2.34)

On the other hand, two operators ∇i and ∇j are easily checked to still commute with
each other,

(∇i∇j −∇j∇i)φ = φ(∂i+∂j)xi,j = 0 , for i ̸= j . (2.35)

2.3.2 Conjectural bases of genus-one string integrals

It is conjectured in [24, 25] that any n-point open-string one-loop integrand relevant to
Kop

n in (2.29) can be lined up with an (n−1)!-basis of generating functions. The latter are
composed of products (1.3) of doubly-periodic Kronecker-Eisenstein series (2.3),

Ω12···n := Ω12(η23...n)Ω23(η3...n) . . . Ωn−1,n(ηn) , (2.36)
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Ωij(η) ∼= •
zi

•
zj

η
=⇒ Ω12···n ∼= •

z1
•
z2

•
z3

•
zn−1

•
zn

η23...n η3...n ηn

Figure 2. Graphical representation of Kronecker-Eisenstein series Ωij(η) = Ω(zi−zj , η, τ) and their
products Ω12···n in the integrand (2.36) of the conjectural chain basis (2.38) of open-string genus-one
integrals.

and the (n−1)!-counting arises from permutations in the labels i = 2, 3, . . . , n of zi and ηi.
In contrast to the differences zi,j = zi−zj of the punctures, the multi-index notation for the
n−1 bookkeeping variables η2, η3, . . . , ηn in (2.36) refers to the sums

ηij···k = ηi + ηj + . . . + ηk . (2.37)

As illustrated in figure 2 we visualize each factor of Ωij(η) = Ω(zi−zj , η, τ) through an edge
connecting vertices zi and zj for the punctures. The first arguments z12, z23, . . . , zn−2,n−1
and zn−1,n of the products in (2.36) then lead to a chain structure akin to the Parke-Taylor
factors (1.1) in an SL2-frame, where one of the punctures on a genus-zero surface is mapped
to ∞. In contrast to the genus-zero kernels z−1

ij , the Ωij(η) depend on additional bookkeeping
variables η that can be attributed to the edges in figure 2. For a given tree-level graph, the
combinations (2.37) of ηi for each edge can be determined from the rules in section 4.1 of [29].

The (n−1)!-element set of configuration-space integrals [24, 25]

Zτ
η⃗ (top |α2, · · · , αn) :=

∫
Dz

top

dµop
n Iop

n Ω1α2 ···αn (2.38)

with permutations α2, α3, . . . , αn of 2, 3, . . . , n is claimed to generate the τ -integrands of open-
string amplitudes in (2.25) upon expansion in η2, η3, . . . , ηn. For open-superstring amplitudes
that preserve 16 or 8 supercharges, the configuration-space integrals (2.25) typically occur
at homogeneity degrees η−4

j and η−2
j relative to those of open bosonic strings [22, 23, 57–

59, 61, 62]. Nevertheless, the study of α′-expansions for any number of supercharges is greatly
facilitated when studying complete generating functions (2.38) and their differential equations
in τ instead of the component integrals at fixed orders in ηj [24, 25].

Similarly, any closed-string one-loop integrand Kcl
n is conjectured to be generated by

linear combination of products Ω1α2α3···αnΩ̄1β2β3···βn [26], with complex conjugates

Ω̄12···n := Ω12(η23...n)Ω23(η3...n) . . . Ωn−1,n(ηn) . (2.39)

More precisely, the (n−1)! × (n−1)! matrix of generating functions

Y τ
η⃗ (α |β) :=

∫
Tn−1

τ

dµcl
n Icl

n Ω1α2α3···αnΩ̄1β2β3···βn (2.40)

indexed by two independent permutations α = α2, . . . , αn and β = β2, . . . , βn of 2, 3, . . . , n is
claimed to contain any closed-string configuration-space integral in (2.26) upon expansion in
the 2n−2 bookkeeping variables ηj and η̄j . Closed-string integrands in type II, heterotic and
bosonic theories are again encountered at different orders in ηj and η̄j since the simplifications
from spacetime supersymmetry typically cancel the contributions from higher orders in
the η, η̄-expansions.

– 11 –



J
H
E
P
0
5
(
2
0
2
4
)
2
5
6

The main goal of this paper is to validate the above conjectural bases (2.38) and (2.40)
by reducing infinite families of non-trivial examples to linear combinations of Zτ

η⃗ (top |α)
and Y τ

η⃗ (α |β). More specifically, we will spell out the explicit form of the (n−1)! reductions
for generating functions of genus-one integrals where the graphical representation of the
Kronecker-Eisenstein arguments zi,j in figure 2 features cycles instead of the chains in (2.36).

2.3.3 Shuffle relations from Fay identities

The permutations of Ω12···n in (2.38) single out the first puncture z1 to reside at the end of the
chain structure of the product in (2.36). Similarly, the bookkeeping variables η2, η3, . . . , ηn

related to the punctures z2, z3, . . . , zn via ∂z̄j Ω12···n = πηj

Im τ Ω12···n exclude η1. One can refer
to all pairs (zj , ηj) with j = 1, 2, . . . , m and all the m! permutations of the ordered set
α = α1α2 · · ·αm on an equal footing by introducing η1 through the delta function in the
following more general definition of Ωα,

Ωα1α2···αm
:= δ

( m∑
i=1

ηαi

)m−1∏
i=1

Ωαi αi+1(ηαi+1 ···αm) . (2.41)

Here {α1, α2, · · · , αm} could be any subset of {1, 2, · · · , n} with two or more elements. When
α1 = 1 and m = n, the above generalized definition reduces to the original one (2.36). As a
particular virtue of the definition (2.41), the antisymmetry property (2.10) of the individual
Kronecker-Eisenstein factors translates into the reflection identity

ΩαT = (−1)|α|−1Ωα (2.42)

of the chain product for any ordered set α = α1α2 . . . α|α| with |α| elements and reversal
αT = α|α| . . . α2α1. Moreover, iterations of the Fay identities (2.11) among pairs of Kronecker-
Eisenstein factors imply the following chain identities

Ωα,i,β = (−1)|α|Ωi,αTΩi,β = (−1)|α|
∑

ρ∈αT
�β

Ωi,ρ , (2.43)

which resemble Kleiss-Kuijf relations of gauge-theory tree amplitudes [10] and only leave
(m−1)! out of the m! permutations of Ωα1α2···αm independent [25, 26, 29]. The shuffle α�β of
ordered sets α, β in the summation range of (2.43) gathers all permutations of the composed
ordered set αβ that preserve the order among the elements of α and β. The simplest two-
and three-point examples of (2.42) and (2.43) are

Ω12 = −Ω21 , Ω123 = Ω321 , (2.44)
Ω213 = −Ω12(η2)Ω13(η3) = −Ω12(η23)Ω23(η3) − Ω13(η23)Ω32(η2) = −Ω123 − Ω132 .

Note that the chain identities (2.43) following from iterated Fay identities can be equivalently
written as ∑

ρ∈α�β

Ωρ = 0 , ∀α, β ̸= ∅ . (2.45)

Based on (2.43) or (2.45), any product of n−1 Kronecker-Eisenstein series whose first
arguments zi,j form a tree graph can be reduced to the conjectural (n−1)! chain basis (2.38),
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see e.g. appendix E of [26] or section 4.1 of [29]. Upon Laurent expansion in the ηi...j variables,
this implies algebraic rearrangements of the Kronecker-Eisenstein coefficients f

(w)
ij in the

open- and closed-string integrands (2.29). These simplifications terminate in the chain basis
of f

(k1)
1α2 f

(k2)
α2α3 . . . f

(kn−1)
αn−1αn with z1 at one end without any need for integration by parts (2.33)

provided that the starting point already had the structure of a tree graph.

2.3.4 Kronecker-Eisenstein cycles

The main target of this work for F-IBP reduction into the conjectural chain bases are
Koba-Nielsen integrals over cyclic products of Kronecker-Eisenstein series. The explicit basis
reductions of the associated cycles of coefficients f

(w)
ij can then be obtained as corollaries

upon η-expansion.
In order to set the stage for the products of cycles in section 6, we define cycles

C(12···m)(ξ) := δ

( m∑
i=1

ηi

)
Ω12(η23···m+ξ)Ω23(η3···m+ξ) · · ·Ωm−1,m(ηm+ξ)Ωm,1(ξ) (2.46)

for general multiplicities 2 ≤ m ≤ n. Already for a single cycle at m = n, the reduction
to products (2.41) of chain topology is beyond the reach of algebraic manipulations due
to (2.10) or (2.11) and calls for integration by parts.

The m factors of Ωij in (2.46) are associated with m independent bookkeeping variables
which can be taken as η2, . . . , ηm, ξ on the support of the delta function. The arguments of
the individual factors Ωj−1,j(ηj...m+ξ) in (2.46) are chosen such as to

• attain simple transformation properties under cyclic shifts and cycle reversal

C(12···m)(ξ+η1) = C(23···m1)(ξ) , (2.47)
C(12···m)(−ξ) = (−1)mC(m···21)(ξ) ,

where the relabelling C(12···m) → C(23···m1) affects both the zi and ηi

• preserve the antiholomorphic differential equations of the chains (2.41),

∂z̄j C(12···m)(ξ) = πηj

Im τ
C(12···m)(ξ) ↔ ∂z̄j Ω12···m = πηj

Im τ
Ω12···m , ∀ 1 ≤ j ≤ m .

(2.48)

At two points, for instance, we obtain C(12)(ξ) = δ(η12)Ω12(η2+ξ)Ω21(ξ) such that η2 = −η1
brings the cyclic image into the form C(21)(ξ) = C(12)(ξ+η1). The reflection properties in
turn specialize to C(21)(−ξ) = δ(η12)Ω21(η1−ξ)Ω12(−ξ) = C(12)(ξ).

As will be detailed in the next section, the main results of this paper are explicit F-IBP
decomposition formulae for single cycles C(12···n)(ξ) or products C(12···i)(ξ1)C(i+1···j)(ξ2) . . .

into the conjectural chain basis of (2.38). The reductions will be performed in an open-string
context, i.e. in absence of complex-conjugate Ω̄ij , but can be easily adapted to closed strings:
first, the reduction formulae in later sections will track the ∇j-derivatives (2.33) discarded in
this process. Second, the additional IBP contributions in presence of chains or cycles of Ω̄ij can
be straightforwardly inferred from the complex conjugates of the differential equations (2.48).

Note that the breaking of an n-point cycle C(12···n)(ξ) via F-IBP will resemble the
genus-zero IBP reduction [14] of products of two Parke-Taylor factors (1.1): the SL2-fixing
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of one puncture at genus zero to zj → ∞ breaks one of the Parke-Taylor cycles. In a
graphical representation of z−1

ij by edges as in figure 2, the zj → ∞ fixing at genus zero always
reduces the loop order by one. Similarly, the basis reductions of k genus-one cycles C(...)(ξi)
necessitate F-IBP identities of the same combinatorial complexity as those for genus-zero
reductions of (k+1) Parke-Taylor factors [37, 38].

2.3.5 A more detailed outline

In the subsequent sections of this paper, we start with the F-IBP reduction of the two-point
cycle C(12)(ξ1) in section 3 to illustrate the key ideas in breaking cycles of Kronecker-Eisenstein
series. Section 4 culminates in an elegant closed formula (4.40) for the breaking of a single
length-m cycle, with numerous further details and intermediate steps up to six points. A
parallel derivation of a formula to break any meromorphic Kronecker-Eisenstein cycle in
the chiral-splitting framework is given in section 5.

More complicated cases of doubly-periodic integrands including products of cycles C(...)(ξi)
can be reduced to the conjectural chain basis by repeated applications of the single-cycle
formula (4.40). In section 6, we show a first non-trivial application of the iterative procedure
to break a product of two cycles of arbitrary multiplicities m1, m2 and spell out all examples
up to and including m1+m2 = 6. For the iterative breaking of three or more cycles, it is
convenient to introduce additional combinatorial tools including labelled forests to organize
the results in a compact way. Simple examples of triple cycles at low multiplicities can be
found at the end of section 6 while we refer the readers to a companion paper [49] for F-IBP
reductions of arbitrary numbers and multiplicities of cycles.

3 Warm-up at two points

In this section, we discuss the simplest case of F-IBP reductions and demonstrate the breaking
of a length-two cycle C(12)(ξ) = Ω12(η2+ξ)Ω21(ξ) in (2.46) as a warm-up example. According
to the coincident limit (2.13) of Fay identities, we have

C(12)(ξ) = Ω12(η2)
(
ĝ(1)(ξ, τ) − ĝ(1)(η2+ξ, τ)

)
− ∂2Ω12(η2) (3.1)

with ĝ(1) defined by (2.15). In presence of n-point Koba-Nielsen factors (2.27), the z2-
derivative in the second term of (3.1) can be rewritten as(

∂2Ω12(η2)
)
I•

n = ∂2
(
Ω12(η2)I•

n

)
− Ω12(η2)

(
∂2I•

n

)
(3.2)

=
(
−s12f

(1)
12 +

n∑
i=3

s2if
(1)
2i + ∂2

)(
Ω12(η2)I•

n

)
,

where • may refer to either open or closed strings. Together with the algebraic identity (2.23)
to rewrite f

(1)
12 Ω12(η2) = ∂2Ω12(η2) +

(
ĝ(1)(η2) + ∂η2

)
Ω12(η2), this can be solved for the

derivative ∂2Ω12(η2),

(1 + s12)
(
∂2Ω12(η2)

)
I•

n =
( n∑

i=3
s2if

(1)
2i − s12

(
ĝ(1)(η2) + ∂η2

)
+ ∂2

)(
Ω12(η2)I•

n

)
(3.3)
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and insertion into (3.1) yields the desired reduction identity

C(12)(ξ)I•
n = 1

1 + s12
(3.4)

×
(

s12∂η2 − ĝ(1)(η2) + (1+s12) v1(η2, ξ) −
n∑

i=3
s2if

(1)
2i − ∂2

)(
Ω12(η2)I•

n

)
.

We will use the shorthand v1(η, ξ) for the elliptic function of two variables

v1(η, ξ) := ĝ(1)(η) + ĝ(1)(ξ) − ĝ(1)(η+ξ) = g(1)(η) + g(1)(ξ) − g(1)(η+ξ)

= 1
η

+ 1
ξ
− 1

η+ξ
+

∞∑
k=4

Gk

k−2∑
ℓ=1

(
k−1

ℓ

)
ηℓξk−1−ℓ , (3.5)

which is ubiquitous to the generalizations in later sections. We shall furthermore introduce

M12(ξ) :=
(
s12∂η2 − ĝ(1)(η2) + (1+s12)v1(η2, ξ)

)
Ω12(η2) (3.6)

for the contribution from the two-point chain Ω12(η2) and employ the extended derivative ∇i

in (2.31) to rewrite (3.4) without explicit reference to the Koba-Nielsen factor,

C(12)(ξ) = 1
1 + s12

(
M12(ξ) − Ω12(η2)

n∑
i=3

s2if
(1)
2i −∇2Ω12(η2)

)
. (3.7)

In applications to closed-string integrands (such as (3.10) below), the cycle C(12)(ξ) may
be multiplied by additional z2-dependent factors. That is why the ∇2-derivative in (3.7) is
tracked, and one may still drop it in simplified situations without further z2 dependence.
The first two terms ∼ M12(ξ) and ∼ Ω12(η2) in (3.7) are considered as accomplishing the
reduction to a chain basis since

• each contribution to M12(ξ) in (3.6) is a zi-independent linear operator (multiplication
or η2-derivative) acting on the chain-basis element Ω12(η2) — said operators can be
pulled out of the integral over the punctures zi in one-loop string amplitudes,

• the products of Ω12(η2) with the extra terms s2if
(1)
2i in case of (n ≥ 3)-point Koba-

Nielsen factors do not feature any loops in the sense of figure 2 — there merely realize
specific components in the η-expansion of higher-point chains Ω12i.

3.1 Connection with the two-point chain basis

We shall now employ (3.7) to illustrate the role of the open- and closed-string integrals Zτ
η⃗ and

Y τ
η⃗ in (2.38) and (2.40) as a two-point basis. This specializes the Koba-Nielsen factor to n = 2

and removes the sum over s2if
(1)
2i from (3.7). Its corollary in the open-string setting of (2.25) is∫

Dz
top

dz2 Iop
2 C(12)(ξ) = 1

1 + s12

∫
Dz

top

dz2 Iop
2 M12(ξ) (3.8)

=
(

s12∂η2 − ĝ(1)(η2)
1 + s12

+ v1(η2, ξ)
)

Zτ
η2(top | 2) ,
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where the coefficient of the basis integral Zτ
η2 is a differential operator in the bookkeeping

variable η2. Similar operator-valued coefficients of the conjectural (n−1)!-basis integrals (2.38)
were encountered in the τ -derivatives of Zτ

η⃗ and Y τ
η⃗ determined in [25] and [26], respectively.

In an application of the cycle reduction (3.7) to the closed-string setting (2.26), the
∇2-term turns out to be essential: in presence of a complex conjugate integrand Ω12(η2), we
obtain an additional contribution from the IBP relation

Ω12(η2)∇2
(
Ω12(η2)

)
= ∇2

(
Ω12(η2)Ω12(η2)

)
− Ω12(η2)∂2

(
Ω12(η2)

)
(3.9)

due to (2.34) and find∫
Tτ

d2z2 Icl
2 C(12)(ξ)Ω12(η2) = 1

1 + s12

∫
Tτ

d2z2 Icl
2

(
M12(ξ) Ω12(η2) + Ω12(η2)∂2

(
Ω12(η2)

))
,

(3.10)
since only the first term ∇2

(
Ω12(η2)Ω12(η2)

)
in (3.9) integrates to zero. With the derivative

∂2
(
Ω12(η2)

)
= πη̄2

Im τ Ω12(η2) in (2.5) intertwining left- and right-movers, this gives rise to
the last term ∼ η̄2

Im τ in∫
Tτ

d2z2 Icl
2 C(12)(ξ)Ω12(η2) =

(
s12∂η2 − ĝ(1)(η2)

1 + s12
+ v1(η2, ξ) + πη̄2

Im τ(1 + s12)

)
Y τ

η2(2 | 2) .

(3.11)
The η2-expansions of (3.8) and (3.11) are readily obtained from those of ĝ(1)(η2) in (2.15) and
its doubly periodic combination v1(η, ξ) in (3.5). Upon insertion into (3.8) and (3.11), these
expansions generate F-IBP reductions of Koba-Nielsen integrals over products of coefficients
f

(k1)
12 f

(k2)
12 that may appear in open- and closed-string integrands (2.29). In both cases, we

encounter denominators 1+s12 that signal tachyon propagation in applications to bosonic
string amplitudes and occur in the analogous integral reductions at genus zero [14, 36–38].
In applications to heterotic or supersymmetric theories, such factors of (1+s12)−1 do not
translate into poles of the amplitude, either by the zeros of the accompanying torus integrals
or by factors of 1+s12 in the associated numerators Nop, N cl

w in (2.29).

4 Breaking of single cycles at arbitrary length

In this section, we develop a general method to break a single cycle C(12···m)(ξ) in (2.46) of
arbitrary length m and spell out the coefficients in its F-IBP decomposition into (m−1)! chain
integrands Ω1α2α3···αm in (2.36). The accompanying Koba-Nielsen factors Iop

n , Icl
n in (2.27)

are kept at independent multiplicity n ≥ m to make the results of this section applicable
to the breaking of multiple cycles in section 6 and [49].

4.1 Length-three cycles

We start by adapting the key ideas in the two-point example of section 3 to length-three
cycles C(123)(ξ) = Ω12(η23+ξ)Ω23(η3+ξ)Ω31(ξ). Apart from chain integrands such as Ω123 =
Ω12(η23)Ω23(η3) in the final formula (4.18) below, we will encounter the following zi-derivatives
in intermediate steps,

∂3Ω123 , ∂2Ω132 , ∂2Ω123 , ∂3Ω132 (4.1)
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f
(1)
12 Ω12(η) ∼= •

z1
•
z2η

f
(1)
23 Ω123 ∼= •

z1
•
z2

•
z3η23 η3

f
(1)
13 Ω123 ∼= •

z1
•
z2

•
z3η23 η3

Figure 3. Examples of f -Ω cycles at length two and length three. Factors of Ωij(η) and f
(1)
ij are

represented by solid and dotted lines between vertices zi and zj , respectively.

which fall into two pairs under relabellings (z2, η2) ↔ (z3, η3) such as ∂2Ω132 = ∂3Ω123
∣∣
2↔3.

Hence, the main task is to derive a system of F-IBP identities to solve for all of C(123)(ξ)
and the four derivatives in (4.1) in terms of Ω123 and Ω132 without any zi-derivatives.

4.1.1 The F-IBP equation system for chain derivatives

The first source of identities is the three-point analogue of the IBP relation (3.2),

∂3Ω123 =
(
−s13f

(1)
13 − s23f

(1)
23 +

n∑
i=4

s3if
(1)
3i + ∇3

)
Ω123 , (4.2)

where we again employ the operator ∇i in (2.31) to capture the Koba-Nielsen factor in
(∂3Ω123)I•

n = ∂3(Ω123I•
n) − Ω123(∂3I•

n). The right-hand side of (4.2) features a chain of
Kronecker-Eisenstein series as visualized in figure 2. However, the factors of f

(1)
13 and f

(1)
23

introduce a second species of edges which are visualized by dotted lines in figure 3 and lead
to cycles similar to C(12)(ξ) and C(123)(ξ). Cycles with a mix of f

(w)
ij and Ωij(η) factors will

be referred to as f -Ω cycle, and the contributions f
(1)
23 Ω23(η3) and f

(1)
13 Ω123 to (4.2) furnish

simple examples at length two and three, respectively.
The length-two example of f -Ω cycles, i.e. the pair f

(1)
ij Ωij(η), can be traded for a

derivative of Ωij(η) via (2.23). Hence, for f
(1)
23 Ω123, we have

f
(1)
23 Ω123 = Ω12(η23)

(
∂3Ω23(η3) +

(
ĝ(1)(η3) + ∂η3

)
Ω23(η3)

)
= ∂3Ω123 +

(
ĝ(1)(η3) − ∂η2 + ∂η3

)
Ω123 . (4.3)

In passing to the second line, we have rearranged zi- and ηi-derivatives of the individual
Kronecker-Eisenstein factors to act on the entire chains. Throughout this work, we will
extensively use

∂iΩij(η) = −∂jΩij(η) , ∂ηiΩ(z, ηij...k) = ∂ηj Ω(z, ηij...k) (4.4)

to iteratively reorganize expressions Ω∂Ω as total derivatives ∂(ΩΩ) as long as the prod-
ucts (ΩΩ) do not form a cycle. Simple applications of (4.4) include Ω12(η23)∂η3Ω23(η3) =
(∂η3−∂η2)Ω123 and (∂3Ω13(η23))Ω32(η2) = (∂3+∂2)Ω132.

The f -Ω cycle f
(1)
13 Ω123 of length three in (4.2) reduces to length two by virtue of the

Fay identity

f
(1)
13 Ω123 = f

(1)
13 Ω13(η3)Ω12(η2) − f

(1)
13 Ω13(η23)Ω32(η2) . (4.5)
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Applying (2.23) to f
(1)
13 Ω13(η3) and f

(1)
13 Ω13(η23) then results in

f
(1)
13 Ω123 =

(
∂3Ω13(η3) +

(
ĝ(1)(η3) + ∂η3

)
Ω13(η3)

)
Ω12(η2) (4.6)

−
(
∂3Ω13(η23) +

(
ĝ(1)(η23) + ∂η3

)
Ω13(η23)

)
Ω32(η2) .

By rewriting the zi- and ηi derivatives via (4.4) to act on the complete chains as in (4.3),
we arrive at the simplified form

f
(1)
13 Ω123 = ∂3Ω123 − ∂2Ω132 + ĝ(1)(η3)(Ω123 + Ω132) + ∂η3Ω123 − ĝ(1)(η23)Ω132 . (4.7)

Inserting (4.3) and (4.7) into (4.2) results in one equation for the four derivatives in (4.1),

(1+s13+s23) ∂3Ω123 − s13∂2Ω132 = h3|23 , (4.8)

where the right-hand side is formally free of zi-derivatives ∂iΩ and denoted by h3|23 for
future reference

h3|23 :=
(
−(s13+s23)

(
ĝ(1)(η3) + ∂η3

)
+ s23 ∂η2 +

n∑
i=4

s3if
(1)
3i + ∇3

)
Ω123

+ s13
(
ĝ(1)(η23) − ĝ(1)(η3)

)
Ω132 . (4.9)

The above steps to rewrite the derivative ∂3Ω123 w.r.t. the endpoint z3 of the chain in (4.2) can
be straightforwardly adapted to (∂2Ω123)I•

n = ∂2(Ω123I•
n)−Ω123(∂2I•

n), where the derivative
is now taken w.r.t. the puncture z2 in the middle of the chain Ω123. After manipulations
similar to those in (4.3) to (4.7), we arrive at a second equation for the ∂iΩ

(1+s12) ∂2Ω123 + (s12−s23) ∂3Ω123 = h2|23 , (4.10)

where the building block h2|23 on the right-hand side is again free of zi-derivatives ∂iΩ but
not a relabelling of h3|23 in (4.9):

h2|23 :=
(

s23
(
ĝ(1)(η3) + ∂η3

)
− s12 ĝ(1)(η23) − (s12+s23) ∂η2 +

n∑
i=4

s2if
(1)
2i + ∇2

)
Ω123 . (4.11)

Relabelling 2 ↔ 3 in (4.8) and (4.10) by trading (z2, η2, s12) ↔ (z3, η3, s13) yields another
pair of equations,

(1+s12+s23) ∂2Ω132 − s12∂3Ω123 = h2|32 ,

(1+s13) ∂3Ω132 + (s13−s23) ∂2Ω132 = h3|32 , (4.12)

where h2|32 = h3|23
∣∣
2↔3 and h3|32 = h2|23

∣∣
2↔3 are obtained by relabelling (4.9) and (4.11).

Based on the four equations in (4.8), (4.10) and (4.12), we can now expand the four
zi-derivatives (4.1) in the chain basis,

∂3Ω123 =
h3|23(1+s12+s23) + h2|32s13

(1+s23)(1+s123) , (4.13)

∂2Ω123 =
h2|23(1+s23)(1+s123) − h2|32s13(s12−s23) − h3|23(s12−s23)(1+s12+s23)

(1+s12)(1+s23)(1+s123) .

The remaining two derivatives ∂2Ω132 and ∂3Ω132 are obtained by relabelling 2 ↔ 3. By the
expressions (4.9) and (4.11) for hi|ji and hi|ij , the right-hand sides of (4.13) are in a chain
basis: similar to the comments below (3.7), each contribution to hi|ji, hi|ij is one of
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• a linear, zi-independent operation (multiplication or ηi-derivative) of the chains Ω123
or Ω132 which can be pulled out of the integrals over the punctures,

• a Koba-Nielsen derivative ∇i which will contribute factors of πη̄i
Im τ in closed-string

applications with complex conjugate chains and cycles, see (2.48) and (3.11),

• products of Ω123 or Ω132 with f
(1)
3i or f

(1)
2i with i ≥ 4 which fall into four-point chain

bases (possibly after rearranging Ω123f
(1)
2i or Ω132f

(1)
3i via Fay identities).

4.1.2 Breaking the length-three cycle

The chain-basis reduction (4.13) of derivatives ∂iΩ123 is the key to break the cycle C(123)(ξ).
Using Fay identities, the length-three cycle can be reduced to length two,

C(123)(ξ) = Ω12(η23)Ω23(η3+ξ)Ω32(ξ) − Ω13(η23)Ω23(η3 + ξ)Ω32(η23+ξ) , (4.14)

and we can now follow (3.1) to convert the bilinears in Ω23 to z-derivatives. We again
apply (4.4) to reorganize derivatives,

Ω12(η23)Ω23(η3+ξ)Ω32(ξ) = Ω12(η23)Ω23(η3)
(
ĝ(1)(ξ) − ĝ(1)(η3+ξ)

)
+ Ω12(η23)∂2Ω23(η3)

=
(
ĝ(1)(ξ) − ĝ(1)(η3+ξ)

)
Ω123 − ∂3Ω123 , (4.15)

and simplify the second term on the right-hand side of (4.14) with the same methods,

C(123)(ξ) = −∂3Ω123 + ∂2Ω132 +
(
ĝ(1)(ξ) − ĝ(1)(η3+ξ)

)
Ω123

+
(
ĝ(1)(η23+ξ) − ĝ(1)(η3+ξ)

)
Ω132 . (4.16)

Thus, the chain-basis expansion of the length-three cycle C(123)(ξ) reduces to that of the
zi-derivatives (4.1) of the chains Ω123 and Ω132. Substituting the solutions (4.13) into (4.16),
we get

C(123)(ξ) =
h2|32 − h3|23

1 + s123
+
(
ĝ(1)(ξ) − ĝ(1)(η3+ξ)

)
Ω123 +

(
ĝ(1)(η23+ξ) − ĝ(1)(η3+ξ)

)
Ω132 .

(4.17)
Note in particular that only the first tachyon pole from the expressions (4.13) for ∂3Ω123 ∼
(1+s123)−1(1+s23)−1 is left. Moreover, only h3|23 and h2|32 given by (4.9) appear in (4.13)
whereas their relabelling-inequivalent counterparts h2|23, h3|32 determined by (4.11) dropped
out from (4.17). After inserting (4.9), our final result is

C(123)(ξ) = M123(ξ)
1 + s123

− 1
1 + s123

[(
n∑

i=4
x3,i + ∇3

)
Ω123 −

(
n∑

i=4
x2,i + ∇2

)
Ω132

]
, (4.18)

with x3,i = s3if
(1)
3i and

M123(ξ) :=
[(

(s13+s23)∂η3 − s23∂η2 − ĝ(1) (η3) − s12v1(η3, η2)
)
Ω123 − (2 ↔ 3)

]
+ (1+s123)

(
v1(η3, ξ)Ω123 − v1(η2, η3+ξ)Ω132

)
. (4.19)

The elliptic function v1(η3, ξ) is defined in (3.5), and each term on the right-hand side of (4.18)
is in a chain basis by the discussion below (4.13).
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4.2 Length-four cycles

Also for the length-four cycle C(1234)(ξ) = Ω12(η234+ξ)Ω23(η34+ξ)Ω34(η4+ξ)Ω41(ξ), we follow
the strategy of section 4.1 and start by reducing the 18 permutations of the zi-derivatives
∂2Ω1234, ∂3Ω1234, ∂4Ω1234 to a chain basis,

∂iΩ1,ρ(2,3,4) with 2 ≤ i ≤ 4 , ρ ∈ S3 . (4.20)

4.2.1 The F-IBP equation system for chain derivatives

As a convenient starting point for the F-IBP manipulations to expand the total of 18
derivatives (4.20) in a chain basis, we rewrite

∂4Ω1234 =
(
−s14f

(1)
14 − s24f

(1)
24 − s34f

(1)
34 +

n∑
i=5

s4if
(1)
4i + ∇4

)
Ω1234 (4.21)

using (∂4Ω1234)I•
n = ∂4(Ω1234I•

n) − Ω1234(∂4I•
n). The products of Ω1234 with f

(1)
34 , f

(1)
24 and

f
(1)
14 on the right-hand side of (4.21) form f -Ω cycles in the sense of figure 3 of length two,

three and four, respectively. Similar to (4.5), repeated Fay identities allow to reduce all of
these f -Ω cycles to length two, i.e. to products of f

(1)
i4 Ωi4 with chains. These products in

turn can be readily converted to derivatives acting on a single Ωij , see (2.23). Since none of
these derivatives act on Ωij within cycles, all of the ∂i can be moved to act on full-fledged
chains Ω1,ρ(2,3,4) by iterative use of (4.4). After applying these steps to all the products
f

(1)
j4 Ω1234 in (4.21) with j = 1, 2, 3, we arrive at

(1+s14+s24+s34) ∂4Ω1234 − (s14+s24) ∂3Ω1243 − s14∂3Ω1423 + s14∂2Ω1432 = h4|234 , (4.22)

where the following combination is free of cycles or zi-derivatives,

h4|234 :=
(
−(s14+s24+s34)

(
ĝ(1)(η4) + ∂η4

)
+ s24∂η2 + s34∂η3 +

n∑
i=5

s4if
(1)
4i + ∇4

)
Ω1234

+
(
ĝ(1)(η34) − ĝ(1)(η4)

)(
(s14+s24)Ω1243 + s14Ω1423

)
+
(
ĝ(1)(η34) − ĝ(1)(η234)

)
s14Ω1432 . (4.23)

The analogous IBPs (∂iΩ1234)I•
n = ∂i(Ω1234I•

n) − Ω1234(∂iI•
n) with i = 2, 3, yield two other

equations

(1+s12)∂2Ω1234 +(s12−s23)∂3Ω1234 +(s12−s23−s24)∂4Ω1234 +s24∂3Ω1243 = h2|234 ,

(1+s13+s23)∂3Ω1234 +(s13+s23−s34)∂4Ω1234−s13∂2Ω1324−s13∂2Ω1342 = h3|234 , (4.24)

where h2|234, h3|234 are free of z-derivatives, take a form similar to (4.23) but cannot be
obtained from its relabellings. Permutations of (4.22) and (4.24) in the labels 2, 3, 4 of
zi, ηi, sij yield a system of 18 equations, which can be solved for the 18 zi-derivatives in (4.20).
In particular, we arrive at an expression which is completely determined by permutations
of h4|234 in (4.23),

(1+s34) (1+s234) (1+s1234) ∂4Ω1234 = −h2|432s14 (1+s23+s34) − h2|342s13s24 (4.25)
+ h3|243

(
s14(1+s234) + s24(1+s12+s234)

)
+ h3|423s14 (1+s23+s34)

+ h4|234
(
s12(1+s23+s34) + (1+s13+s23+s34)(1+s234)

)
+ h4|324s13s24 ,

i.e. where all permutations of h2|234 and h3|234 in 2, 3, 4 dropped out.
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4.2.2 Breaking the length-four cycle
The next step is to apply the chain expansion (4.25) of ∂4Ω1234 and its relabellings to break
the length-four cycle. Similar to the length-three strategy in (4.14), we reduce C(1234)(ξ) to a
combination of length-two cycles (possibly multiplied by chains) by virtue of Fay identities,

C(1234)(ξ) = −Ω14(η234)
[
Ω23(η34+ξ)Ω32(η4+ξ)

]
Ω42(η23) (4.26)

+ Ω12(η234)Ω23(η34)
[
Ω34(η4+ξ)Ω43(ξ)

]
+ Ω14(η234)

[
Ω23(η34+ξ)Ω32(η234+ξ)

]
Ω43(η23)

− Ω12(η234)Ω24(η34)
[
Ω34(η4+ξ)Ω43(η34+ξ)

]
.

The length-two cycles on the right-hand side are once more converted to derivatives ∂Ω
using (2.13), for instance,

Ω23(η34+ξ)Ω32(η4+ξ) = Ω23(η3)
(
ĝ(1)(η4+ξ) − ĝ(1)(η34+ξ)

)
+ ∂2Ω23(η3) . (4.27)

As before, the rearrangement of derivatives via (4.4) leads to ∂i acting on full-fledged chains,
for example Ω14(η234)Ω42(η23)∂2Ω23(η3) = −∂3Ω1423. Moreover, Fay identities (e.g. their
shuffle representation in section 2.3.3) allow to express all the products of three Ωij in (4.26)
in terms of the six chains Ω1,ρ(2,3,4). Based on these manipulations, the expression (4.26) for
the cycle C(1234)(ξ) reduces to four-point chains and their z-derivatives,

C(1234)(ξ) = ∂3Ω1243 + ∂3Ω1423 − ∂4Ω1234 − ∂2Ω1432

+ Ω1234
(
ĝ(1)(ξ) − ĝ(1)(η4+ξ)

)
+ Ω1432

(
ĝ(1)(η34+ξ) − ĝ(1)(η234+ξ)

)
+ (Ω1243 + Ω1423)

(
ĝ(1)(η34+ξ) − ĝ(1)(η4+ξ)

)
. (4.28)

Substituting the chain-expansion of ∂4Ω1234 in (4.25) and its relabellings into (4.28), we get

C(1234)(ξ) =
h3|243 + h3|423 − h4|234 − h2|432

1 + s1234
+ Ω1234

(
ĝ(1)(ξ) − ĝ(1)(η4+ξ)

)
(4.29)

+ (Ω1243 + Ω1423)
(
ĝ(1)(η34+ξ) − ĝ(1)(η4+ξ)

)
+ Ω1432

(
ĝ(1)(η34+ξ) − ĝ(1)(η234+ξ)

)
.

In spite of the multiple tachyon poles (1+sjk)−1(1+sijk)−1(1+s1ijk)−1 in the expression (4.25)
for the individual ∂kΩ1ijk, only the four-particle pole in (1+s1234) is left. Plugging in the
expression (4.23) for h4|234 and its relabellings leads to the final result

C(1234)(ξ) = M1234(ξ)
1 + s1234

− 1
1 + s1234

[( n∑
i=5

s4if
(1)
4i + ∇4

)
Ω1234 +

( n∑
i=5

s2if
(1)
2i + ∇2

)
Ω1432

−
( n∑

i=5
s3if

(1)
3i + ∇3

)(
Ω1423 + Ω1243

)]
, (4.30)

with

M1234(ξ) := (1+s1234)
[
Ω1234v1(η4, ξ)+Ω1432v1(η2, η34+ξ)−

(
Ω1423+Ω1243)v1(η3, η4+ξ)

]
+
[(

(s14+s24+s34)∂η4−s24∂η2−s34∂η3−ĝ(1)(η4)−(s13+s23)v1(η4, η3)−s12v1(η4, η23)
)
Ω1234

−
(
(s13+s23+s34)∂η3−s23∂η2−s34∂η4−ĝ(1)(η3)−(s12+s24)v1(η3, η2)−s14v1(η3, η4)

)
Ω1423

+
(
2 ↔ 4

)]
− s13(Ω1324 + Ω1342)

(
ĝ(1)(η3) − ĝ(1)(η23) − ĝ(1)(η34) + ĝ(1)(η234)

)
, (4.31)
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where the relabelling 2 ↔ 4 applies to the second and third lines and concerns the labels
of all of ηi, sij and Ω1ijk. Note that the combination in the last line can be written as a
combination of the elliptic function in (3.5),

v1(η3,−η23) + v1(η234,−η34) = ĝ(1)(η3) − ĝ(1)(η23) − ĝ(1)(η34) + ĝ(1)(η234) (4.32)
= g(1)(η3) − g(1)(η23) − g(1)(η34) + g(1)(η234) .

4.3 Generalization to cycles of arbitrary length

With the experience from the previous sections, we shall now perform the chain reduction
of cycles C(12···m)(ξ) of arbitrary length m ≥ 2 in presence of Koba-Nielsen factors I•

n at
n ≥ m points. Following (4.14) and (4.26), a key step is to apply Fay identities to rewrite
C(12···m)(ξ) as a combination of chains of lower length multiplying length-two cycles ΩijΩji.
The latter can be immediately converted to derivatives ∂iΩij using (2.13) and ultimately to
derivatives of length-m chains via (4.4), resulting in the all-multiplicity formula

C(12···m)(ξ) =
m∑

b=2

∑
ρ∈{2,3,··· ,b−1}
�{m,m−1,··· ,b+1}

(−1)m−b
(
ĝ(1) (ηb+1,··· ,m+ξ) − ĝ(1) (ηb,··· ,m+ξ) − ∂b

)
Ω1,ρ,b ,

(4.33)
see (4.16) and (4.28) for the examples at m = 3 and m = 4. The leftover task is to set
up and solve an F-IBP equation system that reduces the (m−1)(m−1)! derivatives of the
shuffle-independent chains

∂iΩ1,ρ(2,3,··· ,m) with 2 ≤ i ≤ m , ρ ∈ Sm−1 (4.34)

to chains without any zi-derivatives.

4.3.1 The F-IBP equation system for chain derivatives

As a generalization of (4.2) and (4.21), our starting point to generate F-IBP relations is

∂mΩ12···m =
(
−

m−1∑
ℓ=1

sℓ,mf
(1)
ℓ,m +

n∑
i=m+1

sm,if
(1)
m,i + ∇m

)
Ω12···m , (4.35)

based on (∂mΩ12···m)I•
n = ∂m(Ω12···mI•

n) − Ω12···m(∂mI•
n). The products of f

(1)
ℓ,m and Ω12···m

form f -Ω cycles in sense of figure 3 whose lengths range between two and m. Fay identities
of the chains then reduce any f -Ω cycle to length two, which can be immediately converted
to derivatives acting on a single Ω. By the absence of cycles at this stage, these derivatives
can again be rearranged via (4.4) to act on full-fledged chains, and we obtain the following
m-point generalization of (4.8) and (4.22)

∂mΩ12···m +
m∑

b=2

∑
ρ∈{2,3,··· ,b−1}�{m,m−1,··· ,b+1}

(−1)m−bSm,ρ∂bΩ1,ρ,b = hm|23···m , (4.36)
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where the following generalization of (4.9) and (4.23) is free of cycles or zi-derivatives

hm|23···m :=
(

m−1∑
i=2

si,m∂ηi −
m−1∑
i=1

si,m
(
∂ηm+ĝ(1)(ηm)

)
+

n∑
i=m+1

smif
(1)
mi + ∇m

)
Ω12···m

+
m∑

b=2

∑
ρ∈{2,··· ,b−1}�{m,··· ,b+1}

(−1)m−bSm,ρ

(
ĝ(1)(ηb+1,··· ,m) − ĝ(1)(ηb,··· ,m)

)
Ω1,ρ,b . (4.37)

Moreover, both of (4.36) and (4.37) feature the following shorthand Sj,ρ for sums of Man-
delstam variables

Sj,ρ :=


s1j + ∑

i∈ρ
sij : if j /∈ ρ ,

s1j + ∑
i∈ρ

i precedes j in ρ

sij : if j ∈ ρ , (4.38)

e.g. S4,23 = S4,234 = s14+s24+s34 as well as S4,423 = s14 and S5,42536 = s15+s45+s25.
The same methods can be used to obtain representations of ∂iΩ1,ρ(2,··· ,m) similar to (4.36)

for any i = 2, 3, . . . , m−1 and ρ ∈ Sm−1. This leads to a total of (m−1)(m−1)! F-IBP
relations which suffice to solve for the chain derivatives in (4.34).

4.3.2 General formula for m-cycles

The only chain derivatives in the expression (4.33) for the length-m cycle are w.r.t. the
endpoint, i.e. ∂mΩ12···m and its (m−1)! permutations in 2, 3, . . . , m. Hence, the solution of
the F-IBP relations (4.36) implements its reduction to undifferentiated chains

C(12···m)(ξ) =
m∑

b=2

∑
ρ∈{2,··· ,b−1}
�{m,··· ,b+1}

(−1)m−b
( −hb|ρ,b

1+s12···m
+ĝ(1)(ηb+1,··· ,m+ξ)−ĝ(1)(ηb,··· ,m+ξ)

)
Ω1,ρ,b .

(4.39)
Inserting the expression (4.37) for hb|ρ,b leads to the following closed formula for arbitrary
cycle length m and Koba-Nielsen multiplicity n ≥ m,

C(12···m)(ξ) = M12···m(ξ)
1 + s12···m

− 1
1 + s12···m

m∑
b=2

∑
ρ∈{2,3,··· ,b−1}
�{m,m−1,··· ,b+1}

(−1)m−b

(
n∑

i=m+1
xb,i + ∇b

)
Ω1,ρ,b ,

(4.40)
see (3.7), (4.18) and (4.30) for examples at m = 2, 3 and 4. While the contributions
from xb,i yield (m+1)-point chains upon multiplication by Ω1,ρ,b, the numerator M12···m(ξ)
generalizing (3.6), (4.19) and (4.31) is expressed in terms of the conjectural (m−1)! basis
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of m-point chains Ω1,α(2,3,...,m) with α ∈ Sm−1,

M12···m(ξ) :=
m∑

b=2

∑
ρ∈{2,3,··· ,b−1}
�{m,m−1,··· ,b+1}

(−1)m−b

(
m∑

i=1
sib ∂ηb

−
m∑

i=2
sib ∂ηi+(1+s12···m)v1(ηb, ηb+1,··· ,m+ξ)

− ĝ(1)(ηb) −
b−1∑
i=2

Si,ρv1(ηb, ηi,i+1,··· ,b−1) −
m∑

i=b+1
Si,ρv1(ηb, ηb+1,b+2,··· ,i)

)
Ω1,ρ,b

+
∑

1≤p<u<v<w<q≤m+1
(−1)m+u+v+w

(
v1(ηu+1,··· ,w−1,−ηu,··· ,w−1) + v1(ηu,··· ,w − ηu+1,··· ,w)

)
(4.41)

×
( m∑

i=q

svi +
p∑

i=1
svi

) ∑
ρ∈{2,3,··· ,p}�{m,m−1,··· ,q}

γ∈{p+1,p+2,··· ,u−1}�{v−1,v−2,··· ,u+1}
π∈{v+1,v+2,··· ,w−1}�{q−1,q−2,··· ,w+1}

∑
σ∈{γ,u}�{π,w}

Ω1,ρ,v,σ ,

which has been checked up to and including m = 10. In sections 4.3.3 and 4.3.4 below, we
shall give a more detailed discussion of the contributions Ω1,ρ,b in the second line and Ω1,ρ,v,σ

in the fourth line. The sums of v1 functions in the third line can be rewritten as

v1(ηu+1,··· ,w−1,−ηu,··· ,w−1) + v1(ηu,··· ,w,−ηu+1,··· ,w) (4.42)
= ĝ(1)(ηu+1,··· ,w−1) − ĝ(1)(ηu,··· ,w−1) − ĝ(1)(ηu+1,··· ,w) + ĝ(1)(ηu,··· ,w)
= g(1)(ηu+1,··· ,w−1) − g(1)(ηu,··· ,w−1) − g(1)(ηu+1,··· ,w) + g(1)(ηu,··· ,w) ,

see (4.32) for a length-four example. Starting from m = 6, the expression (4.41) does not
involve all the (m−1)! independent chains (e.g. Ω132546 and Ω153246 do not occur in M123456).

We emphasize that (4.40) is an exact formula instead of an equivalence relation under
IBP, since we have tracked the Koba-Nielsen derivatives ∇b(· · · ). Hence, our chain reduction
of length-m cycles can be readily applied in a closed-string context: similar to the two-point
example in (3.9) to (3.11), any contribution of ∇bΩ1,ρ,b to (4.40) in presence of Ω1,σ(2,··· ,m)
or C(12···m)(ξ) translates into − πη̄b

Im τ Ω1,ρ,b.

The expansion of our key result (4.40) in the bookkeeping variables η23...m+ξ, η3...m+ξ,

· · · , ηm+ξ, ξ yields the F-IBP reduction of cycles f
(k1)
12 f

(k2)
23 . . . f

(km−1)
m−1,mf

(km)
m1 to chains. In

this way, the complexity of closed- and open-string integrands (2.29) can be dramatically
reduced, see section 4.4 below for examples.

4.3.3 Examples of contributions Ω1,ρ,b to (4.41)

The contributions to M12···m(ξ) of the form Ω1,ρ,b in the first two lines of (4.41) are illustrated
up to four points by (3.6), (4.19) and (4.31). We shall here add examples of Ω1,ρ,b in the
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analogous reduction of length-five chains,

M12345(ξ)
∣∣
Ω12345

= (s15+s25+s35+s45)∂η5 − s25∂η2 − s35∂η3 − s45∂η4 − ĝ(1)(η5)

− s12v1(η5, η234) − (s13+s23)v1(η5, η34) − (s14+s24+s34)v1(η5, η4)
+ (1+s12345)v1(η5, ξ) ,

M12345(ξ)
∣∣
Ω15234

= −(s14+s24+s34+s45)∂η4 + s24∂η2 + s34∂η3 + s45∂η5 + ĝ(1)(η4)

+ s15v1(η4, η5) + (s12+s25)v1(η4, η23) + (s13+s23+s35)v1(η4, η3)
− (1+s12345)v1(η4, η5+ξ) , (4.43)

where neither Ω12345 nor Ω15234 arise in the last two lines of (4.41) at m = 5.

4.3.4 Examples of contributions Ω1,ρ,v,σ to (4.41)

The contributions to M12···m(ξ) of the form Ω1,ρ,v,σ in the last two lines of (4.41) firstly arise
at m = 4, see the terms ∼ s13 in the last line of (4.31). While the coefficients of these chains
Ω1,ρ,v,σ are simple combinations of elliptic v1 functions and Mandelstam variables, the coupled
summation ranges call for further illustration: the condition 1 ≤ p < u < v < w < q ≤ m+1
in the third line of (4.41) implies p+4 ≤ q and p+2 ≤ v ≤ q−2. When q = m+1, which
can be identified as 1 modulo m, the set {m, m−1, · · · , q} is understood as the empty set
∅ and ∑m

i=q svi = 0.
The way how a given choice of (p, u, v, w, q) translates into the ordered sets ρ, σ of Ω1,ρ,v,σ

in the fourth line of (4.41) is illustrated in figure 4 below. The outermost summation variables
p, q delimit ordered sets {2, 3, · · · , p} and {m, m−1, · · · , q} whose shuffle gives rise to ρ. The
remaining summation variables u, v, w then separate the ordered set {p+1, p+2, . . . , q−1} into
four parts which determine σ through an iteration of shuffles and reversals detailed in figure 4.

In the length-four example (4.31), the only admissible choice for the summation variables
is p = q = 1, u = 2, v = 3, w = 4. All of ρ, γ, π in the fourth line of (4.41) then reduce to
empty sets and σ = 2�4 = {24, 42}, leading to the contributions Ω1324+Ω1342. At length
m = 5, the last two lines of (4.41) yield a total of 16 contributions Ω1ijkl to M12345 after
expanding out all shuffles,(

v1(η3,−η23) + v1(η234,−η34)
)
s13 (Ω13254 + Ω13524 + Ω13542) (4.44)

−
(
v1(η34,−η234) + v1(η2345,−η345)

)
s13 (Ω13245 + Ω13425 + Ω13452)

−
(
v1(η4,−η34) + v1(η345,−η45)

)
(s14+s24)(Ω12435 + Ω12453) − (23 ↔ 54) ,

where the simultaneous relabelling 2 ↔ 5 and 3 ↔ 4 applies to all the three lines and
concerns the labels of all of ηi, sij and Ω1ijkl, for instance, v1(η3,−η23)s13Ω13254

∣∣
23↔54 =

v1(η4,−η45)s14Ω14523.
The first example where both γ and π in the last line of (4.41) are non-empty sets appears

at length m = 6. For example, the choice p = q = 1, u = 2, v = 4, w = 6 corresponds
to the following contribution to M123456(

v1(η345,−η2345) + v1(η23456,−η3456)
)
s14 (4.45)

× (Ω143256 + Ω143526 + Ω143562 + Ω145326 + Ω145362 + Ω145632) .
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p u v w q

︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷� �

γ πu w
︷ ︸︸ ︷ ︷ ︸︸ ︷

�

σ

1︸ ︷︷ ︸ ︸ ︷︷ ︸
�

ρ

Figure 4. Illustration of the way the ordered sets ρ and σ specifying the chains Ω1,ρ,v,σ in the
last two lines of (4.41) are formed for a given choice of the summation variables p, u, v, w, q. Arrows
indicate where ordered sets are reversed before the shuffle.

After expanding out all shuffles, it becomes evident that the number of terms Ω1,ρ,b in the
first two lines of (4.41) is equal to ∑m

b=2
(m−2

b−2
)

= 2m−2. Importantly, it should be noted
that each Ω1,ρ,v,σ appearing in the last two lines of (4.41) is distinct for different choices
of {p, u, v, w, q} and {ρ, γ, π, σ}. Consequently, the total number of Ω1,ρ,v,σ in the last two
lines can be determined as follows,

∑
1≤p<u<v<w<q≤m+1

(
m+p−q

m−q+1

)(
v−p−2
v−u−1

)(
q−v−2
q−w−1

)(
q−p−2
q−v−1

)
= 22m−5 − (m−1)2m−3 ,

(4.46)
where the counting at m = 2, 3, 4, 5, 6, 7, 8 is 0, 0, 2, 16, 88, 416, 1824, respectively, which
coincides with the sequence on the right-hand side inferred from [63].

4.4 Applications

With the general formula (4.40), we now have the means to break a Kronecker-Eisenstein
cycle (2.46) of arbitrary length m. However, when dealing with string integrands in (2.29), the
focus shifts to handling cycles f

(k1)
12 f

(k2)
23 . . . f

(km−1)
m−1,mf

(km)
m1 of Kronecker-Eisenstein coefficients

at given ki ̸= 0 instead of their generating series Ωij(η). A prime example of this is the
cycle of f

(1)
ij found in the elliptic functions Vm(1, 2, . . . , m) to be reviewed below which enter

correlators of various string theories.
In this section, we utilize (4.40) as a generating function of component formulae for

breaking the cycles of Kronecker-Eisenstein coefficients. We also introduce several helpful
techniques to simplify the computation process.
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4.4.1 Elliptic functions

An elegant construction of elliptic functions of m punctures z1, z2, . . . , zm is based on cyclic
products of meromorphic or equivalently doubly-periodic5 Kronecker-Eisenstein series at
the same second argument η [21, 22, 64],

F (z12, η, τ)F (z23, η, τ) . . . F (zm,1, η, τ)
= Ω(z12, η, τ)Ω(z23, η, τ) . . . Ω(zm,1, η, τ)

=: η−m
∞∑

w=0
ηwVw(1, 2, . . . , m|τ) . (4.47)

The elliptic functions Vw(1, 2, . . . , m) in the η-expansion are indexed by their holomorphic
modular weight w ≥ 0. At fixed multiplicity m, their instances with weight 0 ≤ w ≤ m are
sufficient to recover cases with w > m via linear combinations with holomorphic Eisenstein
series Gk as coefficients, e.g. V4(1, 2) = 3G4 or V5(1, 2, 3) = 3G4V1(1, 2, 3). The η-expansion of
the left-hand side of (4.47) yields the following representations in terms of f

(w)
ij (manifesting

doubly-periodicity) or equivalently g
(w)
ij (manifesting meromorphicity)

Vw(1, 2, . . . , m) =
∑

k1+k2+...+km=w

f
(k1)
12 f

(k2)
23 . . . f

(km−1)
m−1,mf

(km)
m1 (4.48)

=
∑

k1+k2+...+km=w

g
(k1)
12 g

(k2)
23 . . . g

(km−1)
m−1,mg

(km)
m1 ,

with cyclic identification zm+1 = z1, for instance

V0(1, 2, . . . , m) = 1 , V1(1, 2, . . . , m) =
m∑

j=1
g

(1)
j,j+1 =

m∑
j=1

f
(1)
j,j+1 ,

V2(1, 2, . . . , m) =
m∑

j=1
f

(2)
j,j+1 +

m∑
i=1

m∑
j=i+1

f
(1)
i,i+1f

(1)
j,j+1 . (4.49)

The notation for v1 in the definition (3.5) is motivated by the relation

v1(z12, z23) = V1(1, 2, 3) (4.50)

with the elliptic function V1(1, 2, . . . , m) at m = 3.

4.4.2 Breaking Vm(1, 2, . . . , m)

Based on Fay identities, any Vw(1, 2, . . . , m) with w < m can be expressed in terms of
expansion coefficients in permutations of the chain Ω12···m in (2.41). However, this is not
the case for Vw(1, 2, . . . , m) at w = m since it includes the f -cycle f

(1)
12 f

(1)
23 . . . f

(1)
m−1,mf

(1)
m1.

To handle this specific case, we will isolate suitable components of the generating-function
identity (4.40) due to IBP to break the f -cycle. As discussed at the four-point level in [23], the
breaking of cycles of f

(1)
ij has immediate applications in the gauge sector of heterotic-string

amplitudes.
5The non-holomorphic exponential in (2.3) drops out from the cyclic products of Ω in (4.47).
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According to (4.47), the function Vm(1, 2, . . . , m) can be produced from the Kronecker-
Eisenstein cycle via

Vm(1, 2, · · · , m) =
(

Ωm,1(ξ)
m−1∏
i=1

Ωi,i+1(ξ)
)∣∣

ξ0 =
(

lim
ηm→0

· · · lim
η3→0

lim
η2→0

C(12···m)(ξ)
)∣∣

ξ0 . (4.51)

On the right-hand side of (4.51), one can also trade the operations of taking limits for
taking coefficients,

lim
ηm→0

(
· · ·
(

lim
η3→0

(
lim

η2→0
C(12···m)(ξ)

))
· · ·
)

=
(
· · ·
((

C(12···m)(ξ)
∣∣
η0

2

)∣∣
η0

3

)
· · ·
∣∣
η0

m

)
=: C(12···m)(ξ)

∣∣∣∣
η0

2 ,η0
3 ,··· ,η0

m
, (4.52)

where in the last equality, we have introduced the shorthand notation ||η0
i ,η0

j ,... for the process
of taking limits in a specific order. Applying this operation to the single-cycle formula (4.40),
we break Vm(1, 2, · · · , m) into pieces free of cycles,

Vm(1, 2, · · · , m) =
M12···m(ξ)

∣∣∣∣
η0

2 ,η0
3 ,··· ,η0

m,ξ0

1 + s12···m
− 1

1 + s12···m

m∑
b=2

(−1)m−b (4.53)

×
∑

ρ∈{2,3,··· ,b−1}�{m,m−1,··· ,b+1}

( n∑
i=m+1

sbif
(1)
bi + ∇b

)
Ω1,ρ,b

∣∣∣∣
η0

2 ,η0
3 ,··· ,η0

m
.

At length m = 2 in presence of an n-point Koba-Nielsen factor, this specializes to

V2(1, 2) = 1
1 + s12

(
M12(ξ)

∣∣∣∣
η0

2 ,ξ0 − f
(1)
12

n∑
i=3

s2if
(1)
2i −∇2f

(1)
12

)
, (4.54)

where the expansion of ĝ(1) in (2.14) yields

M12(ξ)
∣∣∣∣

η0
2 ,ξ0 = s12∂η2Ω12(η2)

∣∣
η0

2
− ĝ(1)(η2)Ω12(η2)

∣∣
η0

2
+ (1+s12) v1(η2, ξ)Ω12(η2)

∣∣∣∣
η0

2 ,ξ0

= 2s12f
(2)
12 + Ĝ2 (4.55)

and results in

V2(1, 2) = 1
1 + s12

(
2s12f

(2)
12 + Ĝ2 − f

(1)
12

n∑
i=3

s2if
(1)
2i −∇2f

(1)
12

)
. (4.56)

This example illustrates the convenience of taking coefficients of η0
2 and ξ0 in (4.52) as

compared to taking limits: the operation
∣∣∣∣

η0
2 ,ξ0 can be individually employed to separate

parts of (4.40). However, we emphasize that the operation
∣∣∣∣

η0
2 ,η0

3 ,...,η0
m

defined in (4.52) carries
the information on the ordering used to extract the coefficients. This ordering is inherited
from the ordering used to take the limits. Once an ordering of η0

2, η0
3, . . . , η0

m is chosen, it
must be consistently applied to every term on the right-hand side of (4.53). The non-trivial
dependence on the ordering is exemplified by6

Ω123
∣∣∣∣

η0
2 ,η0

3
= f

(1)
12 f

(1)
23 + f

(2)
12 + f

(2)
23 , Ω123

∣∣∣∣
η0

3 ,η0
2

= f
(1)
12 f

(1)
23 + f

(2)
12 ̸= Ω123

∣∣∣∣
η0

2 ,η0
3

. (4.57)

6The difference in (4.57) can be understood from the fact that η3
η2+η3

∣∣∣∣
η0

2 ,η0
3

=
∑∞

r=0

(
− η2

η3

)r ∣∣∣∣
η0

2 ,η0
3

= 1

whereas η3
η2+η3

∣∣∣∣
η0

3 ,η0
2

= −
∑∞

r=1

(
− η3

η2

)r ∣∣∣∣
η0

3 ,η0
2

= 0.
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For any alternative ordering, such as
∣∣∣∣

η0
m,··· ,η0

3 ,η0
2
, it is evident from the definition (2.46) that

C(12···m)
∣∣∣∣

η0
2 ,η0

3 ,··· ,η0
m

= C(12···m)
∣∣∣∣

η0
m,··· ,η0

3 ,η0
2

while

M12···m(ξ)
∣∣∣∣

η0
2 ,η0

3 ,··· ,η0
m,ξ0 = M12···m(ξ)

∣∣∣∣
η0

m,··· ,η0
3 ,η0

2 ,ξ0 (4.58)

can only be established by applying Fay identities.

4.4.3 Tools for extracting coefficients

Notice that the length-m chains Ω1ρ(2···m) in the expression (4.41) for M12···m do not depend
on the auxiliary variable ξ. The ξ-dependence entirely resides in the elliptic functions
v1(ηp, ηp+1···m+ξ), and we can easily extract the ξ0 coefficients by combinations of7

ĝ(1)(ξ)Ω1···
∣∣∣∣

η0
2 ,··· ,η0

m,ξ0 = 0 , (4.59)

ĝ(1)(ηI+ξ)Ω1···
∣∣∣∣

η0
2 ,··· ,η0

m,ξ0 =
(

ĝ(1)(ηI) − 1
ηI

)
Ω1···

∣∣∣∣
η0

2 ,··· ,η0
m

, for I ̸= ∅ ,

such that

v1(ηm, ηm+ξ)Ω1···
∣∣∣∣

η0
2 ,··· ,η0

m,ξ0 = 1
ηm

Ω1···
∣∣∣∣

η0
2 ,··· ,η0

m
, (4.60)

v1(ηp, ηp+1···m+ξ)Ω1···
∣∣∣∣

η0
2 ,··· ,η0

m,ξ0 =
(

v1(ηp, ηp+1···m) + 1
ηp···m

− 1
ηp+1···m

)
Ω1···

∣∣∣∣
η0

2 ,··· ,η0
m

for p < m. Note that the right-hand side further simplifies in view of v1(ηp, ηp+1,··· ,m) +
1

ηp,··· ,m
− 1

ηp+1,··· ,m
= 1

ηp
+ O(ηi). Thus, (4.60) furnishes a convenient lemma to perform the∣∣∣∣

ξ0 operation in (4.53).
Another useful identity is8

∂ηiΩ1···
∣∣∣∣

η0
2 ,··· ,η0

m
= 1

ηi
Ω1···

∣∣∣∣
η0

2 ,··· ,η0
m

, for 2 ≤ i ≤ m , (4.61)

which means that all derivative operators ∂ηi entering (4.53) through the expression (4.41)
for M12···m can be traded for simple multiplications.

4.4.4 Length-three example

At length m = 3, the general formula (4.53) for the chain decomposition of Vm(1, 2, . . . , m)
specializes to

V3(1, 2, 3) =
M123(ξ)

∣∣∣∣
η0

2 ,η0
3 ,ξ0

1 + s123
− 1

1 + s123

[( n∑
i=4

s3if
(1)
3i + ∇3

)
(f (1)

12 f
(1)
23 + f

(2)
12 + f

(2)
23 )

+
( n∑

i=4
s2if

(1)
2i + ∇2

)
(f (1)

13 f
(1)
23 − f

(2)
13 )

]
, (4.62)

7This can be understood by separating ĝ(1)(ηI+ξ) into a non-singular part ĝ(1)(ηI+ξ) − 1
ηI +ξ

in ηI+ξ

and a singular one 1
ηI +ξ

. The non-singular part ĝ(1)(ηI+ξ) − 1
ηI +ξ

admits a Taylor-expansion in ξ whose
zeroth-order coefficient is readily identified as ĝ(1)(ηI) − 1

ηI
. The non-singular part is considered at |ηI | < |ξ|

to obtain the geometric-series expansion 1
ηI +ξ

= 1
ξ

∑∞
r=0

(
− ηI

ξ

)r and read off a vanishing coefficient of ξ0.
8This is a simple consequence of the fact that the zeroth order in ηi of some Laurent series ∂ηi Ω1···(ηi) is

only sensitive to the linear order of Ω1···(ηi) in ηi where ∂ηi acts by multiplication with (ηi)−1.
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see (4.19) for M123(ξ), and the tools of section 4.4.3 for taking coefficients yield

M123(ξ)
∣∣∣∣

η0
2 ,η0

3 ,ξ0 = Ĝ2V1(1, 2, 3) + Ω123

(
s12
η23

+ 2 (s13+s23)
η3

− s12+s23
η2

) ∣∣∣∣∣∣∣∣
η0

2 ,η0
3

+ Ω132

(
−s13

η23
+ s13+s23

η3
− 2 (s12+s23)

η2

) ∣∣∣∣∣∣∣∣
η0

2 ,η0
3

. (4.63)

Extracting the coefficients of η0
2, η0

3 on the right-hand side is straightforward, for example,

Ω123
η23

∣∣∣∣∣∣∣∣
η0

2 ,η0
3

= Ω123
η3

∣∣∣∣∣∣∣∣
η0

2 ,η0
3

= f
(1)
23 f

(2)
12 + f

(1)
12 f

(2)
23 + f

(3)
12 + f

(3)
23 , (4.64)

such that

M123(ξ)
∣∣∣∣

η0
2 ,η0

3 ,ξ0 = Ĝ2V1(1, 2, 3) + (2s12+s23) f
(1)
23 f

(2)
13 + (2s13+s23) f

(1)
23 f

(2)
12

+ f
(2)
23

(
(s12+2s13+2s23) f

(1)
12 − 2 (s12+s23) f

(1)
13

)
+ (2s13−s12) f

(3)
12 + (s13−2s12) f

(3)
13 + (2s12+2s13+3s23) f

(3)
23 . (4.65)

Except for the first term s12f
(1)
12 f

(2)
23 of the second line, the right-hand side is manifestly

antisymmetric under 2 ↔ 3. The exceptional term s12f
(1)
12 f

(2)
23 in (4.65) compensates for the

lack of −(∑n
i=4 s2if

(1)
2i + ∇2)f (2)

23 on the right-hand side of (4.62) such that the antisymmetry
V3(1, 2, 3) = −V3(1, 3, 2) is preserved.

Additional examples for the chain decomposition of Vm(1, 2, . . . , m) up to and including
m = 5 are provided in appendix A. We have checked via Fay identities that the results
obtained at m = 4 points agree with those reported in the literature [23, 65]. Higher-point
cases of our general results (4.53) at m ≥ 5 cannot be found in earlier work.

4.5 Reformulations of the single-cycle formula

Our presentation of the F-IBP decomposition (4.40) of Kronecker-Eisenstein cycles C(12···m)
singles out the first puncture z1 in two respects: first, the permutations Ωσ(12...m), σ ∈ Sm of
the chains on the right-hand side are given in the (m−1)!-basis of Ω1ρ(2...m) w.r.t. the Fay
identities (2.43) where the permutations ρ ∈ Sm−1 do not act on z1. Second, the integrations
by parts reflected by the ∇2,∇3, . . . ,∇m in (4.40) exclude derivatives ∇1 w.r.t. z1. While
a change of (m−1)! basis of chains can be straightforwardly performed via (2.43), the goal
of this section is to spell out reformulations of (4.40) where a general ∇a ̸=1 rather than
∇1 is skipped in the IBP relations. This will result in alternative chain decompositions of
C(12···m) where za ̸=1 rather than z1 enters on special footing. Such reformulations will be
essential for the chain decomposition of more general arrangements of Kronecker-Eisenstein
series beyond a single cycle in later sections.

Our starting point is the consequence ∑m
b=1 ∂bΩ12···m = 0 of translation invariance.

Together with the definition (2.31) of ∇b, we are led to the relation

m∑
b=1

∇b +
n∑

i=m+1
xb,i

Ωσ(12...m) = 0 (4.66)
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among ∇1,∇2, . . . ,∇m acting on chains with any permutation σ(12 . . . m) of 12 · · ·m. This
can be used to eliminate any ∇a with 2 ≤ a ≤ m in favor of ∇1 and the remaining ∇b ̸=1,a

in the decomposition formula (4.40):
m∑

b=2

(
n∑

i=m+1
xb,i + ∇b

) ∑
ρ∈{2,3,··· ,b−1}
�{m,m−1,··· ,b+1}

(−1)m−bΩ1,ρ,b (4.67)

=
m∑

b=2
b ̸=a

(
n∑

i=m+1
xb,i + ∇b

)( ∑
ρ∈{2,3,··· ,b−1}
�{m,m−1,··· ,b+1}

(−1)m−bΩ1,ρ,b −
∑

ρ∈{2,3,··· ,a−1}
�{m,m−1,··· ,a+1}

(−1)m−aΩ1,ρ,a

)

−
(

n∑
i=m+1

x1,i + ∇1

)( ∑
ρ∈{2,3,··· ,a−1}
�{m,m−1,··· ,a+1}

(−1)m−aΩ1,ρ,a

)
, a ∈ {2, 3, . . . , m} .

The difference of the permutation sums over Ω1,ρ,b and Ω1,ρ,a in the middle line can be
simplified through the following corollary of Fay identities:∑

ρ∈{2,3,··· ,b−1}
�{m,m−1,··· ,b+1}

(−1)m−bΩ1,ρ,b −
∑

ρ∈{2,3,··· ,a−1}
�{m,m−1,··· ,a+1}

(−1)m−aΩ1,ρ,a =
∑

ρ∈A�BT
(a,A,b,B)=Im

(−1)|B|Ωa,ρ,b . (4.68)

The notation (a, A, b, B) = Im in the summation range on the right-hand side instructs
to identify the (possibly empty) ordered sets A, B by matching (a, A, b, B) = (1, 2, · · · , m)
up to cyclic transformations i → i+1 mod m. Simple examples at (m, a) = (3, 2) and
(m, a) = (4, 4) are

Ω123 + Ω132 = −Ω213 , −
(
Ω1243 + Ω1423

)
− Ω1234 = Ω4123 . (4.69)

Based on (4.67) with the simplification of its middle line via (4.68), we can rewrite the
single-cycle formula (4.40) as follows, for any a ∈ {1, 2, · · · , m},

(1+s12···m)C(12···m)(ξ) = M12···m(ξ) −
m∑

b=1
b ̸=a

∑
ρ∈A�BT

(a,A,b,B)=Im

(−1)|B|
(

n∑
i=m+1

xb,i + ∇b

)
Ωa,ρ,b , (4.70)

where A, B on the right-hand side are again determined by (a, A, b, B) = (1, 2, · · · , m) modulo
cyclic transformations. This reformulation of the chain decomposition of single cycles C(12···m)
reduces to the original formula (4.40) for a = 1 and otherwise offers the flexibility to prevent
one arbitrary ∇a ̸=1-derivative from appearing on the right-hand side of (4.70). By virtue
of (2.43), the chains Ωa,ρ,b on the right-hand side of (4.70) are readily expanded in the
basis of Ω1... employed in (4.40).

At length m = 2 and m = 3, setting a = 2 in (4.70) to eliminate ∇2 leads to

(1+s12)C(12)(ξ) = M12(ξ) + Ω12(η2)
n∑

i=3
x1,i + ∇1Ω12(η2) , (4.71)

(1+s123)C(123)(ξ) = M123(ξ) − Ω231

n∑
i=4

x1,i + Ω213

n∑
i=4

x3,i −∇1Ω231 + ∇3Ω213 ,

where the multiplicity n ≥ m of the Koba-Nielsen factor has been kept arbitrary. We will
make frequent use of (4.70) when dealing with products of cycles in section 6.

– 31 –



J
H
E
P
0
5
(
2
0
2
4
)
2
5
6

5 Chiral splitting

For the integrands of closed-string genus-one amplitudes, manifestly doubly-periodic repre-
sentations are tied to Wick contractions of the joint zero modes of the left- and right-moving
worldsheet fields ∂zX and ∂z̄X. Their Wick rules couple the left- and right-movers ∂zX and
∂z̄X and lead to Lorentz contractions between the chiral halves ϵi, ϵ̄i of the closed-string
polarizations in (2.29), accompanied by factors of π

Im τ . Moreover, when applying F-IBP
formulae such as (4.40), we need to be careful with holomorphic derivatives since their action
∂if̄

(m>0)
ij on the contributions from the opposite-chirality sector does not vanish.
Both of these interactions between left- and right-movers can be sidestepped by virtue of

chiral splitting [47, 48]: the key idea is to separate the joint zero mode of the fields ∂zX and
∂z̄X — the string-theory counterpart of the loop momentum in Feynman graphs — from
the path integral over X that defines the genus-one correlators in string amplitudes. At the
level of the loop integrand of closed-string amplitudes, meromorphic and anti-meromorphic
sectors then decouple. This can be viewed as the string-theory origin of the double-copy
structures in the loop integrand of (super-)gravity amplitudes which grew into a wide and
vibrant research field [66, 67].

The independent chiral amplitudes from left- and right-movers in the loop integrand
of closed-string amplitudes no longer manifest the zi → zi+τ periodicity term by term. In
particular, the doubly-periodic Kronecker-Eisenstein coefficients f

(w)
ij in the loop-integrated

correlators typically translate into their meromorphic counterparts g
(w)
ij in (2.6). Their

B-cycle monodromies under zi → zi+τ (see (5.9) below) are compensated by shifts of the
loop momentum by the external momentum ki [47, 48], see [68–71] for recent applications
of this mechanism to the construction of chiral amplitudes at different loop orders. In this
section, we will reformulate the single-cycle formula (4.40) for generating series of f

(w)
ij in

terms of the meromorphic g
(w)
ij , loop momenta and a chiral Koba-Nielsen factor.

By the lack of term-by-term invariance under B-cycle shifts zi → zi+τ in chiral amplitudes,
total derivatives w.r.t. zi may no longer integrate to zero. As will be detailed below, B-cycle
monodromies in the primitives of IBP relations lead to boundary terms which we shall
track in the reformulation of (4.40) in a chiral-splitting context.9 These boundary terms
are no obstruction to break cycles of the meromorphic Kronecker-Eisenstein coefficients g

(w)
ij .

Since the tracking of boundary terms can be smoothly incorporated into the methods of
this work, our main results are compatible with the reduction of closed-string problems to
open-string ones using chiral splitting.

5.1 Basics of chiral splitting

As shown in [47, 48], chiral splitting allows to derive open- and closed-string amplitudes from
the same chiral function Kn(ℓ) of the kinematic data. Open-string n-point amplitudes at
one loop descend from worldsheets of cylinder- and Moebius-strip topologies with punctures

9OS is grateful to Filippo Balli for discussions and collaboration on related topics that led to the under-
standing of boundary terms as presented in section 5.1.2.
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zi on the boundaries,

An = 1
(2πi)D

∑
top

Ctop

∫
Dτ

top

dτ

∫
Dz

top

dµop
n

∫
RD

dDℓ |Jn(ℓ)| Kn(ℓ) . (5.1)

Closed-string one-loop amplitudes in turn are given by

Mn = 1
(2πi)D

∫
F

d2τ

∫
Tn−1

τ

dµcl
n

∫
RD

dDℓ |Jn(ℓ)|2 Kn(ℓ)K̃n(−ℓ) , (5.2)

see the discussion below (2.25) and (2.26) for the integration domain of the moduli zi and τ . As
a universal part of the underlying correlation functions at fixed loop momentum, both (5.1)
and (5.2) involve the chiral Koba-Nielsen factor

Jn(ℓ) := exp
(
−

n∑
1≤i<j

sij log θ1(zij , τ) +
n∑

j=1
zj (ℓ·kj) + τ

4πi
ℓ2
)

, (5.3)

which in contrast to the I•
n in (2.27) depends meromorphically on both zi and τ . Even though

we treat the momentum invariants sij as independent variables, translation invariance of the
chiral Koba-Nielsen factor (5.3) necessitates the condition ∑n

j=1 (ℓ·kj) = 0, i.e. momentum
conservation along the direction of the loop momentum.

The leftover factors of Kn(ℓ) in the loop integrands of (5.1) and (5.2) carry the dependence
on the polarizations and are referred to as chiral correlators. The z-dependence of Kn(ℓ)
is encoded in g

(w)
ij with w ≤ n−4 in maximally supersymmetric settings10 and w ≤ n for

bosonic or heterotic strings. Given that chiral correlators Kn(ℓ) are polynomials in loop
momenta ℓ, the loop integrals in (5.1) and (5.2) are of straightforward Gaussian type. In the
simplest case, we recover the earlier Koba-Nielsen factors I•

n in (2.27)

Iop
n = (Im τ) D

2

(2πi)D

∫
RD

dDℓ |Jn(ℓ)| , Icl
n = (2Im τ) D

2

(2πi)D

∫
RD

dDℓ |Jn(ℓ)|2 , (5.4)

for open and closed strings respectively. The polynomial ℓ-dependence of chiral correlators
gives rise to polynomials in νij := 2πi

Im zi,j

Im τ ,∫
RD

dDℓ |Jn(ℓ)|2 ℓµ = (2πi)D

(2Im τ) D
2
Icl

n

n∑
a=2

kµ
a ν1a , (5.5)

∫
RD

dDℓ |Jn(ℓ)|2 ℓµℓλ = (2πi)D

(2Im τ) D
2
Icl

n

[( n∑
a=2

kµ
a ν1a

)( n∑
b=2

kλ
b ν1b

)
− π

Im τ
δµλ

]
,

(with external momenta kµ
a , kλ

b and Lorentz indices µ, λ) which eventually conspire with the
meromorphic g

(w)
ij in chiral correlators to obtain the doubly-periodic f

(w)
ij in (2.6). Hence,

the two types of terms ∼ νij and ∼ π
Im τ on the right-hand side of (5.5) illustrate how loop

integration reproduces the manifestly doubly-periodic form (2.29) of one-loop closed-string
integrands.11

10See [65] for a construction of multiparticle invariants under B-cycle monodromies zi → zi+τ together with
ℓ → ℓ − 2πiki and [69] for different representations of Kn(ℓ) at n ≤ 7 points in pure-spinor superspace.

11Whenever the two loop momenta ℓµℓλ in the second line of (5.5) arise from the same chiral amplitude
(i.e. both from the left- or right-movers), the factors of π

Im τ
can be absorbed into the conversion of ∂ig

(w)
ij

into ∂if
(w)
ij such as ∂ig

(1)
ij + π

Im τ
= ∂if

(1)
ij . That is why factors of π

Im τ
are absent in the schematic form of

open-string integrands Kop
n in the first line of (2.29).
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5.1.1 Koba-Nielsen derivatives

The derivatives of the Koba-Nielsen factor Jn(ℓ) in (5.3) with respect to worldsheet positions
zi are given by

∂iJn(ℓ) =
(

ℓ·ki −
n∑

j ̸=i

x̃i,j

)
Jn(ℓ) , with x̃i,j := sijg

(1)
ij for j ̸= i . (5.6)

Similar to (2.31), we can introduce operators ∇̃i incorporating Koba-Nielsen derivatives

∇̃iφ̃ := ∂iφ̃ +
(

ℓ·ki −
n∑

j ̸=i

x̃i,j

)
φ̃ = 1

Jn
∂i(φ̃Jn) (5.7)

for arbitrary meromorphic contributions φ̃ = φ̃(zi, τ) to chiral correlators Kn(ℓ). Similar
to (2.34), the operator ∇̃i does not obey a Leibniz rule and instead acts as follows on products

∇̃i(φ̃1φ̃2) = (∇̃iφ̃1)φ̃2 + φ̃1∂i(φ̃2) = (∂iφ̃1)φ̃2 + φ̃1∇̃i(φ̃2) . (5.8)

On the other hand, two operators ∇̃i and ∇̃j still commute with each other as an analogue
of (2.35).

For a meromorphic function φ̃ expressed in terms of g
(w>0)
ij with B-cycle monodromies

g(w)(z+τ, τ) =
w∑

k=0

(−2πi)k

k! g(w−k)(z, τ) , (5.9)

integrals over total derivatives —
∫

Dz
top

dµop
n Jn∇̃iφ̃ for open strings and

∫
Tn−1

τ
dµcl

nJn∇̃iφ̃ for
closed strings — do not necessarily vanish: they violate doubly-periodicity which was already
highlighted as salient point (i) below (2.32). However, such integrals over total derivatives
can still be reduced to boundary terms using Stokes’ theorem.

5.1.2 Stokes’ theorem and boundary terms

We shall now evaluate the integrals over total derivatives in chiral splitting by means of Stokes’
theorem, following the perspective on boundary terms developed during the preparation of [72].
Consider a typical contribution Φ(z2) = |Jn(z2)|2φ̃i(z2)φ̃j(z2) to closed-string integrands,
viewed as a function of z2 (say φ̃i(z2) → g

(1)
12 g

(1)
13 and φ̃j(z2) → 1 in the concrete example

Φ(z2) → |Jn(z2)|2g
(1)
12 g

(1)
13 ). Then, integrating a total z2-derivative via Stokes’ theorem yields

∫
Tτ

d2z2 ∂2
(
Φ(z2)

)
=
∫

∂Tτ

dz̄2 Φ(z2) (5.10)

=
∫

A2
dz̄2 Φ(z2) +

∫
B2+1

dz̄2 Φ(z2) −
∫

A2+τ
dz̄2 Φ(z2) −

∫
B2

dz̄2 Φ(z2)

=
∫ 1

0
dz̄2 Φ(z2) +

∫ 1+τ

1
dz̄2 Φ(z2) −

∫ τ+1

τ
dz̄2 Φ(z2) −

∫ τ

0
dz̄2 Φ(z2) .

We have decomposed the boundary ∂Tτ of the parallelogram in figure 5 into four components,
namely the homology cycles A2, −B2 and their translates (B2+1), −(A2+τ) with minus
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Re(z2)

Im(z2)

0

τ τ+1

1

A2

−B2

−(A2+τ)

(B2+1)

z2

Tτ

Figure 5. The fundamental parallelogram Tτ at fixed loop momentum for z2 and its boundary. The
boundary ∂Tτ is given in terms of the integration contours A2, B2 for z2, and their displacements
(A2+τ) and (B2+1).

signs accounting for their orientation. The four contributions to (5.10) can be reorganized
into two integrals by absorbing the displacements by 1 and τ into the integrand,∫

Tτ

d2z2 ∂2
(
Φ(z2)

)
=
∫ 1

0
dz̄2

[
Φ(z2) − Φ(z2+τ)

]
+

✭✭✭✭✭✭✭✭✭✭✭✭✭∫ τ

0
dz̄2

[
Φ(z2+1) − Φ(z2)

]
=
∫ 1

0
dz̄2

[
Φ(z2) − Φ(z2+τ)

]
=: −

∫ 1

0
dz̄2 b̂2Φ(z2) . (5.11)

In passing to the second line, we have exploited the A-cycle shift invariance Φ(z2+1) = Φ(z2)
of chiral correlators inherited from the periodicity g(w)(z+1, τ) = g(w)(z, τ). The last line
of (5.11) defines the difference operator b̂j associated with a B-cycle shift of zj ,

b̂jΦ(z) = Φ(z)
∣∣
zj→zj+τ

− Φ(z) . (5.12)

Since a typical primitive Φ(z2) in the total derivative (5.10) may have B-cycle mon-
odromies (5.9), the integrand b̂2Φ(z2) in the last line of (5.11) is in general non-zero. Never-
theless, the surface integral over Tτ on the left-hand side has simplified to a boundary integral
where z2 is restricted to the A-cycle (0, 1). These boundary terms can be reconstructed
from the images of ∇̃i in subsequent formulae for the breaking of cycles of g

(w)
ij in chiral

amplitudes. Hence, by consistently retaining ∇̃i before the loop integral, the results of this
section provide the chiral-splitting analogues of the IBP relations (2.33).

5.2 Single cycles versus chains of meromorphic F

By analogy with our notation (2.41) for products of doubly-periodic Kronecker-Eisenstein
series, we denote chains of their meromorphic counterparts Fij(η) = F (zi−zj , η, τ) by

Fα1α2···αm
:= δ

( m∑
i=1

ηαi

)m−1∏
i=1

Fαi αi+1(ηαi+1 ···αm) , (5.13)

such that for instance F123 = δ(η1+η2+η3)F12(η23)F23(η3). Since the Fay identity (2.11) is
universal to Fij(η) and Ωij(η), the relation (2.43) for doubly-periodic chains with ordered
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sets α, β straightforwardly propagates to the F -chain in (5.13),

Fα,i,β = (−1)|α|Fi,αTFi,β = (−1)|α|
∑

ρ∈αT
�β

Fi,ρ . (5.14)

In particular, only (m−1)! out of the m! permutations of Fα1α2···αm are independent un-
der (5.14), and one can for instance take those chains with α1 = 1 as the independent
representatives. However, it is a separate question whether the (m−1)! independent chains
in (5.14) offer a basis for cycles and more general configurations of Fij(η). By the discussion
in section 5.1.2, total derivatives may lead to non-vanishing boundary terms in chiral splitting
which may be thought of as additional basis elements for a twisted cohomology associated
with the chiral Koba-Nielsen factor (5.3). While the identification of cohomology bases with
a full account of boundary terms is beyond the scope of this work, we shall spell out the
F-IBP relations between cycles of Fij(η) and combinations of chains and boundary terms.

More specifically, as the meromorphic counterpart of the doubly-periodic cycle in (2.46),
we will be interested in the F-IBP reduction of the cycles

C̃(12···m)(ξ) := δ

( m∑
i=1

ηi

)
F12(η23···m+ξ)F23(η3···m+ξ) · · ·Fm−1,m(ηm+ξ)Fm1(ξ) (5.15)

with multiplicities 2 ≤ m ≤ n. The arguments ηi···m+ξ are again tailored to attain the
same reflection and cyclicity properties (2.47) as in the doubly-periodic case. Moreover, the
antiholomorphic derivatives (2.48) of C(12···m)(ξ) are converted to B-cycle monodromies

C̃(12···m)(ξ)
∣∣
zj→zj+τ

= e2πiηj C̃(12···m)(ξ) (5.16)

in passing to the meromorphic C̃(12···m)(ξ) in (5.15). The main result of this section will be a
formula analogous to (4.40) to break such a single F -cycle (5.15).

5.2.1 Breaking of length-m cycles

We recall that Fay identities together with (2.13), (2.17) and the IBP relations (2.33) conspire
in deriving the formula (4.40) to break a single Ω-cycle. The building blocks Fij(η) of the
meromorphic cycles (5.15) obey almost identical identities, except for the loop-momentum
dependent term ℓ·ki in the chiral Koba-Nielsen derivative (5.6) which is absent in (2.30). On
these grounds, one can apply the substitution rules

Ωα1α2... → Fα1α2... , xi,j → x̃i,j , ĝ(1)(η) → g(1)(η) , ∇b → ∇̃b − ℓ·kb , (5.17)

to convert (4.40) to a very similar identity to break the F -cycles (5.15),

(1+s12···m)C̃(12···m)(ξ) = M̃12···m(ξ) (5.18)

−
m∑

b=2

∑
ρ∈{2,3,··· ,b−1}
�{m,m−1,··· ,b+1}

(−1)m−b

(
−ℓ · kb +

n∑
i=m+1

x̃b,i + ∇̃b

)
F1,ρ,b .
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The linear combinations of chains (5.13) analogous to (4.41) are given by

M̃12···m(ξ) :=
m∑

b=2

∑
ρ∈{2,3,··· ,b−1}
�{m,m−1,··· ,b+1}

(−1)m−b

(
m∑

i=1
sib ∂ηb

−
m∑

i=2
sib ∂ηi+(1+s12···m)v1(ηb, ηb+1,··· ,m+ξ)

− g(1)(ηb) −
b−1∑
i=2

Si,ρv1(ηb, ηi,i+1,··· ,b−1) −
m∑

i=b+1
Si,ρv1(ηb, ηb+1,b+2,··· ,i)

)
F1,ρ,b

+
∑

1≤p<u<v<w<q≤m+1
(−1)m+u+v+w

(
v1(ηu+1,··· ,w−1,−ηu,··· ,w−1) + v1(ηu,··· ,w,−ηu+1,··· ,w)

)
(5.19)

×
( m∑

i=q

svi +
p∑

i=1
svi

) ∑
ρ∈{2,3,··· ,p}�{m,m−1,··· ,q}

γ∈{p+1,p+2,··· ,u−1}�{v−1,v−2,··· ,u+1}
π∈{v+1,v+2,··· ,w−1}�{q−1,q−2,··· ,w+1}

∑
σ∈{γ,u}�{π,w}

F1,ρ,v,σ ,

see figure 4 for an illustration of the nested sums over ordered sets ρ, γ, π, σ and (4.38)
for the definition of Si,ρ. In other words, the total Koba-Nielsen derivatives ∇b in the
doubly-periodic case (4.40) completely determine the new class of terms ℓ ·kb involving
the loop momentum of chiral splitting. One can view the closely related formulae (4.40)
and (5.18) as different manifestations of the same combinatorial principle of cycle-breaking.
The substitution rules (5.17) will also be applied in sections 6.4 and 6.5 to convert F-IBP
reductions of multiple Ω-cycles to those of F -cycles.

While the total Koba-Nielsen derivatives ∇b(. . .) in (4.40) can be discarded due to
double-periodicity of Ωα1α2..., the total derivatives ∇̃b in the chiral-splitting counterpart (5.18)
generically lead to non-vanishing boundary terms (5.10).

5.2.2 Length-two examples and elliptic functions

The two-point example of (5.18) in presence of an n-point chiral Koba-Nielsen factor reads

C̃(12)(ξ) = 1
1 + s12

(
M̃12(ξ) + ℓ · k2F12(η2) − F12(η2)

n∑
i=3

s2ig
(1)
2i − ∇̃2F12(η2)

)
(5.20)

with

M̃12(ξ) :=
(
s12∂η2 − g(1)(η2) + (1+s12) v1(η2, ξ)

)
F12(η2) . (5.21)

The generating functions (4.47) of the elliptic Vw(1, 2, · · · , m) can written in terms of either
Ω-cycles or F -cycles. Hence, the manipulations of F -cycles in this section offer an alternative
to the breaking of Vm(1, 2, · · · , m) via (4.51), (4.52) and (4.40). More speficially,

Vm(1, 2, · · · , m) = C̃(12···m)(ξ)
∣∣∣∣

η0
2 ,η0

3 ,··· ,η0
m,ξ0 (5.22)

together with (5.18) leads to F-IBP decompositions of cycles of g
(1)
ij into F -chains and

boundary terms specific to chiral splitting.
At two points, combining (5.20) with (5.22) implies

V2(1, 2) = 1
1 + s12

(
M̃12(ξ)

∣∣∣∣
η0

2 ,ξ0 + g
(1)
12 ℓ · k2 − g

(1)
12

n∑
i=3

s2ig
(1)
2i − ∇̃2g

(1)
12

)
(5.23)
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with

M̃12(ξ)
∣∣∣∣

η0
2 ,ξ0 = s12∂η2F12(η2)

∣∣
η0

2
− g(1)(η2)F12(η2)

∣∣
η0

2
+ (1+s12) v1(η2, η3)F12(η2)

∣∣∣∣
η0

2 ,ξ0

= 2s12g
(2)
12 + G2 , (5.24)

where the total Koba-Nielsen derivative ∇̃2g
(1)
12 leads to non-trivial boundary terms by the

B-cycle monodromy b̂2g
(1)
12 = 2πi, see (5.11). Note that the manifestly doubly-periodic

analogue of (5.23) can be found in (4.56).

5.2.3 Reformulation of the meromorphic single-cycle formula

The F-IBP formula (4.40) to break cycles of Ωij(η) was reformulated in (4.70) such as to
single out an arbitrary za with a = 2, 3, . . . , m instead of z1. We can similarly rewrite the
meromorphic counterpart (5.18) of the single-cycle formula in a more flexible form,

(1+s12···m)C̃(12···m)(ξ) = M̃12···m(ξ) (5.25)

−
m∑

b=1
b ̸=a

∑
ρ∈A�BT

(a,A,b,B)=Im

(−1)|B|
(
−ℓ·kb +

n∑
i=m+1

x̃b,i + ∇̃b

)
Fa,ρ,b ,

where the special leg 1 in (5.18) is replaced by a general one a ∈ {1, 2, · · · , m}. As before,
the summation range defines the ordered sets A, B by matching (a, A, b, B) = (1, 2, · · · , m) =
(a, A, b, B) up to cyclic transformations i → i+1 mod m. At m = 2, for instance, as a
comparison with (5.20), we also have

C̃(12)(ξ) = 1
1 + s12

(
M̃12(ξ) − ℓ · k1F12(η2) + F12(η2)

n∑
i=3

s1ig
(1)
1i + ∇̃1F12(η2)

)
. (5.26)

The reformulation (5.25) will be applied to break products of F -cycles in section 6.4.

6 Breaking of two or more cycles

This section is dedicated to applications of the single-cycle formula (4.40) to reduce Koba-
Nielsen integrals over more general arrangements of Kronecker-Eisenstein series to the
conjectural chain basis. Our focus is mainly on products of two isolated Ω-cycles,

C(12···m)(ξ1)C(m+1,m+2···n)(ξ2) , (6.1)

though pioneering examples of triple cycles are discussed in subsection 6.5. The approach of
this section is to break down the cycles one by one using the single-cycle formula. However,
the second term of (4.40) introduces factors of xi,j = sijf

(1)
ij which connect the chains from

the broken cycle with the unbroken cycle. The resulting f -Ω chains ending on a leg of the
unbroken cycle are visualized through a tadpole graph in figure 6 and require extra care in
identifying the appropriate F-IBP manipulations that break the second cycle.

The f -Ω tadpoles in figure 6 are still amenable to the single-cycle formula (4.70) which
eventually leads to an expansion of the product of two cycles in (6.1) in an (n−1)!-element
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•m

•1

•2
•
3

•n

•m+1

•m+2
•

m+3

−→
m∑

i=2

n∑
j=m+1

f
(1)
ij•i•1︸ ︷︷ ︸

Ω1,ρ,i

• j

•j+1 •n

•m+1

•m+2•j−1

Figure 6. Tadpole graphs resulting from the breaking of the first cycle C(12···m)(ξ1) in (6.1) via (4.40).
Similar to figures 2 and 3, solid lines between vertices a and b refer to Kronecker-Eisenstein series
with first argument zab (with dashed lines to refer to an indefinite number of them). The dotted line
represents the factors of f

(1)
ij connecting the legs i ∈ {2, 3, . . . , m} of the broken cycles with those of

the unbroken one, j ∈ {m+1, . . . , n}.

chain basis. In some cases, cycles involving all the n legs of both cycles and two insertions
of f

(1)
ij may appear in intermediate steps, see the last line in the compact formula (6.25)

below for the chain reduction of the two cycles in (6.1). Nevertheless, these cycles are readily
eliminated using the results of earlier sections and illustrate that the elimination of multiple
cycles is most conveniently approached with a recursive strategy.

We start by illustrating the general strategy via special cases of (6.1), namely two cycles
of length two in section 6.1 as well as two cycles of length m and two in section 6.2. After
addressing two cycles of general length in section 6.3, later subsections elaborate on F-IBP
reductions of the meromorphic analogues of the cycles in (6.1) as well as the elimination of
products of three cycles at six and seven points. The Koba-Nielsen derivatives discarded
in this section are reinstated in appendix B, and the treatment of an arbitrary number of
cycles is presented in a companion paper [49].

6.1 Two cycles of length 2 and 2

The simplest instance of the product (6.1) of two Kronecker-Eisenstein cycles occurs at
n = 4 points,

C(12)(ξ1)C(34)(ξ2) = Ω12(η2+ξ1)Ω21(ξ1) Ω34(η4+ξ2)Ω43(ξ2) . (6.2)

Here and in the next two subsections, the products C(12···m)(ξ1)C(m+1,m+2···n)(ξ2) are under-
stood to occur in a string integrand along with the Koba-Nielsen factors in (2.27). Hence,
we drop the total Koba-Nielsen derivative C(34)(ξ2)∇2Ω12(η2) = ∇2

(
C(34)(ξ2)Ω12(η2)

)
when

breaking the first cycle C(12)(ξ1) via (3.7),

(1+s12)C(12)(ξ1)C(34)(ξ2) IBP= M12(ξ1)C(34)(ξ2) − Ω12(η2)x2,34C(34)(ξ2) , (6.3)

where M12(ξ1) is given by (3.6) and free of cycles. Here and in the rest of this work, we
use the shorthand notation

xi,P :=
∑
j∈P

xi,j , (6.4)
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where a set P in the subscript of xi,· encodes a sum over its elements j ∈ P , e.g. x2,34 =
x2,3+x2,4. To address the first term on the right-hand side of (6.3), we can safely employ the
relabeling of (3.7) to break the second cycle C(34)(ξ2) = Ω34(η4+ξ2)Ω43(ξ2),

(1+s34)C(34)(ξ2) = M34(ξ2) − Ω34(η4)x4,12 −∇4Ω34(η4) , (6.5)

with

M34(ξ2) =
(

(1+s34)v1(η4, ξ2) + s34∂η4 − ĝ(1)(η4)
)

Ω34(η4) . (6.6)

This time, the Koba-Nielsen derivative in the last term of (6.5) can still be dropped.
The last term on the right-hand side of (6.3) requires extra caution in view of the

f -Ω chains Ω12(η2)f (1)
2i with i = 3, 4 that are attached to the cycle C(34)(ξ2) through z3 or

z4. The first of the resulting tadpoles Ω12(η2)f (1)
23 C(34)(ξ2) can still be broken by literally

following (6.5) since the ∇4-derivative in the last term does not interfere with f
(1)
23 :

Ω12(η2)f (1)
23 ∇4Ω34(η4) = ∇4

(
Ω12(η2)f (1)

23 Ω34(η4)
) IBP= 0 . (6.7)

However, the second tadpole Ω12(η2)f (1)
24 C(34)(ξ2) necessitates a reformulation of (6.5) without

reference to ∇4 since

f
(1)
24 ∇4Ω34(η4) ̸= ∇4

(
f

(1)
24 Ω34(η4)

)
. (6.8)

Following a relabelling of (4.71), we interchange the role of z3 and z4 and break the second
cycle C(34)(ξ) via

(1+s34)C(34)(ξ2) = M34(ξ2) + Ω34(η4)x3,12 + ∇3Ω34(η4) , (6.9)

leading to

f
(1)
24 (1+s34)C(34)(ξ2) = f

(1)
24
(
M34(ξ2) + Ω34(η4)x3,12

)
+ ∇3

(
f

(1)
24 Ω34(η4)

)
. (6.10)

By assembling the results of the above IBP manipulations and discarding total derivatives
such as ∇3

(
f

(1)
24 Ω34(η4)

)
in (6.10), we conclude that

(1+s12)(1+s34)C(12)(ξ1)C(34)(ξ2) IBP= M12(ξ1)M34(ξ2) (6.11)
− M12(ξ1)x4,12Ω34(η4) − x2,34Ω12(η2)M34(ξ2)
+
(
x2,3x4,1 − x2,4x3,1

)
Ω12(η2)Ω34(η4) .

We note that the right-hand side manifests the symmetry of the left-hand side under ex-
change of the two cycles C(12)(ξ1) and C(34)(ξ2), i.e. under (z1, z2, η2, ξ1) ↔ (z3, z4, η4, ξ2).
Accordingly, the outcome of (6.11) would take the same form if the cycles had been broken
in reverse order, starting with C(34)(ξ2) instead of C(12)(ξ1). A schematic representation of
the sequential breaking of the cycles carried out in this section can be found in figure 7.
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Figure 7. Graphical representation of the products of the Kronecker-Eisenstein series (solid lines)
and factors of f

(1)
ij (dotted lines) in the chain decomposition of the product of length-two cycles

C(12)(ξ1)C(34)(ξ2). The arrows indicate applications of the two-cycle IBP relation (3.7) to break the
cycles, starting with C(12)(ξ1).

6.1.1 Basis decomposition of the single-cycle terms

The two terms in the last line of (6.11) feature new f -Ω cycles of length four and do not
yet line up with the desired chain form. However, they arise from the expansion coefficients
of single cycles C(1234)(ξ) and C(1243)(ξ) whose F-IBP reduction to chains has already been
accomplished in section 4.2.2. This can be exploited by rewriting Ω12f

(1)
23 Ω34f

(1)
41 in the

last line of (6.11) as

Ω12(η2)f (1)
23 Ω34(η4)f (1)

41 = Ω12(η2)Ω23(ζ2)Ω34(η4)Ω41(ζ1)
∣∣∣
ζ0

1 ,ζ0
2

. (6.12)

By the prescription (4.30) to break length-four cycles, this simplifies to

(1+s1234)Ω12(η2)Ω23(ζ2)Ω34(η4)Ω41(ζ1) (6.13)
IBP= M1234(ξ)

∣∣
η234+ξ→η2, η34+ξ→ζ2, η4+ξ→η4, ξ→ζ1

=: M̂1234(η2, ζ2, η4, ζ1) ,

where M1234(ξ) is given by (4.31) and free of cycles. Hence, we arrive at the following final
result for the chain decomposition of the simplest double cycle C(12)(ξ1)C(34)(ξ2):

(1+s12)(1+s34)C(12)(ξ1)C(34)(ξ2) (6.14)
IBP= M12(ξ1)M34(ξ2) − M12(ξ1)x4,12Ω34(η4) − x2,34Ω12(η2)M34(ξ2)

+ s23s41M̂1234(η2, ζ2, η4, ζ1) + s24s31M̂1243(η2, ζ2,−η4, ζ1)
1 + s1234

∣∣∣
ζ0

1 ,ζ0
2

.

6.1.2 Application to Kronecker-Eisenstein coefficients

The applications of the above results to the Kronecker-Eisenstein coefficients occurring in
actual string integrands are straightforward. For instance, we can use (6.11) to break the
two f -cycles in the integrand V2(1, 2)V2(3, 4) of the non-planar four-point one-loop amplitude
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Figure 8. Graphical representation of the products of the Kronecker-Eisenstein series (solid lines)
and factors of f

(1)
ij (dotted lines) in the chain decomposition of the product C(12)(ξ1)C(3...n)(ξ2). The

arrows indicate applications of IBP relations (3.7) and (4.40) to break the cycles.

in the gauge sector of the heterotic string [23],

(1+s12)(1+s34)V2(1, 2)V2(3, 4) (6.15)
IBP= M12(ξ1)

∣∣∣∣
η0

2 ,ξ0
1
M34(ξ2)

∣∣∣∣
η0

4 ,ξ0
2
− M12(ξ1)

∣∣∣∣
η0

2 ,ξ0
1
x4,12Ω34(η4)

∣∣
η0

4

− x2,34Ω12(η2)
∣∣
η0

2
M34(ξ2)

∣∣∣∣
η0

4 ,ξ0
2

+
(
x2,3x4,1 − x2,4x3,1

)
Ω12(η2)

∣∣
η0

2
Ω34(η4)

∣∣
η0

4
,

= Ĝ2
2 + Ĝ2

(
2s12f

(2)
12 + 2s34f

(2)
34 + s14f

(1)
14 f

(1)
34 − s23f

(1)
12 f

(1)
23 − s24f

(1)
12 f

(1)
24 + s24f

(1)
24 f

(1)
34
)

− 2s34f
(2)
34 f

(1)
12 (s23f

(1)
23 + s24f

(1)
24 ) + 2s12f

(2)
12 f

(1)
34 (s24f

(1)
24 + s14f

(1)
14 ) + 4s12s34f

(2)
12 f

(2)
34

+ s13s24f
(1)
12 f

(1)
24 f

(1)
43 f

(1)
31 + s14s23f

(1)
12 f

(1)
23 f

(1)
34 f

(1)
41 .

The length-four cycles s13s24f
(1)
12 f

(1)
24 f

(1)
43 f

(1)
31 and s14s23f

(1)
12 f

(1)
23 f

(1)
34 f

(1)
41 in the last line can be

rewritten in terms of the elliptic V4-function in (4.48), f
(1)
12 f

(1)
23 f

(1)
34 f

(1)
41 = V4(1, 2, 3, 4) + . . .,

where the terms in the ellipsis are free of cycles. Then, V4(1, 2, 3, 4) can be decomposed into
chains using (A.1), and the same applies to its relabelling V4(1, 2, 4, 3) due to f

(1)
12 f

(1)
24 f

(1)
43 f

(1)
31

in (6.15). The outcome of this procedure is consistent with the IBP reduction of the Koba-
Nielsen integral of V2(1, 2)V2(3, 4) in the literature and related to the results in appendix D
of [23] via Fay identities.

6.2 Two cycles of length 2 and m

We shall now generalize the IBP reduction in the previous section to more general products
C(12)(ξ1)C(34···n)(ξ2), where the length m of one cycle is arbitrary, in this case m = n−2 ≥ 2.
As schematically shown in figure 8, we first break the length-two cycle,

(1+s12)C(12)(ξ1)C(34···n)(ξ2) IBP= M12(ξ1)C(34···n)(ξ2) − Ω12(η2)C(34···n)(ξ2)
n∑

a=3
x2,a . (6.16)
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For the first term on the right-hand side, we can break the longer cycle by directly substi-
tuting (4.40) with a relabeling {1→3, 2→4, · · · , m→n=m+2}. However, for the last term
in (6.16), we need to break the cycle C(34···n)(ξ2) in different ways based on the attach-
ment points a ∈ {3, 4, · · · , n} of x2,a. In this case, it is convenient to use the reorganized
formula (4.70) with a relabeling {1→3, · · · , m→m+2},

x2,a(1+s34···n)C(34···n)(ξ2) IBP= x2,aM34···n(ξ2) (6.17)

−
n∑

b=3
b ̸=a

∑
ρ∈A�BT

(a,A,b,B)=(3,4,...,n)

(−1)|B|x2,aΩa,ρ,bxb,12 .

The terms x2,aΩa,ρ,bxb,2 cancel each other when we sum over all a, b ∈ {3, 4, · · · , n} with
a ̸= b as prescribed by (6.16), and we obtain

(1+s12)(1+s34···n)C(12)(ξ1)C(34···n)(ξ2) IBP= M12(ξ1)M34···n(ξ2) (6.18)

− M34···n(ξ2)Ω12(η2)
n∑

a=3
x2,a − M12(ξ1)

n∑
b=4

∑
ρ∈{4,··· ,b−1}
�{n,n−1,··· ,b+1}

(−1)n−bΩ3,ρ,bxb,12

+ Ω12(η2)
n∑

3≤a<b

∑
ρ∈A�BT

(a,A,b,B)=(3,4,...,n)

(−1)|B| Ωa,ρ,b(x2,a xb,1 − x2,b xa,1) .

The first two lines are free of cycles, and the last line contains f -Ω cycles Ω12(η2)x2,aΩa,ρ,bxb,1
of length n which we already know how to break. Again, reversing the order of breaking
the cycles C(12)(ξ1) and C(34···n)(ξ2) does not change the form of the outcome of the F-IBP
reduction. When specializing the length of the second cycle to m = 2, the ordered sets ρ

in the last two lines of (6.18) are empty, and we reproduce (6.11). Additional examples
at m = 3, 4 will be given below.

6.2.1 Example at n = 5 points

For cycles of length two and m = 3, (6.18) reduces to

(1+s12)(1+s345)C(12)(ξ1)C(345)(ξ2) IBP= M12(ξ1)M345(ξ2) (6.19)
− Ω12(η2)M345(ξ2)x2,345 − M12(ξ1)

(
Ω345x5,12 − Ω354x4,12

)
+ Ω12(η2)

(
(x2,3x5,1 − x2,5x3,1) Ω345 + (x2,4x3,1 − x2,3x4,1) Ω354

+ (x2,5x4,1 − x2,4x5,1) Ω435
)

which can for instance be applied to simplify the integrand V2(1, 2)V3(3, 4, 5) of five-point
heterotic-string amplitudes.
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• j

•j+1 •n

•m+1

•m+2•j−1

−→
m∑

2≤b

n∑
m+1≤j,p

j ̸=p

m∑
1≤k
k ̸=b

•
j

•
p

︸
︷︷

︸

Ωj,σ,p

•b

•
1

︸
︷︷

︸

Ω1,ρ,b •k

−→
1
2

m∑
1≤a,b
a ̸=b

n∑
m+1≤j,p

j ̸=p

•
j

•
p

︸
︷︷

︸

Ωj,σ,p

•b

•
a

︸
︷︷

︸
Ωa,ρ,b

Figure 9. Graphical representation of the products of the Kronecker-Eisenstein series (solid lines) and
factors of f

(1)
ij (dotted lines) in the chain decomposition of the product C(12···m)(ξ1)C(m+1,m+2...n)(ξ2).

The initial two arrows demonstrate the use of IBP relations, specifically those in (6.21) and (6.23), to
break the cycles. The concluding arrows elucidate the simplification process that leads to (6.24).

6.2.2 Example at n = 6 points

For cycles of length two and m = 4, (6.18) reduces to

(1+s12)(1+s3456)C(12)(ξ1)C(3456)(ξ2) IBP= M12(ξ1)M3456(ξ2) (6.20)
− M3456(ξ2)x2,3456Ω12(η2) −

(
Ω3456x6,12 + Ω3654x4,12 −

(
Ω3465+Ω3645

)
x5,12

)
M12(ξ1)

+ Ω12(η2)
(

(x2,3x6,1 − x2,6x3,1) Ω3456 + (x2,3x4,1 − x2,4x3,1) Ω3654

− (x2,3x5,1 − x2,5x3,1) (Ω3465 + Ω3645) + (x2,4x5,1 − x2,5x4,1) Ω4365

+ (x2,5x6,1 − x2,6x5,1) Ω5436 − (x2,4x6,1 − x2,6x4,1) (Ω4356 + Ω4536)
)

which can for instance be applied to simplify the integrand V2(1, 2)V4(3, 4, 5, 6) of six-point
heterotic-string amplitudes.

6.3 Two cycles of general length

As a further generalization of the previous F-IBP reductions, we shall now consider the
most general product C(12···m)(ξ1)C(m+1,m+2,··· ,n)(ξ2) of two cycles of arbitrary length m and
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n−m ≥ 2. As schematically shown in figure 9, we start by breaking C(12···m)(ξ1),

(1+s12···m)C(12···m)(ξ1)C(m+1,m+2,··· ,n)(ξ2) IBP= M12···m(ξ1)C(m+1,m+2,··· ,n)(ξ2) (6.21)

−
m∑

b=2

∑
ρ∈{2,3,··· ,b−1}
�{m,m−1,··· ,b+1}

(−1)m−bΩ1,ρ,b

n∑
j=m+1

xb,jC(m+1,m+2,··· ,n)(ξ2) .

The next step is to break the second cycle C(m+1,m+2,··· ,n)(ξ2) according the attachment
point j ∈ {m+1, . . . , n} of the factors xb,j in the second line,

xb,j(1+sm+1,m+2,···n)C(m+1,m+2,··· ,n)(ξ2) IBP= xb,jMm+1,m+2,···n(ξ2) (6.22)

−
n∑

p=m+1
p ̸=j

∑
σ∈X�Y T

(j,X,p,Y )=(m+1,m+2,...,n)

(−1)|Y |xb,jΩj,σ,p

m∑
k=1
k ̸=b

xp,k .

Combining the above two equations, we get

(1+s12···m)(1+sm+1···n)C(12···m)(ξ1)C(m+1,··· ,n)(ξ2) IBP= M12···m(ξ1)Mm+1···n(ξ2)

− M12···m(ξ1)
n∑

p=m+2

∑
σ∈{m+2,m+3,··· ,p−1}

�{n,n−1,··· ,p+1}

(−1)n−m−pΩm+1,σ,p

m∑
k=1

xp,k (6.23)

− Mm+1,m+2,··· ,n(ξ2)
m∑

b=2

∑
ρ∈{2,3,··· ,b−1}
�{m,m−1,··· ,b+1}

(−1)m−bΩ1,ρ,b

n∑
j=m+1

xb,j

+
m∑

b=2

∑
ρ∈{2,3,··· ,b−1}
�{m,m−1,··· ,b+1}

(−1)m−bΩ1,ρ,b

n∑
j,p=m+1

j ̸=p

∑
σ∈X�Y T

(j,X,p,Y )=(m+1,m+2,...,n)

(−1)|Y |xb,jΩj,σ,p

m∑
k=1
k ̸=b

xp,k .

The first three lines are readily seen to be free of cycles and symmetric under exchange
of C(12···m)(ξ1) and C(m+1,m+2,··· ,n)(ξ2). However, this exchange symmetry is not manifest
in the last line: new f -Ω cycles are formed, with lengths ranging from n−m+1 to n, and
they may have Kronecker-Eisenstein chains attached to them. In order to simplify the last
line of (6.23) and expose its symmetries, we exchange the summation variables b and k and
subsequently take their average. By virtue of (4.68), we rewrite the last line of (6.23) as

m∑
a,b=1
a<b

n∑
j,p=m+1

j ̸=p

∑
ρ∈A�BT

(a,A,b,B)=(1,2,...,m)

∑
σ∈X�Y T

(j,X,p,Y )=(m+1,m+2,...,n)

(−1)|B|+|Y |Ωa,ρ,b xb,jΩj,σ,p xp,a (6.24)

= 1
2

m∑
a,b=1
a ̸=b

n∑
j,p=m+1

j ̸=p

∑
ρ∈A�BT

(a,A,b,B)=(1,2,...,m)

∑
σ∈X�Y T

(j,X,p,Y )=(m+1,m+2,...,n)

(−1)|B|+|Y |Ωa,ρ,b xb,jΩj,σ,p xp,a .
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Hence, our final formula to break two cycles of arbitrary length is given by

(1+s12···m)(1+sm+1···n)C(12···m)(ξ1)C(m+1··· ,n)(ξ2) IBP= M12···m(ξ1)Mm+1··· ,n(ξ2)

− M12···m(ξ1)
n∑

p=m+2

∑
σ∈{m+2,m+3,··· ,p−1}

�{n,n−1,··· ,p+1}

(−1)n−m−pΩm+1,σ,p

m∑
k=1

xp,k (6.25)

− Mm+1,m+2,··· ,n(ξ2)
m∑

b=2

∑
ρ∈{2,3,··· ,b−1}
�{m,m−1,··· ,b+1}

(−1)m−bΩ1,ρ,b

n∑
j=m+1

xb,j

+ 1
2

m∑
a,b=1
a ̸=b

n∑
j,p=m+1

j ̸=p

∑
ρ∈A�BT

(a,A,b,B)=(1,2,...,m)

∑
σ∈X�Y T

(j,X,p,Y )=(m+1,m+2,...,n)

(−1)|B|+|Y |Ωa,ρ,b xb,jΩj,σ,p xp,a ,

where the f -Ω cycles of length n in the last line can be broken by isolating suitable components
in the Laurent expansion of (4.40). As indicated by the equivalence relation IBP= , total Koba-
Nielsen derivatives have been discarded on the right-hand side whose explicit form can be
found in appendix B. As before, the right-hand side of (6.25) would take the same form if
the cycles had been broken in reversed order.

At length m = 2, the sets ρ in the last two lines of (6.25) are empty, which implies
that Ω1,ρ,b in the third line becomes Ω12(η2), and Ωa,ρ,b in the last line becomes ±Ω12(η2).
Therefore, we can see how the specialization of (6.25) to m = 2 reproduces (6.18). Applications
of (6.25) to products Vm(1, 2, · · · , m)Vn−m(m+1, · · · , n) in actual string integrands are
straightforward, see (6.15) for an example at (m, n) = (2, 4).

6.3.1 Example with two cycles of length three

The simplest example of our general result (6.25) for products of two cycles that has not
been covered in section 6.2 is the IBP reduction of C(123)(ξ1)C(456)(ξ2) at n = 6 points,

(1+s123)(1+s456)C(123)(ξ1)C(456)(ξ2) IBP= M123(ξ1)M456(ξ2) (6.26)
− M123(ξ1)

(
Ω456x6,123 − Ω465x5,123

)
−
(
Ω123x3,456 − Ω132x2,456

)
M456(ξ2)

+ Ω123Ω456 (x1,4x3,6 − x1,6x3,4) + Ω123Ω465 (x1,5x3,4 − x1,4x3,5)
+ Ω123Ω546 (x1,6x3,5 − x1,5x3,6) + Ω132Ω456 (x1,6x2,4 − x1,4x2,6)
+ Ω132Ω546 (x1,5x2,6 − x1,6x2,5) + Ω132Ω465 (x1,4x2,5 − x1,5x2,4)
+ Ω213Ω456 (x2,6x3,4 − x2,4x3,6) + Ω213Ω465 (x2,4x3,5 − x2,5x3,4)
+ Ω213Ω546 (x2,5x3,6 − x2,6x3,5) .

6.4 Two F -cycles

The procedure to break two meromorphic F -cycles in (5.15) is similar to that of Ω-cycles,
with the additional consideration of terms involving ℓ·kb when applying (5.25). We shall
first demonstrate this with a four-point example and then state a general result for arbitrary
lengths of the two cycles.
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For a product of two length-two cycles, C̃(12)(ξ1) = F12(η2+ξ1)F21(ξ1) and C̃(34)(ξ2) =
F34(η4+ξ2)F43(ξ2) at n = 4 points, we start by breaking the F -cycle C̃(12)(ξ1) via (5.20),

(1+s12)C̃(12)(ξ1)C̃(34)(ξ2) = M̃12(ξ1)C̃(34)(ξ2) (6.27)
+ (ℓ·k2 − x̃2,34)F12(η2)C̃(34)(ξ2) − ∇̃2

(
F12(η2)C̃(34)(ξ2)

)
,

where x̃i,j is defined by (5.6). We then proceed to breaking the second cycle in two different
ways, depending on the attachment points i = 3, 4 of the products x̃2,iC̃(34)(ξ2),

(1+s12)(1+s34)C̃(12)(ξ1)C̃(34)(ξ2) =
(
M̃12(ξ1) + F12(η2)(ℓ·k2 − x̃2,3) − ∇̃2F12(η2)

)
×
(
M̃34(ξ2) + F34(η4)(ℓ·k4 − x̃4,12) − ∇̃4F34(η4)

)
− F12(η2)x̃2,4

(
M̃34(ξ4) + F34(η4)(x̃3,12 − ℓ·k3) + ∇̃3F34(η4)

)
. (6.28)

This can be rewritten as follows

(1+s12)(1+s34)C̃(12)(ξ1)C̃(34)(ξ2) = M̃12(ξ1)M̃34(ξ2) (6.29)
− M̃12(ξ1)x̃4,12F34(η4) − x̃2,34F12(η2)M̃34(ξ2)
+
(
x̃2,3x̃4,1 − x̃2,4x̃3,1

)
F12(η2)F34(η4)

+ M̃12(ξ1)F34(η4) ℓ·k4 + M̃34(ξ2)F12(η2) ℓ·k2 + F12(η2)F34(η4) ℓ·k2 ℓ·k4

+ F12(η2)F34(η4)
(
x̃2,4 ℓ·k3 − x̃4,12 ℓ·k2 − x̃2,3 ℓ·k4

)
+ ∇̃4

(
F12(η2)F34(η4)(x̃2,3 − ℓ·k2) − M̃12(ξ1)F34(η4)

)
+ ∇̃2

(
F12(η2)F34(η2)(x̃4,12 − ℓ·k4) − M̃34(ξ2)F12(η2)

)
− ∇̃3

(
F12(η2)F34(η4)x̃2,4

)
+ ∇̃2∇̃4

(
F12(η2)F34(η4)

)
,

where the first three lines are free of ℓ and related to (6.11) by M̃ij(ξ) ↔ Mij(ξ) as well
as Fij(η) ↔ Ωij(η) and x̃i,j ↔ xi,j as expected. The symmetry of (6.29) under the ex-
change (z1, z2, η2, ξ1) ↔ (z3, z4, η4, ξ2) of the cycles is not fully manifest: the loop-momentum
dependence in the fifth line differs from its image under the exchange of the cycles by a
term ∼ x̃2,4 ℓ·(k1+k2+k3+k4). Following the discussion below (5.3), translation invariance
of the chiral Koba-Nielsen factor requires ∑n

j=1 ℓ·kj = 0 which establishes the expected
exchange symmetry.

The total Koba-Nielsen derivatives in the last three lines of (6.29) yield boundary terms
by the application of Stokes’ theorem as in section 5.1.2. They cannot be discarded in a
closed-string context since the primitives ∼ F12(η2)F34(η4) of the ∇̃a in (6.29) have B-cycle
monodromies and therefore yield a non-vanishing right-hand side of (5.11).

6.4.1 Generalization to cycles of arbitrary length

The additional ℓ-dependence in the four-point example (6.29) which is absent in its doubly-
periodic counterpart (6.11) can be easily generalized to cycles of arbitrary length. For the
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product of two arbitrary F -cycles C̃...(ξ) defined by (5.15), we have

(1+s12···m)(1+sm+1,···n)C̃(12···m)(ξ1)C̃(m+1,··· ,n)(ξ2) = M̃12···m(ξ1)M̃m+1,··· ,n(ξ2) (6.30)

−
n∑

p=m+2

∑
σ∈{m+2,··· ,p−1}
�{n,··· ,p+1}

(−1)n−m−p

(
m∑

k=1
x̃p,k − ℓ·kp + ∇̃p

)(
Fm+1,σ,pM̃12···m(ξ1)

)

−
m∑

b=2

∑
ρ∈{2,··· ,b−1}

�{m,··· ,b+1}

(−1)m−b
n∑

j=m+1

n∑
p=m+1

p ̸=j

∑
σ∈X�Y T

(j,X,p,Y )=(m+1,m+2,...,n)

× (−1)|Y |(ℓ·kp − ∇̃p) (F1,ρ,bx̃b,jFj,σ,p)

−
m∑

b=2

∑
ρ∈{2,··· ,b−1}

�{m,··· ,b+1}

(−1)m−b

(
n∑

j=m+1
x̃b,j − ℓ·kb + ∇̃b

)(
F1,ρ,bM̃m+1,m+2,··· ,n(ξ2)

)

−
m∑

b=2

∑
ρ∈{2,··· ,b−1}

�{m,··· ,b+1}

(−1)m−b
n∑

p=m+2

∑
σ∈{m+2,··· ,p−1}
�{n,··· ,p+1}

× (−1)n−m−p(ℓ·kb − ∇̃b)
[(

m∑
k=1

x̃p,k − ℓ·kp + ∇̃p

)
(F1,ρ,bFm+1,σ,p)

]

+ 1
2

m∑
a,b=1
a ̸=b

n∑
j,p=m+1

j ̸=p

∑
ρ∈A�BT

(a,A,b,B)=(1,2,...,m)

∑
σ∈X�Y T

(j,X,p,Y )=(m+1,m+2,...,n)

(−1)|B|+|Y |Fa,ρ,b x̃b,jFj,σ,p x̃p,a .

Apart from the last line, all terms not containing ∇̃b on the right-hand side are free of
F -cycles or combined cycles of Fij(η) and g

(1)
ij . Similar to the doubly-periodic case in (6.25),

the single-cycles Fa,ρ,bx̃b,jFj,σ,px̃p,a in the last line can be broken using (5.18), by isolating
suitable terms in the Laurent expansion.

Following the substitution rules (5.17), any ∇̃b in (6.30) can be anticipated from the
total derivatives ∇b in the F-IBP reduction of two Ω-cycles in appendix B. Moreover, the
rules in (5.17) imply that the ∇̃b always appear together with ℓ·kb with opposite signs. As
discussed below (6.29), the total Koba-Nielsen derivatives ∇̃b yield boundary terms by the
B-cycle monodromies of the respective primitives.

6.4.2 Example at n = 5 points

Specializing (6.30) to m = 2 and n = 5 yields the following meromorphic analogue of (6.19),

(1+s12)(1+s345)C̃(12)(ξ1)C̃(345)(ξ2) =
(
r.h.s. of (6.19)

∣∣
x→x̃, M→M̃ , Ω→F, Ω→F

)
(6.31)

+ M̃345(ξ2)
(
ℓ·k2 − ∇̃2

)
F12(η2) + M̃12(ξ1)

(
(ℓ·k5 − ∇̃5)F345 − (ℓ·k4 − ∇̃4)F354

)
+ (ℓ·k2 − ∇̃2)F12(η2)

(
(ℓ·k5 − ∇̃5 − x̃5,12)F345 − (ℓ·k4 − ∇̃4 − x̃4,12)F354

)
+ F12(η2)F345

(
x̃2,5(ℓ·k3 − ∇̃3) − x̃2,3(ℓ·k5 − ∇̃5)

)
+ F12(η2)F354

(
x̃2,3(ℓ·k4 − ∇̃4) − x̃2,4(ℓ·k3 − ∇̃3)

)
+ F12(η2)F435

(
x̃2,4(ℓ·k5 − ∇̃5) − x̃2,5(ℓ·k4 − ∇̃4)

)
,

see (6.29) for its four-point counterpart.
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6.4.3 Example at n = 6 points

Specializing (6.30) to m = 2 and n = 6 yields the following meromorphic analogue of (6.26),

(1+s123)(1+s456)C̃(123)(ξ1)C̃(456)(ξ2) =
(
r.h.s. of (6.26)

∣∣
x→x̃, M→M̃ , Ω→F

)
(6.32)

+ M̃123(ξ1)
(
ℓ·k6 F456 − ℓ·k5 F465

)
+
(
ℓ·k3 F123 − ℓ·k2 F132

)
M̃456(ξ2)

+
(
ℓ·k3 F123 − ℓ·k2 F132

)(
ℓ·k6 F456 − ℓ·k5 F465

)
+
[(

x̃3,6 ℓ·k4 − x̃6,123 ℓ·k3 − x̃3,4 ℓ·k6
)
F123F456 +

(
x̃3,5 ℓ·k6 − x̃3,6 ℓ·k5

)
F123F546

+
(
x̃5,123 ℓ·k3 − x̃3,5 ℓ·k4 + x̃3,4 ℓ·k5

)
F123F465 −

(
2 ↔ 3

)]
+ (total Koba-Nielsen derivatives) ,

where the total Koba-Nielsen derivatives can be reinstated by substituting ℓ·ki → ℓ·ki−∇̃i

acting from the left on the accompanying functions of zi. Double derivatives due to bilinears
in ℓ·ki (say ∇̃3∇̃6F123F456 due to ℓ·k3 F123ℓ·k6 F456) do not introduce any ordering ambiguities
in view of ∇̃i∇̃j − ∇̃j∇̃i = 0 for any pair i ̸= j.

Similar to (6.29), the first three lines on the right-hand side of (6.32) are manifestly
symmetric under exchange of the cycles, i.e. under (z1, z2, z3, η2, η3, ξ1) ↔ (z4, z5, z6, η5, η6, ξ2).
The fourth and fifth line in turn share this symmetry up to

ℓ·(k1+k2+ · · ·+k6)
(
F123F456x̃3,6 − F132F456x̃2,6 − F123F465x̃3,5 + F132F465x̃2,5

)
, (6.33)

which vanishes by translation invariance of the chiral Koba-Nielsen factor.

6.5 Towards triple cycles

We conclude this section with a glimpse of F-IBP reductions of triple cycles, following
the earlier approach of sequentially breaking the cycles and prioritizing the breaking of
tadpoles. Even though larger numbers of cycles do not introduce any conceptual challenges,
the combinatorial complexity increases. In a companion paper [49], we provide systematic
methods for breaking three or more cycles as well as more general configurations of Kronecker-
Eisenstein series by introducing new terminologies and applying combinatorial tools beyond
the scope of this work to simplify the expressions.

6.5.1 Doubly-periodic cycles at six points

By extending the techniques of section 6.1 to a third cycle of length two, we derive the
following six-point result:

(1+s12)(1+s34)(1+s56)C(12)(ξ1) C(34)(ξ2) C(56)(ξ3) IBP= M12(ξ1)M34(ξ2)M56(ξ3) (6.34)
− M12(ξ1)M34(ξ2)Ω56x6,1234 − M12(ξ1)M56(ξ3)Ω34x4,1256 − M34(ξ2)M56(ξ3)Ω12x2,3456

+ M12(ξ1)Ω34Ω56(x4,12x6,1234 + x4,5x6,12 − x4,6x5,12)
+ M34(ξ2)Ω12Ω56(x2,34x6,1234 + x2,5x6,34 − x2,6x5,34)
+ M56(ξ3)Ω12Ω34(x2,56x4,1256 + x2,3x4,56 − x2,4x3,56)
+ (1+s12)C(12)(ξ1)Ω34Ω56(x4,5x6,3 − x4,6x5,3)
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+ (1+s34)C(34)(ξ2)Ω12Ω56(x2,5x6,1 − x2,6x5,1)
+ (1+s56)C(56)(ξ3)Ω12Ω34(x2,3x4,1 − x2,4x3,1)
+ Ω12Ω34Ω56

(
x1,4x2,6x3,5 + x1,5x2,4x3,6 − x1,6x2,4x3,5 − x1,4x2,5x3,6

+ x1,6x2,3x4,5 − x1,3x2,6x4,5 − x1,5x2,3x4,6 + x1,3x2,5x4,6
)

.

While the first five lines on the right-hand side are already in the desired chain form, the
remaining lines feature two types of cycles of lower complexity:

• In the third to fifth line of (6.34) from below, each term is a product of a length-two
cycle C(ij)(ξ) and a f -Ω cycle Ωabxb,cΩcdxd,a of length four. Their decomposition into
the chain basis follows from Laurent expansion of (6.20) in its bookkeeping variables.

• The last two lines of (6.34) feature single-cycles Ωabxb,cΩcdxd,eΩef xf,a of length six
whose F-IBP reduction is determined by (4.40).

Hence, by importing results of earlier sections, the entire right-hand side of (6.34) can be
reduced to expansion coefficients of the conjectural chain basis Ω1ρ(23456) with ρ ∈ S5.

6.5.2 Doubly-periodic cycles at seven points

The methods of deriving (6.34) can be straightforwardly extended to the following seven-
point case,

(1+s12)(1+s34)(1+s567)C(12)(ξ1) C(34)(ξ2) C(567)(ξ3) IBP= M12(ξ1)M34(ξ2)M567(ξ3)
− M12(ξ1)M567(ξ3)Ω34x4,12567 − M34(ξ2)M567(ξ3)Ω12x2,34567

− M12(ξ1)M34(ξ2)(Ω567x7,1234 − Ω576x6,1234) (6.35)

+
[
M12(ξ1)Ω34

(
x4,12(Ω567x7,1234 − Ω576x6,1234) + x4,5(Ω567x7,12 − Ω576x6,12)

+ x4,6(Ω675x5,12 − Ω657x7,12) + x4,7(Ω756x6,12 − Ω765x5,12)
)

+
(
12 ↔ 34

)]
+ M567(ξ3)Ω12Ω34(x2,567x4,12567 + x2,3x4,567 − x2,4x3,567)

+
[
(1+s34)C(12)(ξ1)Ω34

(
Ω567(x4,5x7,3 − x4,7x5,3) + Ω576(x4,6x5,3 − x4,5x6,3)

+ Ω657(x4,7x6,3 − x4,6x7,3)
)

+
(
12 ↔ 34

)]
+ (1+s567)C(567)(ξ3)Ω12Ω34(x2,3x4,1 − x2,4x3,1)

+ Ω12Ω34
[(

x1,4 (x2,7x3,5 − x2,5x3,7) + x1,7 (x2,3x4,5 − x2,4x3,5)

+ x1,5 (x2,4x3,7 − x2,3x4,7) + x1,3 (x2,5x4,7 − x2,7x4,5)
)
Ω567 + cyc(5, 6, 7)

]
.

While the first six lines on the right-hand side are term-by-term in chain form, we have

• products of two cycles (lengths 2+5 and 3+4) in the third to fifth line from below which
can be broken via Laurent expansion of (6.25);

• single-cycles of length seven in the last two lines which can be broken via (4.40).

This example illustrates once more that a recursive approach in the number of cycles is well
adapted to the F-IBP reduction of multiple cycles.
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6.5.3 Meromorphic cycles at six points

As a last case study of triple cycles, we shall spell out the meromorphic analogue of the
six-point F-IBP reduction in (6.34)

(1+s12)(1+s34)(1+s56)C̃(12)(ξ1) C̃(34)(ξ2) C̃(56)(ξ3) =
(
r.h.s. of (6.34)

∣∣x→x̃, C→C̃,

M→M̃ , Ω→F

)
+
[
M̃12(ξ1)M̃34(ξ2)ℓ·k6F56(η6) + M̃12(ξ1)ℓ·k4ℓ·k6F34(η4)F56(η6) (6.36)

+ M̃12(ξ1)
(
ℓ·k5x̃4,6 − ℓ·k4x̃6,1234 − ℓ·k6x̃4,125

)
F34(η4)F56(η6) + cyc(12, 34, 56)

]
+ F12(η2)F34(η4)F56(η6)

(
ℓ·k2ℓ·k4ℓ·k6 − ℓ·k2ℓ·k4x̃6,1234 + ℓ·k2ℓ·k5x̃4,6 − ℓ·k2ℓ·k6x̃4,125

+ ℓ·k3ℓ·k6x̃2,4 + ℓ·k4ℓ·k5x̃2,6 − ℓ·k4ℓ·k6x̃2,35 + ℓ·k6(x̃2,3x̃4,5 − x̃2,4x̃3,5 + x̃2,5x̃4,1256)
+ ℓ·k5(x̃2,4x̃3,6 − x̃2,3x̃4,6 − x̃2,6x̃4,1256) + ℓ·k4(x̃2,5x̃6,3 − x̃2,6x̃5,3 + x̃2,3x̃6,1234)

+ ℓ·k3(x̃2,6x̃5,4 − x̃2,5x̃6,4 − x̃2,4x̃6,1234) + ℓ·k2(x̃4,5x̃6,12 − x̃4,6x̃5,12 + x̃4,12x̃6,1234)
)

+ (total Koba-Nielsen derivatives) .

Both the second and the third line are manifestly symmetric under cyclic permutations
of the three cycles, i.e. the associated groups of variables (z1, z2, η2, ξ1), (z3, z4, η4, ξ2), and
(z5, z6, η6, ξ3). Lines four through seven, by contrast, only share this symmetry in the cycles
after imposing the corollary ∑6

j=1 ℓ·kj = 0 of translation invariance of the chiral Koba-Nielsen
factor. Manifest permutation symmetry in C̃(12)(ξ1), C̃(34)(ξ2), C̃(56)(ξ3) can of course be
enforced by averaging (6.36) over permutations of the cycles.

Similar to the discussion below (6.32), the total Koba-Nielsen derivatives in the last line
can again be reinstated by replacing ℓ·ki → ℓ·ki − ∇̃i. This is unambiguous for any number
of factors ℓ·ki since any pair of ∇̃i, ∇̃j commutes.

7 Conclusions and outlook

In this work, we have significantly advanced the integration-by-parts methodology for one-
loop string integrals of Koba-Nielsen type. Specifically, we have reduced cyclic products of
Kronecker-Eisenstein series and their coefficients f (w)(zi−zj , τ) into conjectural bases of one-
loop string integrals built from Kronecker-Eisenstein products of chain topology [24–26]. Our
results not only furnish strong validations of the chain bases in the references but also provide
explicit formulae for the basis decompositions of one or two cycles of Kronecker-Eisenstein
series of arbitrary length. A companion paper [49] will

• provide a Mathematica implementation of our main formulae,

• extend the recursive approach of this work to arbitrary numbers of Kronecker-Eisenstein
cycles and identify the combinatorial structure of their integration-by-parts reduction,

• address more general configurations of Kronecker-Eisenstein series and coefficients
besides cyclic products, to be represented via tadpoles, multibranch and even connected
multiloop graphs.
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As a first motivation for the detailed integration-by-parts reductions in this work, they can
be applied to low-energy expansions of one-loop string amplitudes in bosonic, heterotic
and supersymmetric theories. For the one-loop basis integrals of chain topology, differential
equations in the modular parameter τ led to powerful expansion techniques for open strings [24,
25] and for closed strings [30], supplemented by the Mathematica package [73]. The results
of this work and [49] allow to swiftly export these expansions of chain integrals to string
amplitudes in their more basic representation involving cyclic products of Kronecker-Eisenstein
coefficients. The most interesting applications should arise in heterotic string theories whose
bosonic conformal-field-theory sector tends to yield numerous cyclic products but which at
the same time offer a rewarding window into string dualities.

As a second motivation, the techniques for basis decompositions of string integrals in
this work pave the way for structural insights into one-loop amplitudes in string and field
theory. The basis decompositions of one-loop string integrals unlocked in this work organize
amplitudes in various string theories into gauge-invariant kinematic functions of external
polarizations. For one-loop open-superstring amplitudes with maximal supersymmetry, these
kinematic functions admit a field-theory interpretation which unravelled a surprising double-
copy structure [68, 69]. Our results give access to the analogous one-loop kinematic functions in
heterotic and bosonic theories and therefore guide the quest for similar double-copy structures.
At tree level, this line of investigations revealed an elegant web of double-copy relations
among different classes of open-string, closed-string and field-theory amplitudes [12, 15–17].
Hence, this work is an opportunity to explore loop-level echoes of this web of double copies.

This work additionally spawns several mathematical lines of follow-up research. The
consideration of string integrals over all the punctures at fixed modular parameter τ initiated
fruitful crosstalk with algebraic geometers and number theorists through the appearance
of elliptic multiple zeta values [22, 27] and modular graph forms [31, 32] in the low-energy
expansion. When keeping not only τ but also some of the punctures zi fixed, intermediate steps
of string-amplitude computations serve as generating functions of elliptic polylogarithms [22,
51, 52] and their single-valued versions [74–77]. Conjectural n-point integral bases of dimension
n! depending on one unintegrated puncture have been presented in [28, 29] and generalized
to an arbitrary number of unintegrated punctures in [78]. This work offers concrete starting
points to substantiate these bases through explicit integration-by-parts relations, and the
recursive methods of the companion paper [49] may furthermore stimulate a general proof.

Moreover, the quest for bases of integrands under integration by parts is a common theme
of string amplitudes and Feynman integrals in particle physics. Integration by parts in the
presence of an ubiquitous Koba-Nielsen factor or its Feynman-integral counterparts [79–85] is
closest to the setting of the twisted de Rham theory, initiated by Aomoto [1] and beautifully
communicated by Mizera to the physics community in [2–4]. Finding a suitable framing in
terms of twisted de Rham theory may offer a particularly elegant way to rigorously establish the
Kronecker-Eisenstein chains as a basis of genus-one string integrals. In particular, this kind of
understanding should offer a unified description of integration-by-parts reduction, monodromy
relations [86–90] as well as relations between open and closed strings [91–94] at genus one.

In fact, previous mathematical work [95–97] identifies a twisted-cohomology setup where
meromorphic Kronecker-Eisenstein series are proven to form a basis. The cohomology

– 52 –



J
H
E
P
0
5
(
2
0
2
4
)
2
5
6

setup in these references enjoys striking parallels with the chiral-splitting approach to string
amplitudes [47, 48] but has so far only been developed for a single integrated puncture (with an
arbitrary number of unintegrated ones). A generalization of their work to multiple integration
variables could readily prove the conjectures addressed in the present work. Alternatively,
one could take the Lie-algebraic toolkit of Felder and Varchenko [98] as a starting point to
attempt an alternative derivation of the results in our work.

Finally, the conjectural integral bases and integration-by-parts techniques in this work
call for generalizations to higher genus. Based on the recent proposal for higher-genus
analogues of the Kronecker-Eisenstein kernels [99], the most immediate question concerns
their Fay identities and generating functions of Koba-Nielsen integrals that close under
moduli derivatives. The mechanisms for integration by parts in this work including the
role of Fay identities and their coincident limit should offer essential guidance for several
of the challenging steps in developing a comprehensive framework for higher-genus string
integrals. On the one hand, these generalizations of our results will feed into tools for
concrete string-amplitude computations at higher genus. On the other hand, the study of
suitable families of Koba-Nielsen integrals will have valuable input for the construction of
function spaces of interest to particle physicists and mathematicians including higher-genus
incarnations of modular tensors, polylogarithms and multiple zeta values.
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A Chain decompositions of Vm(1, 2, . . . , m) up to five points

This appendix is dedicated to the chain decomposition (4.53) of the elliptic Vm(1, 2, . . . , m)-
functions in (4.47) at m = 4, 5 points (see section 4.4.4 for a detailed discussion at m = 3).
For simplicity, the Koba-Nielsen factor is considered at the same multiplicity n = m: the
extra terms for n > m can be straightforwardly reconstructed from the second line of (4.53).
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A.1 Four points

The (n = m = 4)-point instance of (4.53) together with the tools in section 4.4.3 lead to

(1+s1234)V4(1, 2, 3, 4) IBP= M1234
∣∣∣∣

η0
2 ,η0

3 ,η0
4 ,η0

5

= Ĝ2V2(1, 2, 3, 4) + G4(1+3s13+3s24)

+
[
Ω1234

(
s12
η234

− s12
η23

+ 2 (s14+s24+s34)
η4

− s24
η2

− s13+s23+s34
η3

+ s13+s23
η34

)
+ Ω1243

(
s12+s23

η2
− s12

η23
+ s14+s24+s34

η4
− 2 (s13+s23+s34)

η3
− s14+s24

η34

)
+ s13Ω1324

( 1
η23

+ 1
η34

− 1
η234

− 1
η3

)
+
(
2 ↔ 4

)] ∣∣∣∣∣∣∣∣
η0

2 ,η0
3 ,η0

4

, (A.1)

where the relabelling 2 ↔ 4 of the subscripts of sij , ηi, Ω1ijk applies to the last three lines.
As detailed below (6.3), the notation IBP= in the first line indicates that total Koba-Nielsen
derivatives ∇i(. . .) have been discarded in passing to the right-hand side. It remains to
extract the coefficients of η0

2, η0
3, η0

4 in ratios such as

Ω1234
η2

∣∣∣∣∣∣∣∣
η0

2 ,η0
3 ,η0

4

= f
(1)
34 f

(1)
23 f

(2)
12 + 2f

(1)
23 f

(3)
12 − f

(1)
23 f

(3)
34 − f

(1)
34 f

(3)
23 + 2f

(1)
34 f

(3)
12 (A.2)

+ f
(2)
12 f

(2)
23 − f

(2)
34 f

(2)
23 + f

(2)
12 f

(2)
34 − f

(4)
23 + 3f

(4)
12 − f

(4)
34 ,

Ω1324
η34

∣∣∣∣∣∣∣∣
η0

2 ,η0
3 ,η0

4

= f
(1)
24 f

(1)
13 f

(2)
23 − f

(1)
23 f

(1)
13 f

(2)
24 − f

(1)
23 f

(1)
24 f

(2)
13 − f

(1)
13 f

(3)
23 + f

(1)
13 f

(3)
24 + f

(2)
23 f

(2)
24

+ f
(1)
24 (f (3)

13 −f
(3)
23 ) − f

(1)
23 (f (3)

24 +f
(3)
13 ) + f

(2)
13 (f (2)

23 +f
(2)
24 ) + f

(4)
13 + f

(4)
23 + f

(4)
24 .

which is straightforward to implement via Mathematica.

A.2 Five points

At n = m = 5 points, (4.53) together with the tools in section 4.4.3 yield

(1+s12345)V5(1, 2, 3, 4, 5) IBP= Ĝ2V3(1, 2, 3, 4, 5) + G4V1(1, 2, 3, 4, 5) (A.3)

+ 3G4
[
(s14+s24+s35)f (1)

12 + s13f
(1)
13 + cyc(1, 2, 3, 4, 5)

]
+
[
Ω12345

(
s12

η2345
− s12

η234
− s25

η2
− s35

η3
− s14+s24+s34+s45

η4

+ 2 (s15+s25+s35+s45)
η5

− s13+s23
η34

+ s14+s24+s34
η45

+ s13+s23
η345

)
− (Ω12534 + Ω15234 + Ω12354)

(
− s12

η23
+ s12

η234
− s24

η2
− s13+s23+s34+s35

η3

+ 2 (s14+s24+s34+s45)
η4

− s15+s25+s45
η5

+ s13+s23+s35
η34

+ s15+s25
η45

)
+ Ω12354

( 1
η5

+ 1
η34

− 1
η45

− 1
η3

)
s35 + Ω15234

( 1
η23

+ 1
η45

− 1
η234

− 1
η5

)
s25

+
( 1

η34
+ 1

η45
− 1

η345
− 1

η4

)
(s14+s24) (Ω12435 + Ω12453)
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+
( 1

η234
+ 1

η345
− 1

η2345
− 1

η34

)
s13 (Ω13245 + Ω13425 + Ω13452)

+
( 1

η234
+ 1

η3
− 1

η23
− 1

η34

)
s13 (Ω13254 + Ω13524 + Ω13542) −

(
23 ↔ 54

)] ∣∣∣∣∣∣∣∣
η0

2 ,...,η0
5

,

where the simultaneous relabelling 2 ↔ 5 and 3 ↔ 4 applies to the last eight lines. The
extraction of coefficients η0

2, . . . , η0
5 in the ratios Ω1ijkl

ηI
is again straightforward, see (A.2)

for examples at four points.

B Restoring total Koba-Nielsen derivatives in breaking double cycles

In sections 6.1 to 6.3, we explained how to break a product of any two Kronecker-Eisenstein
cycles. However, it is important to note that the main result (6.25) is an equivalence relation
as we omitted several total Koba-Nielsen derivatives. In this appendix, we reinstate these
total Koba-Nielsen derivatives which not only feed into the discussions of sections 6.4 and 6.5
but also pave the way for closed-string applications.

The exact version of (6.25) including all total Koba-Nielsen derivatives reads

(1+s12···m)(1+sm+1···n)C(12···m)(ξ1)C(m+1···n)(ξ2) = M12···m(ξ1)Mm+1···n(ξ2) (B.1)

−
n∑

p=m+2

∑
σ∈{m+2,··· ,p−1}
�{n,··· ,p+1}

(−1)n−m−p

(
m∑

k=1
xp,k + ∇p

)(
Ωm+1,σ,pM12···m(ξ1)

)

+
m∑

b=2

∑
ρ∈{2,··· ,b−1}

�{m,··· ,b+1}

(−1)m−b
n∑

j=m+1

n∑
p=m+1

p ̸=j

∑
σ∈X�Y T

(j,X,p,Y )=(m+1,m+2,...,n)

× (−1)|Y |∇p (Ω1,ρ,bxb,jΩj,σ,p)

−
m∑

b=2

∑
ρ∈{2,··· ,b−1}

�{m,··· ,b+1}

(−1)m−b

(
n∑

j=m+1
xb,j + ∇b

)(
Ω1,ρ,bMm+1,m+2,··· ,n(ξ2)

)

+
m∑

b=2

∑
ρ∈{2,··· ,b−1}

�{m,··· ,b+1}

(−1)m−b
n∑

p=m+2

∑
σ∈{m+2,··· ,p−1}
�{n,··· ,p+1}

(−1)n−m−p

×∇b

[(
m∑

k=1
xp,k + ∇p

)
(Ω1,ρ,bΩm+1,σ,p)

]

+ 1
2

m∑
a,b=1
a ̸=b

n∑
j,p=m+1

j ̸=p

∑
ρ∈A�BT

(a,A,b,B)=(1,2,...,m)

∑
σ∈X�Y T

(j,X,p,Y )=(m+1,m+2,...,n)

(−1)|B|+|Y |Ωa,ρ,b xb,jΩj,σ,p xp,a

and implies (6.30) under the substitution rules (5.17). At n = 4 points with two cycles
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of length m = 2, this specializes to

(1+s12)(1+s34)C(12)(ξ1)C(34)(ξ2) = M12(ξ1)M34(ξ2) (B.2)
− M12(ξ1)x4,12Ω34(η4) − x2,34Ω12(η2)M34(ξ2) +

(
x2,3x4,1 − x2,4x3,1

)
Ω12(η2)Ω34(η4)

+ ∇2∇4
(
Ω12(η2)Ω34(η4)

)
−∇4

(
M12(ξ1)Ω34(η4) − Ω12(η2)Ω34(η4)x2,3

)
−∇2

(
M34(ξ2)Ω12(η2) − Ω12(η2)Ω34(η2)x4,12

)
−∇3

(
Ω12(η2)Ω34(η4)x2,4

)
,

where the first two lines were already spelt out in (6.11), and the last two lines are total
Koba-Nielsen derivatives discarded in section 6.1.

The tracking of total Koba-Nielsen derivatives in (B.1) is essential for applications
to generating functions of closed-string integrands (2.29). As exemplified in section 3.1,
the factors of Ω(zi−zj , η, τ) in a closed-string context — to be collectively denoted by
φ = φ(zj , τ) in the rest of this appendix — interfere with the ∇b in the F-IBP manipulations
of Ω(zi−zj , η, τ). Hence, the images of ∇b in (B.1) are key information for the chain
decomposition of products

C(12···m)(ξ1)C(m+1,m+2,··· ,n)(ξ2)φ (B.3)

in presence of combinations of Ω(zi−zj , η, τ). The extra terms from integration by parts
of holomorphic derivatives are obtained from

(∇bΩ1,ρ,b) φ = ∇b (Ω1,ρ,bφ) − Ω1,ρ,b∂iφ , (B.4)

where Ω1,ρ,b was chosen as a placeholder for any ∇b-image on the right-hand side of (B.1).
As long as φ is a product of Ω(zi−zj , η, τ), the derivatives in the last term of (B.4) are easily
evaluated via (2.5) or (2.48). If φ comprises individual Kronecker-Eisenstein coefficients, one
can furthermore make use of ∂if

(w)
ij = − π

Im τ f
(w−1)
ij with w ≥ 1, see (2.5).

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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