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1 Introduction

In string theories, scattering amplitudes are drawn from moduli-space integrals on punctured
worldsheets. The core of the associated integrands, represented by certain correlation functions
of vertex operators, encapsulates the scattering data. Efforts to simplify these integrands,
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especially through decomposition into bases of functions of the worldsheet moduli, have
unveiled intricate patterns in string amplitudes. For n-point tree-level amplitudes, the Parke-
Taylor factors, dependent on n punctures, play a significant role. Aomoto [1] showed that these
factors, coupled with the Koba-Nielsen factor, fall into (n−3)!-dimensional bases and resonate
with the framework of twisted (co)homologies, as outlined in various works, including [2–4].

The deep interplay of these integration-by-parts relations transcends field theory, string
theory, and mathematics [5]. They clarify relationships among gauge-theory amplitudes [6, 7]
which often have a simple uplift to all orders in the inverse string tension α′ [8–10]. Field-
theory structures in tree amplitudes and their associations with gravity and gauge theory
amplitudes are also spotlighted [6, 11–14]. Furthermore, manipulations of certain genus-zero
correlators contribute to the understanding of braid matrices in the α′-expansion of string
amplitudes [4, 15, 16].

Tree-level insights from Parke-Taylor bases have spurred investigations into analogous
bases for loop-level correlators under integration by parts (IBP) and algebraic relations
of the integrand, with a focus on one-loop string amplitudes. Specifically, correlators on
genus-one surfaces like the torus are expressed using Jacobi theta functions, replacing the
Koba-Nielsen factor with |θ1(zi,j , τ)|α′ki·kj (with zi,j := zi−zj and ki the external momenta).
This study centers on functions of the punctures zi and the modular parameter τ that
supplement the one-loop Koba-Nielsen factor and can be viewed as the loop analogs of
the Parke-Taylor factors. These functions are systematically examined under IBP and Fay
relations, collectively termed F-IBP.

Genus-one correlators for various string amplitudes are expressed using coefficients
f (w)(zi,j , τ) from the Kronecker-Eisenstein series [17–19] of modular weight w ∈ N0. A recent
proposal for F-IBP bases [20–22] is formulated in terms of their generating series Ω(z, η, τ)
which, in contrast to the individual f (w), close under tau-derivatives. These series are
imperative as τ -derivatives augment the modular weight. The proposed bases are constructed
from chains of the Kronecker-Eisenstein series, defined as

ΩΩΩ12···n := Ω(z1,2, η2+η3+ . . . +ηn, τ) . . . Ω(zn−1,n, ηn, τ) , (1.1)

with n−1 bookkeeping variables ηi. Under τ -derivatives, Koba-Nielsen integrals over these
chains satisfy KZB-type differential equations. Solutions to these equations shed light
on the α′-expansions in string integrals [18, 20, 21, 23, 24]. This foundation has led to
breakthroughs in the relation [24–28] between modular graph forms [29, 30] and iterated
Eisenstein integrals [31, 32]. Nevertheless, it is still an unproven conjecture that permutations
of the chains (1.1) form an F-IBP basis — their established closure under ∂τ is a necessary
but not a sufficient condition.

Rather than presenting a rigorous mathematical proof, we offer compelling evidence
for (1.1) forming an F-IBP basis by decomposing a range of Kronecker-Eisenstein series into
the chain form, thereby bolstering the credibility of the conjectural basis. In a companion
paper [33], Rodriguez, Schlotterer and the author have made notable strides in advancing
the IBP methodology for one-loop string integrals of the Koba-Nielsen type. Specifically, we
have transformed cyclic products of the Kronecker-Eisenstein series denoted as

CCC(12···m)(ξ) := Ω(z1,2, η2+η3+ . . . +ηm + ξ, τ) . . . Ω(zm−1,m, ηm + ξ, τ)Ω(zm,1, ξ, τ) , (1.2)
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and their coefficients f (w)(zi−zj , τ) into conjectural bases of one-loop string integrals derived
from Kronecker-Eisenstein products of chain topology [20–22]. This effort has not only vali-
dated the chain bases referenced but also yielded explicit formulae for the basis decompositions
of one or two cycles of Kronecker-Eisenstein series regardless of their respective lengths.

In this paper, we aim to broaden the recursive approach from the previous work to
encompass any number of Kronecker-Eisenstein cycles, pinpointing the combinatorial structure
underlying their integration-by-parts reduction. More explicitly, let us refer to all cycles
as W1, W2, . . . , Wr and the remaining puncture set as R. We will examine an open-string
integrand or chiral sector of a closed-string integrand described by

K(r+)
n = CW1(ξ1)CW2(ξ2) . . . CWr (ξr) , where W1 ⊔ W2 ⊔ . . . Wr ⊔ R = {1, 2, . . . , n} . (1.3)

We will use the single-cycle formulae derived in [33] recursively to decompose (1.3) to chain
basis at the cost of introducing some total Koba-Nielsen derivative terms.

We will also delve into more intricate configurations of the Kronecker-Eisenstein series
and coefficients beyond just cyclic products, introducing representations through tadpoles,
multibranchs, and even interconnected multiloop graphs. Additionally, we will be offering
a Mathematica rendition of our principal formulae in the supplementary material. The
methodologies we adopt serve as practical tools to streamline genus-one correlators and
simplify α′-expansions of genus-one integrals, thereby aiding computations within specific
string theories [20, 21, 24] and ultimately shedding light on the physical implications of
the basis coefficients. Building upon tree-level computations [8, 34–36], our explicit basis
breakdowns might pave the way for a deeper understanding, possibly connecting expansion
coefficients with a generalized notion of intersection numbers and making contact with the
twisted-(co)homology setting of [37].

Originating from conventional string theories with infinite spectra, our findings are
applicable to ambitwistor strings [38, 39] and chiral strings [40, 41]. Integration-by-parts
techniques for moduli-space integrands transition smoothly between these string theories,
as highlighted in multiple studies [35, 36, 42–44], and may even involve a α′ → ∞ limit.
These results could illuminate massive loop amplitudes in both conventional and chiral string
theories, reminiscent of tree-level work in [45]. Within the chiral splitting framework [46, 47],
introducing loop momenta simplifies closed-string loop amplitudes. Yet, F-IBP reductions
of chiral amplitudes present challenges beyond the standard doubly-periodic f (w)(zi,j , τ)-
integrands. We will address the impact of certain derivatives in chiral amplitudes leading
to boundary terms in the chiral-splitting context of (n−1)! genus-one bases.

The present work is organized as follows: we review the genus-one string integrand and
the single-cycle formula in section 2. After introducing compact notations including open
cycles and fusions in section 3, we demonstrate how to break a product of two Kronecker-
Eisenstein cycles in the presence of additional punctures in section 4 and a product of three
cycles with or without additional punctures in section 5. Then, after introducing the notion
of labeled forests to capture increasingly complicated terms free of cycles in the procedure of
basis decomposition in section 6, we propose the general formula to break the product of
an arbitrary number of both doubly periodic cycles and meromorphic Kronecker-Eisenstein
cycles in section 7. Practical applications of these formulae are presented in a Mathematica
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code and we explain how to use the code in section 8. Section 9 delves into more complex
scenarios including a product of multibranchs and connected multiloop graphs. Finally, our
conclusions and future perspectives are discussed in section 10. More detailed explanations
of the concise notations used in sections 2 and 8 can be found in appendix A.

2 Review of string integrals and single-cycle formulae

In this companion paper to [33], we provide a succinct overview of the genus-one string
integrands and present the closed-form formulae for decomposing a cycle product of the
Kronecker-Eisenstein series. While our goal is to ensure this paper is self-contained, we direct
readers to [33] and the associated references for a more in-depth exploration.

2.1 Kronecker-Eisenstein series, its doubly-periodic completion, and their
products

The computation of one-loop string amplitudes relies on moduli-space integrals across corre-
lation functions for specific worldsheet fields containing external-state data. The Kronecker-
Eisenstein series [48] informs the entire dependence of these genus-one correlators on punctures
z ∈ C and the modular parameter τ ∈ C with Im τ > 0,

F (z, η, τ) := θ′1(0, τ)θ1(z+η, τ)
θ1(z, τ)θ1(η, τ) . (2.1)

Here, the standard odd Jacobi theta function is defined with q := exp(2πiτ) as

θ1(z, τ) := 2q1/8 sin(πz)
∞∏

n=1
(1 − qn)

(
1 − qne2πiz

) (
1 − qne−2πiz

)
. (2.2)

In the context of the non-holomorphic admixture detailed in the exponent from [49],

Ω(z, η, τ) = exp
(

2πiη
Im z

Im τ

)
F (z, η, τ), (2.3)

we achieve a doubly-periodic refinement of the meromorphic Kronecker-Eisenstein series as
seen in (2.1). This refinement satisfies the conditions Ω(z, η, τ ) = Ω(z+1, η, τ ) = Ω(z+τ, η, τ ).

2.1.1 Properties

The Kronecker-Eisenstein series and its doubly periodic completion both satisfy the anti-
symmetry property expressed by

F (−z,−η, τ) = −F (z, η, τ) , Ω(−z,−η, τ) = −Ω(z, η, τ) . (2.4)

Additionally, they satisfy the Fay identities shown below,

F (z1, η1, τ)F (z2, η2, τ) = F (z1, η1+η2, τ)F (z2−z1, η2, τ) + F (z2, η1+η2, τ)F (z1−z2, η1, τ) .

(2.5)
The above identities remain consistent when substituting F (z, η, τ) with Ω(z, η, τ).
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Ωij(η) ∼= •
zi

•
zj

η

Ω12···m ∼= •
z1

•
z2

•
z3

•
zn−1

•
zm

η23...m η3...m ηm

Ω16(η6)Ω12(η2345)Ω23(η34)Ω34(η4)Ω25(η5) ∼= •
z1

•
z2

•
z6

•
z5

•
z3

•
z4

η6

η2345

η5

η34

η4

Figure 1. Graphical representation of Kronecker-Eisenstein series Ωij(η) = Ω(zi−zj , η, τ ), their chain
and tree products.

2.1.2 Coefficients and concise notations

With the Laurent expansions using the bookkeeping variables η ∈ C, we can define Kronecker-
Eisenstein coefficients g(w), f (w) for w ∈ N0. Specifically,

F (z, η, τ) =:
∞∑

w=0
ηw−1g(w)(z, τ) , Ω(z, η, τ) =:

∞∑
w=0

ηw−1f (w)(z, τ), (2.6)

with the notable points that g(0)(z, τ) = f (0)(z, τ) = 1, g(1)(z, τ) = ∂z log θ1(z, τ), and
f (1)(z, τ) = g(1)(z, τ) + 2πi Im z

Im τ .
Given that the primary results of this work focus on configuration-space integrals over

multiple punctures, namely z1, z2, . . ., we introduce a concise notation for ease of reference.
Using ∂j := ∂

∂zj
, we define

g
(w)
ij := g(w)(zi−zj , τ) , f

(w)
ij := f (w)(zi−zj , τ) . (2.7)

Likewise, we present

Fij(η) := F (zi−zj , η, τ) , Ωij(η) := Ω(zi−zj , η, τ). (2.8)

2.1.3 Chain and cycle products

As schematically shown by the second graph in figure 1, we define a specific chain product
of the doubly-periodic Kronecker-Eisenstein series as

Ωα(1)α(2)···α(m) := δ

(
m∑

i=1
ηα(i)

)
m−1∏
i=1

Ωα(i) α(i+1)(ηα(i+1) ···α(m)) , (2.9)

where ηij···k = ηi + ηj + . . . + ηk. The set {α(1), α(2), · · · , α(m)} with entirely unique
elements can represent any subset of {1, 2, · · · , n} containing at least two elements. The
delta constraints reveal that any ηα(i), like ηα(1), can be represented using all other terms. In
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C(12···m)(ξ) ∼= ξ

•
z1

•
z2

•
z3

•
zm •

zm−1

η23...m+ξ η3...m+ξ

ηm + ξ

C(12)(ξ1)C(34)(ξ2)C(56)(ξ3) ∼=

η2+ξ1

ξ1

•z1 •z2

η4+ξ2

ξ2

•z3 •z4

η6+ξ3

ξ3

•z5 •z6

Figure 2. Graphical representation of a cyclic product of Kronecker-Eisenstein series C(12···m)(ξ)
and their product.

particular, when m = n, α(i) = i and expressing all η1 = −η23···n, it reduces to (1.1). Using
the Fay identities (2.5) for pairs of Kronecker-Eisenstein series, we derive the chain identities

Ωα,i,β = (−1)|α|Ωi,αTΩi,β = (−1)|α|
∑

ρ∈αT
�β

Ωi,ρ . (2.10)

This resembles the Kleiss-Kuijf relations of gauge-theory tree amplitudes referenced in [51].
Only (m−1)! of the m! permutations of Ωα(1)α(2)···α(m) remain independent as discussed
in [21, 22, 52]. The shuffle α�β for ordered sets α, β in the summation of (2.10) captures all
permutations of the combined set αβ that maintain the original order of α and β elements.

Moreover, products of doubly-periodic Kronecker-Eisenstein series, which exhibit tree
topologies similar to the one shown in the last graph of figure 1, can be expanded into
chains Ωα(1)α(2)···α(m) with a fixed α(1). This expansion uses the chain identities from (2.10)
iteratively and may require a redefinition of the bookkeeping variables.

The cyclic product of the doubly-periodic Kronecker-Eisenstein series, as depicted in
the first graph of figure 2, contrasts with a chain product as defined in (2.9). Specifically,
we introduce a cyclic product as follows,

C(12···m)(ξ) := δ

( m∑
i=1

ηi

)
Ω12(η23···m+ξ)Ω23(η3···m+ξ) · · ·Ωm−1,m(ηm+ξ)Ωm,1(ξ) , (2.11)

applicable for general multiplicities within the range 2 ≤ m ≤ n. Notably, when we set
η1 = −η23···m, this cyclic product simplifies to the form described in (1.2).

In this case, the cycle topology of C(12···m)(ξ) precludes a straightforward algebraic
expansion into chains as defined in (2.9) using Fay identities (2.5) or the identities in (2.10) in
practice. Instead, this expansion necessitates the application of IBP, which we will review in
the next subsection. Our focus in this paper is on the analysis of products of doubly-periodic
Kronecker-Eisenstein cycles, as represented in (1.3) and illustrated by the last graph in figure 2.
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Building on our definitions (2.9) and (2.11) for the products of doubly-periodic Kronecker-
Eisenstein series, we introduce the notation for chains and cycles of their meromorphic
counterparts, Fij(η) = F (zi − zj , η, τ), as follows:

Fα(1)α(2)···α(m) := δ

( m∑
i=1

ηα(i)

)m−1∏
i=1

Fα(i) α(i+1)(ηα(i+1) ···α(m)) , (2.12)

C̃(12···m)(ξ) := δ

( m∑
i=1

ηi

)
F12(η23···m+ξ)F23(η3···m+ξ) · · ·Fm−1,m(ηm+ξ)Fm1(ξ) . (2.13)

Given the universality of the Fay identity (2.5) for both Fij(η) and Ωij(η), the relations
in (2.10) for doubly-periodic chains with ordered sets α, β naturally extend to the F -chain
in (2.12), with a simple substitution of F for Ω. Furthermore, of the m! permutations of
Fα(1)α(2)···α(m), only (m − 1)! are algebraically independent. For example, one can choose
the chains with α(1) = 1 as the independent set. In the case of meromorphic Kronecker-
Eisenstein cycles C̃(12···m)(ξ) and their products,

K̃(r+)
n = C̃W1(ξ1)C̃W2(ξ2) . . . C̃Wr (ξr) , where W1 ⊔ W2 ⊔ . . . Wr ⊔ R = {1, 2, . . . , n} . (2.14)

decomposition requires the application of F-IBP.

2.2 Sting integrals, IBP relations, and single-cycle formulae

The n-point genus-one string amplitudes are derived from worldsheets characterized by
cylinder and Moebius-strip topologies for open strings, and torus topologies for closed strings.
Each of these configurations is described with a modular parameter τ and features punctures
located on the boundary. The amplitudes are mathematically represented as follows,

An =
∫

op
dµop

n Iop
n (zi, τ, ki) Kop

n (f (w), τ, ki, ϵi, · · · ) , (2.15)

Mn =
∫

cl
dµcl

n Icl
n (zi, τ, ki) Kcl

n (f (w), f̄ (w), τ, ki, ϵi, ϵ̄i, · · · ) . (2.16)

2.2.1 Integration domains, measures and Koba-Nielsen factors

The specific details regarding the integration domains and the measures dµ•
n, along with

the Koba-Nielsen factors I•
n(zi, τ, ki) for both open and closed strings, are comprehensively

outlined in appendix A. Despite the distinctions between open and closed strings, their IBP
relations can be expressed in a standardized manner. Primarily, the integration of total
derivatives acting on doubly periodic functions yields zero, as shown below∫

•
dµ•

n∂i (I•
nφ) = 0 , ∀ doubly periodic φ(zj , τ) , (2.17)

where ∂i represents a real analysis derivative for open strings (• → op) and transitions to a
holomorphic derivative for closed strings (• → cl), with ∂̄i denoting the conjugate derivative.

Furthermore, the derivatives of the Koba-Nielsen factors for both open and closed strings
can be encapsulated in a unified expression:

∂iI•
n = −

( n∑
j ̸=i

xi,j

)
I•

n , xi,j := sijf
(1)
ij . (2.18)
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We define the dimensionless Mandelstam invariants used throughout our analysis as
follows:

sij = −ki · kj , si1i2...ir = −
∑

1≤p<q≤r

kip · kiq , α′ =
{

1/2 open strings ,

2 closed strings .
(2.19)

Combining (2.17) and (2.18), we derive an IBP relation:

∫
•

dµ•
nI•

n

∂i −
n∑

j ̸=i

xi,j


︸ ︷︷ ︸

:=∇i

φ = 0 , ∀ doubly periodic φ(zj , τ) , (2.20)

where we defined operator ∇i, termed the Koba-Nielsen derivative. In the context of
our analysis, this IBP relation, now compactly denoted as ∇iφ

IBP= 0, emphasizes the
transformational properties of the integrands. Note that the operators ∇i and ∇j exhibit
commutativity.

2.2.2 Integrands and basis

The integrands K•
n vary across different theories. Typically, these are polynomials involving

doubly-periodic Kronecker-Eisenstein coefficients, f
(w)
ij , as defined in (2.6), and, for closed

strings, their complex conjugates f̄
(w)
ij as well. The polynomial coefficients incorporate the

modular parameter τ and various physical parameters such as polarizations ϵi and momentaki,
yet they remain independent of the puncture locations zi.

Conjectures, as proposed in the studies by Mafra and Schlotterer [20, 21], suggest a struc-
tured formulation for the string theory integrands. Specifically, for any n-point open-string
one-loop integrand related to Kop

n , as seen in (2.15), it can be aligned with an (n−1)!-basis of
generating functions. An example of such a basis is Ω1,α(2),...,α(n), where α varies over the sym-
metric group Sn−1. For the closed-string counterpart, the one-loop integrand Kcl

n is conjectured
to be representable as a linear combination of products like Ω1α(2)α(3)...α(n)Ω̄1β(2)β(3)...β(n),
with α, β ∈ Sn−1, where Ω̄ denotes the complex conjugate of Ω.

2.2.3 Single-cycle formulae

In the case of products of Ω without cycles, such as those represented by the last graph in
figure 1, these can be algebraically expanded into basis elements using Fay identities (2.5)
or (2.10) in practice. In the previous companion paper [33], we found a general formula to
decompose an arbitrary Ω-cycle into basis elements:

(1+s12···m)C(12···m)(ξ) = M12···m(ξ) −
m∑

b=1
b ̸=a

∑
ρ∈A�BT

(a,A,b,B)=Im

(−1)|B|
(

n∑
i=m+1

xb,i + ∇b

)
Ωa,ρ,b . (2.21)

In this equation, a represents any element from {1, 2, . . . , m}. On the right-hand side, A

and B are determined by the relationship (a, A, b, B) = (1, 2, · · · , m), subjected to cyclic
transformations. The chains Ωa,ρ,b are then aligned with the foundational basis Ω1..., following
the guidance of (2.10). The term M12···m(ξ) pertains to the proposed (m−1)! basis for m-point
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chains, delineated as Ω1,α(2),α(3),...,α(m) where α ∈ Sm−1. The complete form of M12···m(ξ)
is detailed in (A.6) in the appendix.

Further, our previous findings demonstrated the recursive application of single-cycle
formulae to dissect products of two Ω-cycles. This paper aims to broaden this methodology
to encompass products involving an arbitrary number of cycles as indicated in (1.3).

2.2.4 Chiral splitting

Chiral splitting, as detailed in the works [46, 47], serves as a foundational method for deriving
open and closed string amplitudes from the same chiral function, denoted as Kn(ℓ). This
function encapsulates the kinematic data of the system. The amplitudes for open and closed
strings are computed through the following integrals,

An = 1
(2πi)D

∫
op

dµop
n

∫
RD

dDℓ |Jn(ℓ)| Kn(ℓ, g(w), τ, ki, ϵi, · · · ) , (2.22)

Mn = 1
(2πi)D

∫
cl

dµcl
n

∫
RD

dDℓ |Jn(ℓ)|2 Kn(ℓ)K̃n(−ℓ, ḡ(w), τ, ki, ϵ̄i, · · · ) , (2.23)

where D represents the spacetime dimension. Here, the chiral Koba-Nielsen factor, Jn(ℓ)
reflects the loop momentum ℓ and shows a meromorphic dependency on both the puncture
locations zi and the modular parameter τ . The specific form of Jn(ℓ) is elaborated in (A.5) in
the appendix. Furthermore, the z-dependence within Kn(ℓ) is dictated by the g

(w)
ij functions,

which are derivable from the meromorphic Kronecker-Eisenstein series as outlined in (2.6).
The derivatives of the chiral Koba-Nielsen factor Jn(ℓ) with respect to the worldsheet

positions zi now incorporate the loop momentum,

∂iJn(ℓ) =
(

ℓ·ki −
n∑

j ̸=i

x̃i,j

)
Jn(ℓ) , with x̃i,j := sijg

(1)
ij for j ̸= i . (2.24)

Similar to (2.20), we define the operators ∇̃i to encapsulate the Koba-Nielsen derivatives,

∇̃iφ̃ := ∂iφ̃ +
(

ℓ·ki −
n∑

j ̸=i

x̃ij

)
φ̃ = 1

Jn
∂i(φ̃Jn) , (2.25)

applicable to any meromorphic function φ̃ = φ̃(zi, τ) relevant to the chiral integrands Kn(ℓ).
Note that the operators ∇̃i and ∇̃j commute.

Following the logic in (2.21), substitution rules can be applied as

Ωα(1)α(2)... → Fα(1)α(2)..., xij → x̃ij , M12···m(ξ) → M̃12···m(ξ), ∇b → ∇̃b − ℓ ·kb, (2.26)

to deconstruct the meromorphic cycles (2.13) as shown below,

(1+s12···m)C̃(12···m)(ξ) = M̃12···m(ξ) (2.27)

−
m∑

b=1
b ̸=a

∑
ρ∈A�BT

(a,A,b,B)=Im

(−1)|B|
(
−ℓ·kb +

n∑
i=m+1

x̃b,i + ∇̃b

)
Fa,ρ,b ,

where M̃12···m(ξ) is a linear combination of m-point basis, F1,α(2),··· ,α(m) with α ∈ Sm−1.
See (A.11).
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We aim to recursively apply (2.27) to decompose products of meromorphic cycles (2.14)
into a chain basis F1,α(2),α(3),...,α(n) with α ∈ Sn−1, introducing some total Koba-Nielsen
derivative terms in the process. These derivative terms, unlike in previous doubly-periodic
cases (2.17), cannot be neglected but can be simplified.

We will explore that many techniques applicable in doubly-periodic scenarios are equally
viable for chiral splitting cases. Sections 3 through 6 will primarily focus on the doubly-
periodic cases, and towards the end in section 7, we will detail the approach for handling
an arbitrary number of meromorphic cycles. Additionally, in section 9, we will discuss the
handling of integrands beyond the scope of meromorphic cycle products.

3 Open cycles and fusions

Given that we will address an arbitrary number of series of double periodic Kronecker-
Eisenstein cycles, simplifying the representation of a single-cycle formula is beneficial. Initially,
let us introduce the notion of open cycle OW

a,i defined as

OW
a,i := −

∑
b∈W
b ̸=a

∑
ρ∈A�BT

(a,A,b,B)=W

(−1)|B|Ωa,ρ,bxb,i , with a ∈ W, and i /∈ W . (3.1)

Here are some examples,

O
(12)
1,i = − Ω12(η2)x2,i , O

(12)
2,i = Ω12(η2)x1,i ,

O
(123)
1,i = − Ω123x3,i + Ω132x2,i , O

(123)
2,i = −Ω231x1,i + Ω213x3,i ,

O
(1234)
1,i = − Ω1234x4,i + (Ω1243 + Ω1423)x3,i − Ω1432x2,i . (3.2)

Note that the terms xb,i and ∇b in (2.21) exhibit similar characteristics. To formalize this,
we introduce an auxiliary puncture 0 and set the operator xb,0 = ∇b. With this introduction,
we can extend the definition (3.1) to

OW
a,0 := −

∑
b∈W
b ̸=a

∑
ρ∈A�BT

(−1)|B|xb,0Ωa,ρ,b , with a ∈ W. (3.3)

With the above definitions, the single-cycle formula (2.21) can be compactly represented as

(1+sW )CW (ξ) = MW (ξ) +
∑

i/∈W, i∈ ̂[n]

OW
a,i , ∀ a ∈ W. (3.4)

where we have defined [̂n] as {0} ∪ [n] = {0, 1, 2, · · · , n}. For streamlined referencing, we
will also use R̂ = {0} ∪ R.

With a little abuse of notation, we introduce the abbreviation

Ωa,A�BT ,b :=
∑

σ∈A�BT

Ωa,σ,b . (3.5)
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∑
b1,j1∈W1
j2,b2∈W2 p1 j1 b1 b2j2

=
∑

a1,b1∈W1
a2,b2∈W2 a1 b1 b2a2

Figure 3. From tadpoles to isolated cycles.

Besides, we use an oriented dotted line b j
and a wavy line a b to represent

−xb,j(−1)|B|+1Ωa,A�BT ,b such that

OW
a,j =

∑
b∈W/{a}

a b j
. (3.6)

Then the single-cycle formula (3.4) can be schematically shown by

(1 + sW )
CW

=
MW

+
∑

j∈ ̂[n]/W

∑
b∈W/{a}

a b j
, ∀ a ∈ W . (3.7)

From now on, whenever we see OW
a,j , we assume a ∈ W . Besides, we define Ωa,A�BT ,a = 0

such that we can simply write the summation
∑

b∈W/{a} in the above equation as
∑

b∈W .

3.1 Fusion of two cycles

As we will see, open cycles can not only be used to simplify the single-cycle formula, but
also have a very important property. Consider a particular combination of open cycles∑

j2∈W2,j1∈W1 OW1
p1,j2

OW2
j2,j1

, naively it would form lots of tadpoles as shown on the left of
figure 3. The key observation is that all of such tadpoles can reorganized to produce new
isolated cycles without tails planting on them on the support of (2.10) as shown on the left
of figure 3 when we average the summation index,

∑
j2∈W2
j1∈W1

OW1
p1,j2

OW2
j2,j1

=
∑

b1∈W1
(p1,A1,b1,B1)=(W1)

(−1)|B1|Ωp1,A1�BT
1 ,b1

∑
j2,b2∈W2

(j2,A2,b2,B2)=(W2)

(−1)|B2|xb1,j2Ωj2,A2�BT
2 ,b2

∑
j1∈W1

xb2,j1

= 1
2
∑

a1,b1∈W1,(a1,A1,b1,B1)=(W1)
a2,b2∈W2,(a2,A2,b2,B2)=(W2)

(−1)|B1|+|B2|Ωa1,A1�BT
1 ,b1

xb1,a2Ωa2,A2�BT
2 ,b2

xb2,a1

=:⟨W1, W2 ⟩ , (3.8)

We already see the application of such simplification in the decomposition of double cycles in
the companion paper [33]. We call the last line of (3.8) as a fusion of two cycles and denote
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it as ⟨W1, W2 ⟩ = ⟨W2, W1 ⟩. Here are some concrete examples,

⟨(12),(34)⟩= Ω12x2,3Ω34x4,1 +Ω12x2,4Ω43x3,1 , (3.9)
⟨(12),(345)⟩= Ω12x2,3Ω345x5,1 +Ω12x2,4Ω453x3,1 +Ω12x2,5Ω534x4,1

−Ω12x2,5Ω543x3,1−Ω12x2,3Ω354x4,1−Ω12x2,4Ω435x5,1 ,

⟨(123),(456)⟩=
[[

Ω123Ω456
(
x3,4x6,1−x3,6x4,1

)
+cyc(456)

]
+cyc(123)

]
,

⟨(12),(3456)⟩= Ω12
[(

Ω3456x2,3x6,1 +Ω3654x2,3x4,1−(Ω3465 +Ω3645)x2,3x5,1
)

+cyc(3456)
]
.

In general, there are 2|W1|+|W2|−5 |W1| |W2| terms in ⟨W1, W2⟩ as one can check in the above
examples.

3.2 Fusion of multiple cycles

The generalization of (3.8) is straightforward∑
j2∈W2

OW1
a1,j2

∑
j3∈W3

OW2
j2,j3

· · ·
∑

jr∈Wr

O
Wr−1
jr−1,jr

∑
j1∈W1

OWr
jr,j1

+
∑

jr∈Wr

OW1
a1,jr

∑
jr−1∈Wr−1

OWr
jr,jr−1

· · ·
∑

j2∈W2

OW3
j3,j2

∑
j1∈W1

OW2
j2,j1

= 2⟨W1, W2, . . . , Wr⟩ , (3.10)

with the generalization to the fusion of r cycles defined by (with r ≥ 2 and ar+1 := a1):

⟨W1, W2, . . . , Wr⟩ := (−1)r

2

[
r∏

i=1

∑
ai,bi∈Wi

Ωai,Ai�BT
i ,bi

xbi,ai+1

]

= (−1)r

2

[
r∏

i=1

∑
ai,bi∈Wi

] a1 b1 a2 b2

br
ar

...
· · ·

. (3.11)

Each wavy line represents a summation over Ai�BT
i with i inferred by the endpoints. The

definition (3.11) is clearly cyclic,

⟨W1, W2, . . . , Wr⟩ = ⟨W2, W3, . . . , Wr, W1⟩ , (3.12)

and the factor 1
2 cancels the double counting due to the reflection symmetry

⟨W1, W2, . . . , Wr⟩ = ⟨Wr, . . . , W2, W1⟩ . (3.13)

For instance,∑
j2∈W2

OW1
a1,j2

∑
j3∈W3

OW2
j2,j3

∑
j1∈W1

OW3
j3,j1

+
∑

j3∈W3

OW1
a1,j3

∑
j2∈W2

OW3
j3,j2

∑
j1∈W1

OW2
j2,j1

= 2⟨W1, W2, W3⟩ = 2⟨W1, W3, W2⟩ , (3.14)

which, in the simplest non-trivial case of two-element cycles W1, W2, W3 specializes to

⟨(12), (34), (56)⟩ (3.15)

= O
(12)
1,3 O

(34)
3,5 O

(56)
5,1 + O

(12)
1,4 O

(34)
4,5 O

(56)
5,1 + O

(12)
1,3 O

(34)
3,6 O

(56)
6,1 + O

(12)
1,4 O

(34)
4,6 O

(56)
6,1

= −Ω12(η2)Ω34(η4)Ω56(η6)
(
x2,3x4,5x6,1 − x2,3x4,6x5,1 − x2,4x3,5x6,1 + x2,4x3,6x5,1

)
.
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(4.1)−−−→

(4.2)−−−→
(3.8)

(4.2)−−−→

(4.2)−−−→

CW1 CW2 R̂

CW2 R̂

CW2 R̂

MW1 CW2 R̂

R̂

MW2 R̂

R̂

MW2 R̂

R̂

R̂

MW1 R̂

MW1 R̂

MW1 MW2 R̂

Figure 4. The F-IBP reduction of the double cycle string integrand CW1(ξ1)CW2(ξ2) in presence of
additional punctures gathered in R̂. ξi in CWi(ξi) and MWi(ξi) are suppressed in the graphs. All
terms in the dashed rectangle are free of cycles.

In general, there are 2−2r−1+
∑r

i=1 |Wi| ∏r
i=1 |Wi| terms in ⟨W1, W2, · · · , Wr⟩ as one can check

in the above example.
As we will see, such fusions ⟨W1, W2, · · · , Wr⟩ will appear when we deal with the product

of several cycles. We will discuss the decomposition of two, three, and an arbitrary number
of cycles gradually in the following sections.

4 Double cycles in presence of additional punctures

In the companion paper [33], we have showcased how to break the product of two general
double periodic Kronecker-Eisenstein cycles without additional punctures. Here we extend to
demonstrate how to break the product of two cycles in the presence of additional punctures,
i.e., r = 2 in (1.3) and W1 ⊔ W2 ⊔ R̂ = {0, 1, 2, · · · , n} using the single-cycle formula (2.21)
with compact notations. As shown in figure 4, we use a dashed circle to represent the
punctures in R̂ to remind us there are punctures beyond W1, W2. Note that this includes
the auxiliary puncture 0 which encodes the information of Koba-Nielsen derivatives. We
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break CW1(ξ1) at first,

(1 + sW1)(1 + sW2)CW1(ξ1)CW2(ξ2) (4.1)

= (1 + sW1)

MW1(ξ1) +
∑
j∈R̂

OW1
a1,j +

∑
j2∈W2

OW1
a1,j2

CW2(ξ2) ,

then break CW2(ξ2) according to the attaching point if there is,

(1 + sW1)(1 + sW2)CW1(ξ1)CW2(ξ2) =

MW1(ξ1) +
∑
j∈R̂

OW1
a1,j


MW2(ξ2) +

∑
k /∈W2

OW2
a2,k


+

∑
j2∈W2

OW1
a1,j2

MW2(ξ2) +
∑

k /∈W2

OW1
j2,k

 . (4.2)

Using (3.8), we get

(1 + sW1)(1 + sW2)CW1(ξ1)CW2(ξ2) (4.3)

= MW1(ξ1)MW2(ξ2) + MW1(ξ1)
∑

j1∈W1

OW2
a2,j1

+ MW2(ξ2)
∑

j2∈W2

OW1
a1,j2

+ ⟨W1, W2⟩

+ MW1(ξ1)
∑

j1∈R̂

OW2
a2,j1

+ MW2(ξ2)
∑

j2∈R̂

OW1
a1,j2

+
∑
p∈R̂

OW1
a1,p

∑
q /∈W2

OW2
a2,q

+
∑

j2∈W2

OW1
a1,j2

∑
q∈R̂

OW2
a2,q .

The skeleton of the final result is shown on the right of the figure 4. Except for the top graph
there which corresponds to ⟨W1, W2⟩, the other terms in the dashed rectangle are free of
cycles and can be easily expanded onto the basis (1.1) using Fay identities (2.5) or (2.10).
⟨W1, W2⟩ is just a sum of isolated cycles and can be decomposed again using the single-cycle
formulae (2.21). Here a1, a2 could be any point in W1, W2 respectively. Different choices of
them lead to equivalent results in the support of F-IBP.

When R = ∅, i.e., R̂ = {0}, the last two lines in (4.3) become total derivative terms
and it reproduces the results in the companion paper.

Here is an example at n = 5,

(1+s12)(1+s34)C(12)(ξ1)C(34)(ξ2) = M12(ξ1)M34(ξ2) (4.4)
− M12(ξ1)x4,12Ω34(η4) − x2,34Ω12(η2)M34(ξ2) +

(
x2,3x4,1 − x2,4x3,1

)
Ω12(η2)Ω34(η4)

+ ∇2∇4
(
Ω12(η2)Ω34(η4)

)
−∇4

(
M12(ξ1)Ω34(η4) − Ω12(η2)Ω34(η4)x2,3

)
−∇2

(
M34(ξ2)Ω12(η2) − Ω12(η2)Ω34(η2)x4,12

)
−∇3

(
Ω12(η2)Ω34(η4)x2,4

)
− M12(ξ1)Ω34(η4)x4,5 − M34(ξ2)Ω12(η2)x2,5 + Ω12(η2)Ω34(η4)x2,5x4,5

+ Ω12(η2)Ω34(η4)
(
x2,5x4,12 + x2,3x4,5 − x2,4x3,5

)
,

where xi,j···p := xi,j + · · ·xi,p.
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Appearance of reference ordering. In the above derivation, we break W1 at first and
then W2. In this sense, we say we have chosen a reference ordering R = W1 ≺ W2 when we
break the cycles. In the final result (4.3), we see the last two terms on the right-hand side are
not manifestly symmetric under the exchange of two cycles W1, W2 because of this reference
ordering. As a self-consistent method, different choices of reference orderings of course must
lead to equivalent results. Actually, one can check on the support of F-IBP, we have

∑
p∈R

OW1
a1,p

∑
q∈W1

OW2
a2,q +

∑
j2∈W2

OW1
a1,j2

∑
q∈R

OW2
a2,q

IBP=
∑
p∈R

OW2
a2,p

∑
q∈W2

OW1
a1,q +

∑
j1∈W1

OW2
a2,j1

∑
q∈R

OW1
a1,q .

(4.5)
Let us illustrate this idea by an explicit example of double pairs with non-vanishing

R = {5}, i.e., n = 5. Under the reference ordering R = (12) ≺ (34), we have (4.4).
If we break C(34)(ξ2) at first and then C(12)(ξ1), i.e., using the reference ordering

R = (34) ≺ (12) instead, we get almost the same result except that the last line of (4.4)
is replaced by its relabelling (12) ↔ (34), that is

Ω12(η2)Ω34(η4)
(
x4,5x2,34 + x4,1x2,5 − x4,2x1,5

)
. (4.6)

They are equivalent since their difference −Ω12(η2)Ω34(η4)x2,4
∑4

i=1 xi,5 vanishes on the
support of F-IBP.

5 Triple cycles

In our companion paper [33], we provided exemplifications for decomposing products of
triple doubly periodic Kronecker-Eisenstein cycles at n = 6, 7. In this paper, we extend this
to a derivation applicable to arbitrary sets of three cycles, streamlining the process in two
main steps. Initially, we consider R = ∅ and temporarily set aside total derivative terms
to foreground the central aspects of the demonstration, supplemented by illustrative sketch
graphs to elucidate the process. Subsequently, we unfold the general result for an arbitrary R.

5.1 Ignoring total derivative terms and without additional punctures

In the analysis of the triple cycle product CW1(ξ1) CW2(ξ2) CW3(ξ3), depicted in figure 5,
we initiate the process by decomposing W1 utilizing the relation detailed in (3.4). This
procedure yields,

(1 + sW1)CW1(ξ1) CW2(ξ2) CW3(ξ3) (5.1)

IBP=
[
MW1(ξ1) +

∑
j2∈W2

OW1
a1,j2

+
∑

j3∈W3

OW1
a1,j3

]
CW2(ξ2) CW3(ξ3) ,

where we have dropped a total Koba-Nielsen derivative term.
The right-hand side of (5.1) entails three terms. The first term, when combined with

CW2(ξ2) and CW3(ξ3), follows a similar breakdown as demonstrated in (4.3) since MW1(ξ1)
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(5.1)−−−→

(5.3)−−−→
(3.8)

−−−→
(3.8)

(5.2)−−−→

CW1 CW2 CW3

CW2 CW3

CW2 CW3

MW1 CW2 CW3

CW3

MW2 CW3

CW3

CW2

MW3 CW2

CW2

MW1 CW3

MW1 CW3

MW1 MW2 CW3

Figure 5. The F-IBP reduction of triple cycle string integrand CW1(ξ1)CW2(ξ2)CW3(ξ3) with no
additional punctures. Besides, we further ignore the total Koba-Nelson derivative terms here. ξi in
CWi

(ξi) and MWi
(ξi) are suppressed in the graphs. We break two cycles first with the last cycle left

to be broken in figure 6.

is free of punctures from W2 or W3, resulting in,

(1 + sW2)(1 + sW3)MW1(ξ1)CW2(ξ2)CW3(ξ3) (5.2)
IBP= MW1(ξ1)MW2(ξ2)MW3(ξ3) + MW1(ξ1)MW2(ξ2)

∑
k /∈W3

OW3
a3,k

+ MW1(ξ1)MW3(ξ3)
∑

k∈W2

OW2
a2,k + MW1(ξ1)⟨W2, W3⟩

+ MW1(ξ1)
∑

p∈W1

OW2
a2,p

∑
q /∈W3

OW3
a3,q + MW1(ξ1)

∑
j3∈W3

OW2
a2,j3

∑
q∈W1

OW3
a3,q .

For the subsequent terms on the right side of (5.1), it is adequate to analyze the second
term only, as the third term exhibits similar behavior through the interchange of W2 and
W3. In the second term, we observe the formation of a tadpole structure as the chain OW1
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(5.4)−−−→

(5.5)−−−→
(3.10)

−−→

−−−→
(3.8)

−−→

MW1 MW2

MW1 MW2

MW1 MW2 MW3

MW1

MW3 MW1

MW1

MW3 MW1

MW1

MW1

MW3 MW2

MW2

MW2

MW3

CW3

MW2 CW3

CW3

(W2 ↔ W3)

MW1 CW3

MW1 CW3

MW1 MW2 CW3

Figure 6. The F-IBP reduction of CW1(ξ1)CW2(ξ2)CW3(ξ3) with R = ∅ and the total Koba-Nelson
derivative terms ignored. We continue to break the last cycles left in figure 5.
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MW1

CW1

(5.7)−−−→

Figure 7. Recombine several terms as a sum of products of two cycles, CW1(ξ1)⟨W2, W3⟩.

connects with W2. This necessitates the choice of a2 = j2 for every OW
a1,j2 , leading to

(1 + sW2)CW3(ξ3)
∑

j2∈W2

OW1
a1,j2

CW2(ξ2) (5.3)

IBP= CW3(ξ3)
[
MW2(ξ2)

∑
j2∈W2

OW1
a1,j2

+ ⟨W1, W2⟩ +
∑

j2∈W2
j3∈W3

OW1
a1,j2

OW2
j2,j3

]
,

where we have used (3.8) to derive the second term on the right-hand side of (5.3). Following
this, the cycle CW3(ξ3) is further decomposed as illustrated below

CW3(ξ3)MW2(ξ2)
∑

j2∈W2

OW1
a1,j2

IBP= MW2(ξ2)
∑

j2∈W2

OW1
a1,j2

MW3(ξ3)(ξ3) +
∑

k /∈W3

OW3
a3,k

 .

(5.4)

Regarding the second term on the right-hand side of equation (5.3), the chain OW2 is
connected to the cycle W3. To break the cycle W3, it becomes necessary to select a3 = j3
for each term OW

a2,j3 , in accordance with the relation specified in (3.4)

CW3(ξ3)
∑

j2∈W2
j3∈W3

OW1
a1,j2

OW2
j2,j3

IBP=
∑

j2∈W2
j3∈W3

OW1
a1,j2

OW2
j2,j3

MW3(ξ3) +
∑

k /∈W3

OW3
j3,k

 . (5.5)

Upon substituting the results derived from the equations mentioned above into equation (5.3),
we obtain the final form for the second term on the right-hand side of equation (5.1). The
last term in (5.1) can be effectively addressed through a straightforward relabelling process.
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Together with (5.2), they lead to (for R = ∅)

(1+sW1)(1 + sW2)(1 + sW3)CW1(ξ1)CW2(ξ2)CW3(ξ3) (5.6)
IBP= MW1(ξ1)MW2(ξ2)MW3(ξ3) + MW1(ξ1)MW2(ξ2)

∑
k∈W1,2

OW3
a3,k

+ MW1(ξ1)MW3(ξ3)
∑

k∈W1,3

OW2
a2,k + MW2(ξ2)MW3(ξ3)

∑
k∈W2,3

OW1
a1,k

+
[
MW1(ξ1)

( ∑
p∈W1

OW2
a2,p

∑
q∈W1,2

OW3
a3,q +

∑
j3∈W3

OW2
a2,j3

∑
q∈W1

OW3
a3,q

)
+ cyc(W1, W2, W3)

]
+ (1 + sW1)CW1⟨W2, W3⟩ + (1 + sW2)CW2⟨W1, W3⟩ + (1 + sW3)CW3⟨W1, W2⟩
+ 2⟨W1, W2, W3⟩ .

Here, W1,2 = W1∪W2. The cyclic relabeling mentioned in the fourth line of course refers to the
process of also relabeling the corresponding ξi, i.e., (W1, ξ1) → (W2, ξ2) → (W3, ξ3) → (W1, ξ1)
or (W1, ξ1) → (W3, ξ3) → (W2, ξ2) → (W1, ξ1). We have implemented (3.10) to get the
fusions in the last two lines. Furthermore, we have reversed the relation (3.4) to reconstruct
several blocks as the original double periodic Kronecker-Eisenstein cycle CW1(ξ1) in the
penultimate line,

∑
p∈W2

OW1
a1,p⟨W2, W3⟩ +

∑
p∈W3

OW1
a1,p⟨W2, W3⟩ + MW1(ξ1)⟨W2, W3⟩ (5.7)

IBP= (1 + sW1)CW1(ξ1)⟨W2, W3⟩ .

This reconstruction is visually represented in figure 7.

The initial two lines on the right-hand side of (5.6) are devoid of cycles. Meanwhile,
in the final two lines, the number of cycles of any type is diminished to either two or one,
a situation we are already equipped to handle.
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This is how we decompose C(12)(ξ1) C(34)(ξ2) C(56)(ξ3) in the companion paper [33] and
we present the expression again here for n = 6,

(1+s12)(1+s34)(1+s56)C(12)(ξ1) C(34)(ξ2) C(56)(ξ3) IBP= M12(ξ1)M34(ξ2)M56(ξ3) (5.8)
− M12(ξ1)M34(ξ2)Ω56x6,1234 − M12(ξ1)M56(ξ3)Ω34x4,1256 − M34(ξ2)M56(ξ3)Ω12x2,3456

+ M12(ξ1)Ω34Ω56(x4,12x6,1234 + x4,5x6,12 − x4,6x5,12)
+ M34(ξ2)Ω12Ω56(x2,34x6,1234 + x2,5x6,34 − x2,6x5,34)
+ M56(ξ3)Ω12Ω34(x2,56x4,1256 + x2,3x4,56 − x2,4x3,56)
+ (1+s12)C(12)(ξ1)Ω34Ω56(x4,5x6,3 − x4,6x5,3)
+ (1+s34)C(34)(ξ2)Ω12Ω56(x2,5x6,1 − x2,6x5,1)
+ (1+s56)C(56)(ξ3)Ω12Ω34(x2,3x4,1 − x2,4x3,1)
+ Ω12Ω34Ω56

(
x1,4x2,6x3,5 + x1,5x2,4x3,6 − x1,6x2,4x3,5 − x1,4x2,5x3,6

+ x1,6x2,3x4,5 − x1,3x2,6x4,5 − x1,5x2,3x4,6 + x1,3x2,5x4,6
)

.

Comparing (4.3) and (5.6), one can find

(1 + sW1)(1 + sW2)CW1(ξ1)CW2(ξ2) (5.9)
IBP= (1 + sW1)(1 + sW2)(1 + sR̂)CW1(ξ1)CW2(ξ2)CR̂(ξ̂)

∣∣
MR̂(ξ̂) .

This means, for the product of two cycles W1, W2 in the presence of additional cycles including
the auxiliary puncture 0, we can conceptualize R̂ to form a third auxiliary double periodic
Kronecker-Eisenstein cycle, denoted as CW3(ξ̂) = CR̂(ξ̂). Subsequently, we apply the triple
cycle formula (5.6) for decomposing the integrands. To finalize, extracting the coefficient of
MW3(ξ̂) = M

R̂
(ξ̂) yields the result pertinent to the scenario of double cycles W1 and W2

in the presence of additional punctures. This methodology extends to the general scenarios
involving more cycles, a topic we will delve into in section 7.

5.2 Considering total derivative terms and with additional punctures

When considering a general R̂, attention must be given to the summation ranges while
applying formula (3.4), resulting in

(1+sW1)(1+sW2)(1+sW3)CW1(ξ1)CW2(ξ2)CW3(ξ3) (5.10)

=
(
r.h.s. of (5.6)

)
+
[
MW1(ξ1)MW2(ξ2)

∑
p∈R̂

OW3
a3,p +cyc(W1,W2,W3)

]

+
[
MW1(ξ1)

(∑
p∈R̂

OW2
a2,p

∑
q /∈W3

OW3
a3,q +

∑
j3∈W1,3

OW2
a2,j3

∑
q∈R̂

OW3
a3,q

)
+cyc(W1,W2,W3)

]

+
∑
p∈R̂

OW1
a1,p

( ∑
p∈R̂∪W1

OW2
a2,p

∑
q /∈W3

OW3
a3,q +

∑
j3∈W3

OW2
a2,j3

∑
q∈R̂∪W1

OW3
a3,q

)

+
[( ∑

j2∈W2

OW1
a1,j2

∑
p∈R̂

OW2
a2,p

∑
q /∈W3

OW3
a3,q +

∑
j2∈W2

OW1
a1,j2

∑
j3∈W3

OW2
a2,j3

∑
p∈R̂

OW3
a3,p

)
+(W2 ↔W3)

]
.
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Again, the cyclic relabeling mentioned in the second and third lines of course refers to the
process of also relabeling the corresponding ξi.

Specifically, in the triple cycle case with n = 7, additional terms based on (5.8) are
expressed as

(1 + s12)(1 + s34)(1 + s56)C(12)(ξ1) C(34)(ξ2) C(56)(ξ3) =
(
r.h.s. of (5.8)

)
(5.11)

− x6,7M12(ξ1)M34(ξ2)Ω56 − x4,7M12(ξ1)M56(ξ3)Ω34 − x2,7M34(ξ2)M56(ξ3)Ω12

+
[(

x4,7x6,347+x4,5x6,7 − x4,6x5,7+x4,12x6,7+x6,12x4,7
)
M12(ξ1)Ω34Ω56+cyc(12, 34, 56)

]
− (x2,7x4,127x6,12347 + x2,7x4,5x6,127 + x2,7x4,6x5,127

+ x2,3x4,7x6,12347 + x2,4x3,7x6,12347 + x2,5x6,7x4,12567 + x2,6x5,7x4,12567

+ x2,3x4,5x6,7 + x2,4x3,5x6,7 + x2,3x4,6x5,7 + x2,4x3,6x5,7

+ x2,5x6,3x4,7 + x2,5x6,4x3,7 + x2,6x5,3x4,7 + x2,6x5,4x3,7)Ω12Ω34Ω56

+ (total Koba-Nielsen derivatives) ,

where the total Koba-Nielsen derivatives in the last line can be reinstated by replacing
xi1,i2···it7 → xi1,i2···it70 = xi1,i2···it7 + ∇i1 . This is unambiguous for any number of factors
xi1,i2···it7 since any pair of ∇i,∇j commutes.

Reference ordering. Throughout the derivation in this subsection, we consistently satisfy
a specific ordering, W1 ≺ W2 ≺ W3, when deciding which original cycle to break in the
absence of f -Ω tadpoles. As a guideline, we prioritize breaking cycles earlier in the ordering.
For instance, we initiate the process by breaking W1 in (5.1). Following this principle, W2
is broken before W3, evident from (5.2). Finally, W3 is the last to be broken, only when it
remains as the last isolated cycle, as demonstrated in (5.4). This approach defines a reference
ordering, denoted as R = W1 ≺ W2 ≺ W3, for breaking the product of triple cycles. It is
crucial to note that different reference orderings can impact the parts of the final results devoid
of new f -Ω cycles. Nevertheless, they all yield equivalent outcomes on the support of F-IBP.

6 Labeled forest

The complexity of the results exponentially increases as more original cycles are broken in a
product. Disregarding the terms that involve new f -Ω cycles, the remaining elements can be
effectively structured within the labeled forest framework, which we will now demonstrate.

6.1 Labeled forest expansion

In this subsection, we introduce the function FW1,W2,··· ,Wt(R), utilizing a labeled-forest
expansion method. This approach systematically handles the increasing complexity resulting
from breaking original cycles in a product. The function is defined as,

FW1,W2,··· ,Wt(R) :=
∑

V ∈VW1,W2,··· ,Wt (R)
C(V ) , (6.1)

where R denotes a reference ordering of the cycles Wt+1, Wt+2, · · · , Wr. For instance, we can
choose R = Wt+1 ≺ Wt+2 ≺ · · · ≺ Wr. This reference ordering, crucially derived from the
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cycle-breaking order discussed in previous sections, influences the function C, details of which
will be provided in sections 6.1.1 and 6.1.2. It is important to note that while different reference
orderings yield algebraically varied results, they remain equivalent when subjected to F-IBP.

To facilitate the expansion in (6.1), our first task is to construct the associated labeled
forests, followed by defining the mapping function C for each labeled forest. The summation
encompasses VW1,W2,··· ,Wt(R), referring to labeled forests with roots W1, W2, · · · , Wt, and
nodes Wt+1, Wt+2, · · · , Wr , explained in detail in section 6.1.1. The function C, on the
other hand, transforms the forest V into a function of worldsheet and Mandelstam variables,
further detailed in section 6.1.2. The impact of the reference ordering R on the results will
also be elucidated in these sections.

This approach of labeled forest serves as a genus-one extension to the labeled trees,
initially introduced in [53] and extensively utilized in [36]. However, a key distinction
exists between these two combinatorial tools. The tree-level cycles are usually called Parke-
Taylor factors, PT(12 · · ·m) := 1/(z12z23 · · · zm1) and for a product of tree-level cycles,
PT(W1)PT(W2) · · ·PT(Wr) with W1 ⊔ · · · ⊔ Wr = {1, 2, · · · , n}, the SL(2,C) gauge fixing,
setting zn → ∞, inherently breaks one tree-level cycle, transforming it into a tree-level open
chain. Consequently, this open chain emerges as a root and all other punctures will connect
to it once all tree-level cycles are broken, necessitating only labeled trees for combinatorial
purposes. In contrast, at the one-loop level, every cycle CWi(ξi), when broken, yields a
term MWi(ξi), allowing each MWi(ξi) to potentially serve as a root. This necessitates
the use of labeled forests, essentially a product of genus-one labeled trees, to adequately
address the problem.

6.1.1 Forests

In this subsection, we delineate the process of constructing labeled forests VW1,W2,··· ,Wt(R)
pertinent to our study. To begin, we enumerate all forests that are rooted at W1, W2, · · · , Wt,
extending nodes to Wt+1, Wt+2, . . . , Wr.1 Consider, for example, VW1,W2(W3 ≺ W4), which
is represented by the following 8 spanning forests,

W2W1

W4 W3

W2W1

W3 W4

W2W1

W3 W4

W2W1

W3 W4 (
W1 ↔ W2

)
. (6.3)

Subsequently, with a reference ordering R established, we systematically disassemble each
forest into an assortment of paths, simultaneously executing a precise blowup of the cycles
in accordance with the stipulated procedures below:

1The total number of such spanning forests is given by the formula,

∑
0≤u1,u2,··· ,ut≤r−t
u1+u2+···+ut=r−t

t∏
i=1

(
r − t −

∑i−1
j=1 uj

ui

)
(ui + 1)ui−1 . (6.2)

This expression simplifies to rr−2 when t = 1. For t = 2, it yields the sequence 1, 2, 8, 50, 432, 4802, 65536,
· · · for r − 2 = 0, 1, 2, · · · , respectively.
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(1) Initiate by sketching a trajectory originating from the initial element of R, progressing
directly towards the roots. Subsequently, forge another trajectory, this time commencing
from the first untraversed element of R, and extend it towards the roots. Inevitably,
this path will culminate upon intersecting with a previously drawn path or at the
roots themselves. Persevere in this methodology, iteratively repeating the process until
every node has been systematically traversed, effectively decomposing each forest into a
comprehensive set of paths. Notably, ensure that all the paths are meticulously oriented
in the direction of the roots.

(2) Replace each root Wi with 1 ≤ i ≤ t by a chain representing MWi(ξi):

Wi

→

MWi

. (6.4)

(3) If a cycle Wi with t + 1 ≤ i ≤ r appears in the middle of a path, blow it up according to

Wi →
ai bi , (6.5)

where by our convention bi is the end closer to the root. We will sum over all pairs of
ai and bi in Wi.

(4) If a cycle Wi with t + 1 ≤ i ≤ r appears at the start of a path, still blow it up as (6.5).
However, only bi will be summed in Wi, while ai ∈ Wi is arbitrary but fixed. Across
our construction, we keep the same choice of ai if this situation happens.

(5) If a path ends on a trace Wi, then the endpoint can take any value in Wi.

Accordingly, the eight spanning forests in (6.3) generate the following labeled forests:

VW1,W2(W3 ≺ W4) : (6.6)

j1

a4b4 b3 a3

MW1 MW2

b3 ∈ W3
a4, b4 ∈ W3

j1 ∈ W1

j1

b3

a3

j3
b4 a4

MW1 MW2

b3 ∈ W3, j1 ∈ W1
b4 ∈ W4, j3 ∈ W3

j1

b3

a3

l1

b4 a4

MW1 MW2

b3 ∈ W3, j1 ∈ W1
b4 ∈ W4, l1 ∈ W1

j1

b3

a3

j2

b4

a4

MW1 MW2

b3 ∈ W3, j1 ∈ W1
b4 ∈ W4, j2 ∈ W2

(
W1 ↔ W2

)
,

in which we have used the reference order R = W3 ≺ W4. All the paths are directed towards
the roots, and different ones are illustrated by different colors.
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∑
V C(V )/(MW1MW2)

j1

a4b4 b3 a3

MW1 MW2

∑
b3∈W3

∑
a4,b4∈W4

∑
j1∈W1

(−1)|B3|+|B4|xb3,a4Ωa3,A3�BT
3 ,b3

×xb4,j1Ωa4,A4�BT
4 ,b4

j1

b3

a3
j3

b4 a4

MW1 MW2

∑
b3∈W3

∑
j1∈W1

∑
b4∈W4

∑
j3∈W3

(−1)|B3|+|B4|xb3,j1Ωa3,A3�BT
3 ,b3

×xb4,j3Ωa4,A4�BT
4 ,b4

j1

b3

a3

l1

b4 a4

MW1 MW2

∑
b3∈W3

∑
b4∈W4

∑
j1,l1∈W1

(−1)|B3|+|B4|xb3,j1Ωa3,A3�BT
3 ,b3

×xb4,l1Ωa4,A4�BT
4 ,b4

j1

b3

a3

j2

b4

a4

MW1 MW2

∑
b3∈W3

∑
j1∈W1

∑
b4∈W4

∑
j2∈W2

(−1)|B3|+|B4|xb3,j1Ωa3,A3�BT
3 ,b3

×xb4,j2Ωa4,A4�BT
4 ,b4

(
W1 ↔ W2

)
Table 1. Evaluation of labeled forest VW1,W2(W3 ≺ W4).

6.1.2 Map

For each V ∈ VW1,W2,··· ,Wt(R), the map C is defined as

ai bi j
→ (−1)|Bi|+1xbi,jΩai,Ai�BT

i ,bi
,

MWi

→ MWi(ξi) , (6.7)

and the map C(V ) is given by the product of all these factors.

According to (6.7), the labeled forests in (6.6) are evaluated at table 1 under the reference
order R = W3 ≺ W4. VW1,W2(W3 ≺ W4) is calculated by summing the eight rows directly.
Notably, the a3 ∈ W3 in both the second and third rows remains consistent and is not
subject to summation. Opting for a different a3 yields an equivalent VW1,W2(W3 ≺ W4) when
F-IBP is applied, highlighting a redundancy in the generating functions of string integrands.
Additionally, selecting R = W4 ≺ W3 would lead to alterations in the first two categories
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of labeled forests presented in table 1,

j1

b4

a4
j4

b3 a3

MW1 MW2

−→

∑
b4∈W4

∑
j1∈W1

∑
b3∈W3

∑
j4∈W4

(−1)|B3|+|B4|xb4,j1Ωa4,A4�BT
4 ,b4

×xb3,j4Ωa3,A3�BT
3 ,b3

,

j1

a3b3 b4 a4

MW1 MW2

−→

∑
b4∈W4

∑
a3,b3∈W3

∑
j1∈W1

(−1)|B3|+|B4|xb4,a3Ωa4,A4�BT
4 ,b4

×xb3,j1Ωa3,A3�BT
3 ,b3

,

while the third and fourth categories of labeled forests presented in table 1 remain the same.
The outcome of VW1,W2(W3 ≺ W4) is equivalent to that of VW1,W2(W4 ≺ W3) under F-IBP,
a property that persists across general cases,

FW1,W2,··· ,Wt(R) IBP= FW1,W2,··· ,Wt(R′) , (6.9)

with R and R′ two different reference ordering of Wt+1, Wt+2, · · · , Wr. Consequently, we define

FW1,W2,··· ,Wt(Wt+1, Wt+2, · · · , Wr) := FW1,W2,··· ,Wt(R) , (6.10)

where R represents any reference ordering of Wt+1, Wt+2, · · · , Wr.

6.1.3 Examples

Here, we provide additional examples of (6.1) (or, more precisely, (6.10)),

FW1,W2,··· ,Wr () :=
m∏

i=1
MWi(ξi) , (6.11)

FW1,W2,··· ,Wr−1(Wr) :=
∑

p∈W1,2,··· ,r−1

OWr
ar,p

r−1∏
i=1

MWi(ξi) ,

FW1,W2,··· ,Wr−2(Wr−1, Wr) :=

 ∑
p∈W1,2,··· ,r−2
q∈W1,2,··· ,r−1

OWr−1
ar−1,pOWr

ar,q +
∑

p∈Wr
q∈W1,2,··· ,r−2

OWr−1
ar−1,pOWr

p,q


r−2∏
i=1

MWi(ξi) .

Concerning FW1(W2, W3, · · · , Wr), the labeled forest actually simplifies to a labeled tree
(specifically, a genus-one variant of those in [36, 53]). However, F∅(W1, W2, · · · , Wr), which
lacks any root, remains undefined. Furthermore, it is worth noting that the labeled forest
expansion (6.1) essentially consists of a combination of products of (genus-one version of)
labeled trees. For instance,

FWa,Wb
(Wc, Wd) = FWa(Wc, Wd)FWb

() + FWa(Wc)FWb
(Wd)

+ FWa(Wd)FWb
(Wc) + FWa()FWb

(Wc, Wd) . (6.12)
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More generally, this can be expressed as,

FWA,WB
(WH) =

∑
C⊔D=H

FWA
(WC)FWB

(WD) . (6.13)

Here, WA denotes a set of cycles {Wa|a ∈ A} (e.g., W1,2 = {W1, W2}), while WA (previously
defined in (5.6)) refers to a single set of punctures (e.g., W1,2 = W1 ∪W2). By recursively ap-
plying the above identities, any labeled forest can be reduced to a combination of labeled trees.

6.2 Deformed labeled trees for total derivative terms and additional punctures

When addressing total derivative terms or considering cases with R ̸= ∅, there will be labeled
trees planted on the punctures belonging to the set R̂. To manage this, we can hypothetically
treat the punctures in R̂ as if they comprise an auxiliary double periodic Kronecker-Eisenstein
cycle, denoted as CWr+1(ξ̂) = CR̂(ξ̂). Utilizing the definition of FWr+1 , we introduce a new
function, GR̂, while ensuring that the term MWr+1(ξ̂) associated with the assumed cycle
is removed in the final step,

GR̂(W1, W2, · · · , Wr) := FWr+1=R̂(W1, W2, · · · , Wr)/MWr+1(ξ̂) . (6.14)

For instance,

GR̂(W1) :=
∑
p∈R̂

OW1
a1,p ,

GR̂(W1, W2) :=
∑
p∈R̂

q∈W1∪R̂

OW1
a1,pOW2

a2,p +
∑

p∈W2
q∈R̂

OW1
a1,pOW2

p,q . (6.15)

6.3 Rewriting formulae for two and three cycles

Using the labeled forest expansion, we can rewrite previous results for two cycles (4.3) and
three cycles (5.10) as

(1 + sW1)(1 + sW2)CW1(ξ1)CW2(ξ2) = FW1,W2() + FW1(W2) + FW2(W1) +
〈
W1, W2

〉
(6.16)

+ FW1()GR̂(W2) + FW2()GR̂(W1) + GR̂(W1, W2) ,

and

(1 + sW1)(1 + sW2)(1 + sW3)CW1(ξ1)CW2(ξ2)CW3(ξ3) (6.17)
= FW1,W2,W3() + FW1,W2(W3) + FW1,W3(W2) + FW2,W3(W1)

+ FW1(W2, W3) + FW2(W1, W3) + FW3(W1, W2) + 2
〈
W1, W2, W3

〉
+ (1 + sW1)MW1

〈
W2, W3

〉
+ (1 + sW2)MW2

〈
W3, W1

〉
+ (1 + sW3)MW3

〈
W1, W2

〉
+
[(
FW1,W2()GR̂(W3) + FW1()GR̂(W2, W3) + FW1(W2)GR̂(W3) + FW1(W3)GR̂(W2)

)
+ cyc(W1, W2, W3)

]
+ GR̂(W1, W2, W3) .

The clear and discernible pattern observed in these instances motivates us to propose
a conjecture for the most general scenario in the following section.
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7 An arbitrary number of cycles

In this section, we put forth a comprehensive formula to address the product of any number of
double periodic Kronecker-Eisenstein cycles (1.3), drawing on the fusion operations introduced
in section 3 and the labeled forests conceptualized in section 6, along with its meromorphic
counterpart (2.14) in parallel.

7.1 An arbitrary number of doubly periodic cycles

The labeled forest adeptly characterizes terms devoid of any cycles after dismantling all
original cycles. Next, we elucidate the structural pattern of remaining terms containing
various cycles, including original cycles Wi from the inverse operation of (3.4) like (5.7) and
new f -Ω cycles emerging from fusions (3.11). Intriguingly, their behavior mirrors that of
standard cycle expansions in determinants, which we shall now explore.

Consider an r × r matrix H with elements hi,j . Each permutation ρ of {1, 2, . . . , r}
corresponds to a product of label-cycles,

ρ → (I)(J) · · · (K) . (7.1)

For example, the permutation 1324 corresponds to (1)(23)(4). Thus, the determinant of
H can be expressed as:

det H =
∑

ρ∈Sr

H(I)H(J) . . . H(K) , (7.2)

where H(1) = h11, H(12...r) = h12h23 . . . hr1, etc. For instance,

det
(

h11 h12
h21 h22

)
= H(1)H(2) − H(12) = h11h22 − h12h21 . (7.3)

By extending the definition such that hii = −
∑r

j=1
j ̸=i

hi,j − hi,r+1, we obtain an alternate

expansion of det H devoid of H-cycles, in alignment with the matrix tree theorem [54].
For instance,

det
(

h11 h12
h21 h22

)
= h13h23 + h12h23 + h21h13 . (7.4)

These insights into cycle expansions and their connection to results free of H-cycles set
the stage for discussing the product of Ω-cycles.

Now, we are ready to present our general ansatz, incorporating the labeled forest (6.1)
and its variant (6.14), the cycle expansion of a matrix (7.2), and the fusion operation (3.11).

Ansatz. We introduce a general ansatz to dissect the product of double periodic Kronecker-
Eisenstein cycles (1.3) as follows

r∏
i=1

(1 + sWi)CWi = −
∑

ρ∈Sm
ρ ̸=12···r

Ψ(I)Ψ(J) · · ·Ψ(K) +
∑

W⊂{W1,···Wr}
W ̸=∅

FW (W ) (7.5)

+
∑

WA⊔WB⊔WC
={W1,···Wr}
WA,WC ̸=∅

FWA
(WB)GR̂(WC) + GR̂(W1, · · ·Wr) .
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where W denotes a non-empty subset of {W1, W2, . . . , Wr}, and W its complement. The
final two terms translate to a complete Koba-Nielsen derivative when R, as defined in (1.3), is
empty. The initial summation spans all permutations of {1, 2, . . . , r}, excluding the identity
permutation, with each permutation decomposed into label-cycles as in (7.1). We define
the length-1 Ψ-cycle Ψ(i) as

Ψ(i) := (1 + sWi)CWi(ξi) , (7.6)

and longer Ψ-cycles via fusion

Ψ(i1,i2,··· ,i|I|) := −
〈
Wi1 , Wi2 , · · · , Wi|I|

〉
. (7.7)

The condition ρ ̸= 12 . . . m in (7.5) ensures that the product Ψ(I)Ψ(J) . . . Ψ(K) contains
at most m− 1 factors, implying a decrement in the total number of cycles, both original CWi

and new f -Ω cycles, on the right-hand side of (7.5). This renders (7.5) an effective recursion
formula, enabling the reduction of a cycle product to a basis within a finite number of steps.

The exclusion of ρ ̸= 12 . . . r is intuitive, as the identity permutation represents the
left-hand side of (7.5), as indicated by (7.6). Note that the last three terms on the right-hand
side are devoid of any cycles, drawing a parallel to the matrix tree theorem.

Two examples of (7.5) are given by (6.16). Here we give another example of 4 cycles,

(1 + sW1)(1 + sW2)(1 + sW3)(1 + sW4)CW1(ξ1)CW2(ξ2)CW3(ξ3)CW4(ξ4) (7.8)

= FW1,W2,W3,W4() +
[
FW1,W2(W3, W4) +

(
12
∣∣∣13, 14, 23, 24, 34

)]
+
[
FW1,W2,W3(W4) + FW1(W2, W3, W4) + cyc(W1, W2, W3, W4)

]
+
[
(1 + sW3)(1 + sW4)CW3(ξ3)CW4(ξ4)

〈
W1, W2

〉
+
(
12
∣∣∣13, 14, 23, 24, 34

)]
+
[
2(1 + sW4)CM4(ξ4)

〈
W1, W2, W3

〉
+ cyc(W1, W2, W3, W4)

]
+
[〈

W1, W2, W3, W4
〉

+ perm(W2, W3, W4)
]
−
[〈

W1, W2
〉〈

W3, W4
〉

+ cyc(W2, W3, W4)
]

.

+
∑

WA⊔WB⊔WC
={W1,W2,W3,W4}

WA,WC ̸=∅

FWA
(WB)GR̂(WC) + GR̂(W1, W2, W3, W4) .

Here the relabeling of cycles Wi of course refers to the process of also relabeling the corre-
sponding ξi. We have verified it for C(12)(ξ1) C(34)(ξ2) C(56)(ξ3) C(789)(ξ4) with n = 10.

7.2 An arbitrary number of meromorphic cycles

Our methodology to decompose a product of cycles in a doubly periodic scenario is read-
ily applicable to meromorphic cases within the chiral splitting framework, as outlined in
section 2.2.4, through a straightforward application of substitution (2.26).

Concretely, the expression for formula (2.27) can be recast as

(1 + sW )C̃W (ξ) = M̃W (ξ) +
∑
i/∈W

0≤i≤n

ÕW
a,i , (7.9)

with ÕW
a,i := −

∑
p∈W
p ̸=a

∑
ρ∈A�BT

(a,A,p,B)=W

(−1)|B|x̃p,iFa,ρ,p , a ∈ W, i /∈ W , 0 ≤ i ≤ n ,
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where x̃p,0 is introduced for notation compactness to include the total Koba-Nielsen derivative
terms and the loop momentum terms,

x̃p,0Fa,ρ,p := (−ℓ·kp + ∇̃p)Fa,ρ,p . (7.10)

Example cases include,

Õ
(12)
1,0 = F12(η2) ℓ·k2 − ∇̃2F12(η2) , Õ

(12)
1,i = −F12(η2)x̃2,i for i ≥ 3, (7.11)

Õ
(12)
2,0 = −F12(η2) ℓ·k1 + ∇̃1F12(η2) , Õ

(12)
2,i = F12(η2)x̃1,i for i ≥ 3. (7.12)

We proceed to the application of formula (7.9) for a product of meromorphic cycles (2.14).
First, we derive the result analogous to (4.3) for two cycles

(1 + sW1)(1 + sW2)C̃W1(ξ1)C̃W2(ξ2) (7.13)

= M̃W1(ξ1)M̃W2(ξ2) + M̃W1(ξ1)
∑

j1∈W1

ÕW2
a2,j1

+ M̃W2(ξ2)
∑

j2∈W2

ÕW1
a1,j2

+ ⟨W1, W2⟩F

+ M̃W1(ξ1)
∑

j1∈R̂

OW2
a2,j1

+ M̃W2(ξ2)
∑

j2∈R̂

OW1
a1,j2

+
∑
p∈R̂

OW1
a1,p

∑
q /∈W2

OW2
a2,q

+
∑

j2∈W2

OW1
a1,j2

∑
q∈R̂

OW2
j2,q ,

with a1 ∈ W1, a2 ∈ W2. The fusion for meromorphic cycles is defined as,

⟨W1, W2 ⟩F := 1
2

∑
a1,b1∈W1,(a1,A1,b1,B1)=W1
a2,b2∈W2,(a2,A2,b2,B2)=W2

(−1)|B1|+|B2|Fa1,A1�BT
1 ,b1

xb1,a2Fa2,A2�BT
2 ,b2

xb2,a1 .

(7.14)
With a slight abuse of notation, we have used the abbreviation

Fa,A�BT ,b :=
∑

σ∈A�BT

Fa,σ,b . (7.15)

The generalization of (7.14) for more meromorphic cycles is straightforward.
To extend this to the product of more meromorphic cycles, we introduce the labeled

forest for F functions analogous to (6.1),

F̃W1,W2,··· ,Wt(R) :=
∑

V ∈VW1,W2,··· ,Wt (R)
D(V ) . (7.16)

The function VW1,W2,··· ,Wt(R) is the same as the one defined in section 6.1.1 and the map D
differs a little from C defined via (6.7). For each V ∈ VW1,W2,··· ,Wt(R), the map D is defined
as For each V ∈ VW1,W2,··· ,Wt(R), the map C is defined as

ai bi j
→ (−1)|Bi|+1x̃bi,jFai,Ai�BT

i ,bi
,

M̃Wi

→ M̃Wi(ξi) , (7.17)

and the map D(V ) is given by the product of all these factors.
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Different choices of reference orderings lead to the same G on the support of F-IBP.
Hence we define

F̃W1,W2,··· ,Wt(Wt+1, Wt+2, · · · , Wr) := F̃W1,W2,··· ,Wt(R) (7.18)

analogous to (6.10), where R could be any reference ordering of Wt+1, Wt+2, · · · , Wr.
F̃W1,W2,··· ,Wt(Wt+1, Wt+2, · · · , Wr) is free of R̂ and hence free of loop momentum. All

loop momentum dependence can be elegantly encapsulated in

G̃R̂(W1, W2, · · · , Wr) := F̃Wr+1=R̂(W1, W2, · · · , Wr)/M̃Wr+1(ξ̂) , (7.19)

analogous to (6.14).

Ansatz. We propose a comprehensive ansatz to decompose a product of meromorphic
Kronecker-Eisenstein cycles (2.14), expressed as

r∏
i=1

(1 + sWi)C̃Wi = −
∑

ρ∈Sr
ρ ̸=12···r

Ψ̃(I)Ψ̃(J) · · · Ψ̃(K) +
∑

W⊂{W1,···Wr}
W ̸=∅

F̃W (W ) (7.20)

+
∑

WA⊔WB⊔WC
={W1,···Wr}
WA,WC ̸=∅

F̃WA
(WB)G̃R̂(WC) + G̃R̂(W1, · · ·Wr) ,

where the length-1 Ψ̃-cycle Ψ̃(i) is defined as

Ψ̃(i) := (1 + sWi)C̃Wi(ξi) , (7.21)

and longer one is defined through a fusion

Ψ̃(i1,i2,··· ,i|I|) := −
〈
Wi1 , Wi2 , · · · , Wi|I|

〉F
. (7.22)

These definitions facilitate a structured and efficient decomposition of the product of mero-
morphic cycles.

8 Mathematica code and more examples

We have successfully implemented formulae designed for breaking single Kronecker-Eisenstein
cycles, addressing the intricacies of both doubly-periodic Ω-cycles (2.21) and meromorphic
F -cycles (2.27). Moreover, our implementation extends to efficiently handle products of
two, three, or four cycles. To further illustrate the practical utility of these formulae, we
have assembled a collection of numerous examples and demonstrated their applications to
string integrands by generating identities for Kronecker-Eisenstein series coefficients. This
comprehensive set of computational resources is conveniently packaged in an accompanying
Mathematica notebook titled breakingcycles.nb in the supplementary material. While
some examples derived from our formulae (7.5) and (7.20) are too intricate to be included
directly in the paper due to their complexity, they are readily available for exploration in the
notebook. The organizational structure of the notebook is detailed in figure 8, where the
outcomes for Ω-cycles and F -cycles are thoughtfully presented in two parallel sections.
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Figure 8. The organizational structure of the notebook. Following the execution of initialization
cells, users can navigate to specific sections or subsections tailored to their specific objectives.

The codes in the notebook were made as transparent and intuitive as possible. In
doing so, we have named variables to closely mirror their representations in the paper. For
instance, entering f[1][2,3] will yield the output f

(1)
2,3 (or Subsuperscript[f,"2,3", "(1)"] in full

form in Mathematica). Notably, the system recognizes f
(1)
2,3 and f[1][2,3] as synonymous, a

fact verifiable using the command FullForm in Mathematica as shown below,

In[1]:= f[1][2,3]

Out[1]= f
(1)
2,3

In[2]:= f
(1)
2,3 //FullForm

Out[2]= f[1][2,3]

In our approach, we interpret the equations in the paper as distinct replacement rules.
Consequently, certain functions have been defined with the suffix “-repl”. As an example, to
dissect a Kronecker-Eisenstein series Ω-cycle, denoted as C(1,2)(ξ1), the command Cboldrepl
is employed according to (2.21),2,3

In[3]:= Cbold1,2[ξ1]

Out[3]= C1,2[ξ1]
In[4]:= Cboldrepl1,2[ξ1]

Out[4]=
M1,2[ξ1]
s1,2 + 1 −

∑holdComplement[punctureset,{1,2}]
i Ω1,2x2,i + ∇2[Ω1,2]

s1,2 + 1
2In Mathematica, one can either type Cboldrepl1,2[ξ1] using shortcuts for subscripts or directly type its

full form, Subscript[Cbold, 1, 2][Subscript[ξ, 1]].
3The command Cboldreplai,j,··· ,k[ξ] is designed to automatically set a = i when applying (2.21). For

situations requiring different choices of a, one should opt for using Cboldrepla directly, with an example being
Cboldrepla3,4[ξ2][4] to specify an alternative value for a.
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where “punctureset” represents the set of all punctures. Once assigned a value, for example,
punctureset = {1, 2, 3, 4, 5}, one can replace holdComplement with Complement to obtain
an explicit result,

In[5]:= punctureset = Range[5];

In[6]:= Cboldrepl1,2[ξ1]/.holdComplement->Complement

Out[6]=
M1,2[ξ1]
s1,2 + 1 − Ω1,2x2,3 + Ω1,2x2,4 + Ω1,2x2,5 + ∇2[Ω1,2]

s1,2 + 1

Similarly, one can utilize Mblodrepl to get the explicit expression of M1,2[ξ1] according
to (A.6),

In[7]:= Mbold1,2[ξ1]

Out[7]= M1,2[ξ1]
In[8]:= Mboldrepl1,2[ξ1]

Out[8]= Ω1,2
(
(s1,2 + 1)v1[η2, ξ] − ĝ(1)[η2]

)
+ s1,2∂η2 [Ω1,2]

As elucidated in the companion paper [33], obtaining identities for Kronecker-Eisenstein
coefficients g(w), f (w) defined by (2.6) from the identities of their generating functions involves
extracting the coefficients of bookkeeping variables ηi and ξj in a specific order, as illustrated
in (A.15). To facilitate this process, we have introduced the command OrderedCoefficient.
For instance, to extract M1,2(ξ1)

∣∣∣∣
η0

2 ,ξ0
1

:=
(
M1,2(ξ1)

∣∣
η0

2

)∣∣
ξ0

1
, the command is executed as

follows,4

In[9]:= OrderedCoefficient[Mbold1,2, {η2, ξ1}]

Out[9]= 2s1,2f
(2)
1,2 + Ĝ2

where Ĝ2 is defined in (A.10). On the other hand, C(1,2)[ξ1]
∣∣∣∣

η0
2 ,ξ0

1
= V2(1, 2) = 2f

(2)
1,2 +f

(1)
1,2 f

(1)
2,1 .

Hence the code successfully reproduces the elementary observation V2(1, 2) ∼= 2s1,2f
(2)
1,2 + Ĝ2

within the F-IBP support for the case n = 2.
The primary focus of this paper is to break a product of cycles. For this purpose,

we have developed the command BreakingOmegaCycles to break a product of up to four
Kronecker-Eisenstein series Ω-cycles. For instance, to break C(1,2)(ξ1)C(3,4)(ξ2) with n = 5,
the code is executed as follows,

In[10]:= BreakingOmegaCycles[{1, 2}, {3, 4}, Range[5]]

Out[10]=
x1,3x2,4Ω1,2Ω3,4−x1,4x2,3Ω1,2Ω3,4

(s1,2 + 1)(s3,4 + 1) − x1,4x2,5Ω1,2Ω3,4
(s1,2 + 1)(s3,4 + 1) + · · · − ∇4[Ω3,4M1,2[ξ1]]

(s1,2 + 1)(s3,4 + 1)

4The command in fact consists of three parameters: OrderedCoefficient[generatingFunction_,list_,
truncate_:6]. Here, the third parameter, truncate, has a default value of 6. This parameter is instrumental
in controlling the expansion in equation (2.6). Typically, the default setting of truncate=6 suffices for
examining cases where n ≤ 6. However, it is possible to specify a larger value for truncate to accommodate
more complex analyses or studies requiring a broader expansion.
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Here, the last entry, Range[5], in In[10] is used to denote the set of all punctures. It is
noteworthy that the function BreakingOmegaCycles automatically assigns the two cycles
with bookkeeping variables ξ1 and ξ2, eliminating the need to specify them in In[10].

Utilizing the command OrderedCoefficient, we can derive the formula to break
V2(1, 2)V2(3, 4),

In[11]:= OrderedCoefficient[Out[10], {η2, η4, ξ1, ξ2}]

Out[11]=
Ĝ2

2 − Ĝ2s2,3f
(1)
1,2 f

(1)
2,3 + · · · − ∇4

[
f

(1)
3,4 (2s1,2f

(2)
1,2 + Ĝ2)

]
(s1,2 + 1) (s3,4 + 1)

Simply running the command

BreakingOmegaCycles[{1,2,3},{4,5,6},Range[6]],

BreakingOmegaCycles[{1,2},{3,4},{5,6}, Range[6]], · · ·

allows one to recover all the double and triple cycle examples presented in the companion
paper [33]. The command also works seamlessly for four cycles, requiring only a few seconds
even for an example with n = 10,

BreakingOmegaCycles[{1,2},{3,4},{5,6},{7,8,9},Range[10]] .

We have verified that the output of this command aligns perfectly with the formula (7.8).
This showcases the efficiency and accuracy of the command in handling various scenarios,
even for relatively large values of n.

For a product of meromorphic Kronecker-Eisenstein F -cycles, the appropriate command
to use is then BreakingFCycles instead. For example,

In[12]:= BreakingFCycles[{1, 2}, {3, 4},{5, 6}, Range[7]]

Out[12]= − F1,2x̃2,5M̃3,4[ξ2]M̃5,6[ξ3]
(s1,2 + 1)(s3,4 + 1)(s5,6 + 1) + F1,2F3,4F5,6ℓ·k2ℓ·k4ℓ·k6

(s1,2 + 1)(s3,4 + 1)(s5,6 + 1)

+ · · · − ℓ·k2∇̃4[F1,2F3,4F5,6x̃1,6]
(s1,2 + 1)(s3,4 + 1)(s5,6 + 1)

Similarly, to obtain identities for g
(w)
i,j , the command OrderedCoefficient2 is employed.

By leveraging these commands, one can effortlessly generate numerous examples that
demonstrate the utility of our formulae (7.5) and (7.20), along with their applications to
Kronecker-Eisenstein series coefficients. Further explanations and examples are available
in the accompanying notebook.

9 Tadpoles, multibranch and connected multiloop graphs

In the preceding sections, we tackled the scenario involving a product of isolated cycles,
culminating in a closed-form expression. However, it is conceivable that more intricate
configurations, beyond isolated cycles, may emerge in the generating functions of string
integrands.
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z1

z2
z3

(a) isolated cycle

z1

z2
z3

z4 z5

(b) tadpole

z3

z5

z1

z4

z2

(c) multibranch graph

z1
z3

z2

z6

z7

z5

z4

z8

z10

z9 z11

z12

z13

(d) A product of multibranch and tree
graphs

z2z1

(e) connected multiloop graph

Figure 9. Sketches of monomials of Ω(zij , βk, τ) or its non-trivial coefficient fw>0
ij . Each Ω(zij , βk, τ)

or its non-trivial coefficient f
(w>0)
ij is depicted by a thick line connecting node zi and zj . Although the βk

variables play a role in Ω(zij , βk, τ), we choose to simplify the sketches by temporarily excluding them.

To unravel the complexities of a monomial in Ω(zij , βk, τ) or its non-trivial coefficient
fw>0

ij , a graphical representation proves invaluable. In this representation, each instance of
Ω(zij , βk, τ) or fw>0

ij is depicted as a substantial edge linking nodes zi and zj . For the cases
involving Ω(zij , βk, τ), we can further embellish the edges with the bookkeeping variables βk.
Although we opt to temporarily set aside this additional notation for the sake of clarity, the
sketch still manages to capture the essence of the properties of monomials.

As illustrated in figure 9, attaching a single line to an isolated cycle results in a tadpole
while attaching additional lines or trees produces a multibranch graph. Notably, isolated cycles
and tadpoles can be considered as specific cases of multibranch graphs. Consequently, a uni-
versal generating function for massless string integrands would comprise a linear combination
of products of multibranch and tree graphs.

Developing a comprehensive formula to accommodate these varied cases is a formidable
challenge. Rather, our focus shifts to elucidating the fundamental strategy for translating any
product of multibranch structures into a basis form. This approach draws inspiration from
tree-level treatments, such as in [35], and encompasses two pivotal steps: first, we demonstrate
the procedure for translating any tadpole into a basis form; subsequently, we extend this
methodology to handle multibranch structures by reducing them as tadpoles. Further, in
section 9.4, we initiate the discussion on the handling of connected multiloop graphs.

9.1 Reducing tadpoles to chains by bruteforce

When dealing with the product of cycles in previous sections, we encountered tadpoles in
the intermediate state. In those specific cases, it was possible to transform all intermediate
tadpoles into isolated f -Ω cycles using the fusion operation (3.11). However, this elegant
method may not be universally applicable. In this subsection, we provide a brute-force
approach to decompose any tadpoles into chains.

– 34 –



J
H
E
P
0
5
(
2
0
2
4
)
2
5
5

Consider the tadpole C(123)(ξ)Ω34(β1)Ω45(β2) depicted in figure 9 (b). Applying the
single-cycle formula (3.4) with za = z3 as the special point to break C(123)(ξ), we obtain,

(1+s123)C(123)(ξ)Ω34(β1)Ω45(β2) =
(

M123(ξ) − Ω312

n∑
i=4

x2,i + Ω321

n∑
i=4

x1,i (9.1)

−∇2Ω312 + ∇1Ω321

)
Ω34(β1)Ω45(β2) ,

where the total Koba-Nielsen derivative terms w.r.t. z1 and z2 can be omitted. The com-
binatoric behaviour of (9.1) can be shown by

R̂={6,· · ·, n,0}

z1

z2
z3 z4 z5

→

(9.2)

R̂

,
z3

z1
z2

z4 z5

R̂

,z5

z4z3

z1 z2

,

R̂

z2 z1 z3 z4 z5

,

R̂

z3
z2

z1

z4 z5
,

R̂

z5

z4z3

z2 z1

,

R̂

z1 z2 z3 z4 z5

where a thick line connecting node zi and zj could be Ω(zij , βk, τ) or f
(1)
ij . The dashed cycles

represent the remaining particle set R̂ following the conventions in figure 4. However, in
this context, they merely specify the summation range and total Koba-Nielsen derivative
terms on the right-hand side of (9.1).

The right-hand side of (9.1) introduces new f -Ω tadpoles, exemplified by
(
Ω312f

(1)
24

Ω34(β1)
)

Ω45(β2), and isolated f -Ω cycles, such as Ω312f
(1)
25 Ω34(β1)Ω45(β2). Significantly, the

tails of the new f -Ω tadpoles are consistently shortened, as illustrated by the transition from
Ω34(β1)Ω45(β2) to Ω45(β2) or 1. This phenomenon is explicitly depicted in (9.2). Through
the iterative application of the F-IBP relation (3.4), we can systematically transform f -Ω
tadpole graphs into a summation of labeled trees.

For example, for the newly induced f -Ω tadpole

(1 + s1234)
(
Ω312x2,4Ω34(β1)

)
Ω45(β2) (9.3)

= (1 + s1234)s24
(
Ω12(η2)Ω24(ζ)Ω43(−β1)Ω31(−η3)

)
Ω45(β2)

∣∣
ζ0

= (1 + s1234)s24
(
C(1243)(ξ)

∣∣∣ η2→η2−ζ
η3→ζ−ξ−η4
η4→−β1−ζ

ξ→−η3

)
Ω45(β2)

∣∣
ζ0 ,
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we have

(1 + s1234)
(
Ω312x2,4Ω34(β1)

)
Ω45(β2) =

[(
M1243(ξ) − Ω1243

n∑
i=5

x3,i (9.4)

− Ω1342

n∑
i=5

x2,i +
(
Ω1234 + Ω1324

) n∑
i=5

x4,i

)∣∣∣ η2→η2−ζ
η3→ζ−ξ−η4
η4→−β1−ζ

ξ→−η3

(1 + s1234)s24Ω45(β2)
]∣∣∣∣

ζ0
.

New length-5 isolated f -Ω cycles such as Ω1243x3,5Ω45(β2) are induced on the right-hand
side of (9.4), but we already have the tools to decompose them.

Regardless of the complexity of the tadpole, one simply needs to repeat the above
operation a finite number of times until the tadpole is reduced to the basis.

9.2 Reducing multibranch graphs as tadpoles

In the previous subsection, we demonstrated the utility of the single-cycle formula (3.4),
specifically its feature of lacking one Koba-Nielsen derivative for a puncture, in break-
ing a tadpole. This approach initially seems inapplicable to multibranch graphs, such as
C(123)(ξ)Ω14(β1)Ω35(β2), depicted in figure 9 (c).

Nonetheless, we can circumvent this issue with a straightforward strategy. Observe that
removing a graph segment containing a portion of the cycle transforms the remainder into a
labeled tree. This tree can then be expressed as a sum of labeled lines sharing a common
starting point using Fay identities (2.5) (or (2.10) in practical applications). Take, for instance,
the chain Ω14(β1)Ω12(η23 + ξ)Ω23(η3 + ξ)Ω35(β2) in figure 9 (d), which we can interpret as a
labeled tree rooted at point 1. Applying Fay identities and denoting β12 = β1 + β2, we obtain,(

Ω14(β1)Ω12(η23 + ξ)Ω23(η3 + ξ)Ω35(β2)
)
Ω31(ξ) (9.5)

=
(
Ω14235 + Ω12435 + Ω12345 + Ω12354

)∣∣∣ η2→η2
η3→η3+ξ−β2

η4→β1
η5→β2

Ω31(ξ)

=
(
Ω14(η23 + ξ + β1)Ω42(η23 + ξ)Ω23(η3 + ξ)Ω35(β2)

+ Ω12(η23 + ξ + β1)Ω24(η3 + ξ + β1)Ω43(η3 + ξ)Ω35(β2)
+ Ω12(η23 + ξ + β1)Ω23(η3 + ξ + β1)Ω34(β12)Ω45(β2)

+ Ω12(η23 + ξ + β1)Ω23(η3 + ξ + β1)Ω35(β12)Ω54(β1)
)
Ω31(ξ) ,

whose combinatoric behavior can be shown by

z1
z3

z2

z4

z5

z1
z3

→
z1 z4 z2 z3 z5 z1 z2 z4 z3 z5 z1 z2 z3 z4 z5 z1 z2 z3 z5 z4

,, , . (9.6)

In this manner, we have outlined a systematic process for transforming any multibranch
graph into a combination of tadpoles, which can subsequently be reduced to labeled trees
using F-IBP.
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9.3 General treatment for a product of multibranch and tree graphs

The most complex graphs, lacking interconnected cycles, resemble the structure depicted
in figure 9 (d). These are composed of isolated tadpole and multibranch graphs, possibly
interspersed with various labeled trees. Utilizing the methodologies previously discussed, we
can systematically convert tadpole and multibranch graphs into labeled trees attached to
other connected components, consequently reducing the overall cycle count by one. This
recursive approach ultimately eliminates all cycles, yielding results solely composed of labeled
trees or their products, which can be directly simplified using Fay identities.

To better elucidate this concept, consider the example below,

C(12)(ξ1)Ω13(β1)Ω24(β2) C(56)(ξ2)Ω57(β3) Ω68(β4) . (9.7)

Initially, we transform the multibranch C(12)(ξ1)Ω13(β1)Ω24(β2) into tadpoles,

C(12)(ξ1)Ω13(β1)Ω24(β2) =
(
Ω13(η2 + ξ1 + β1)Ω32(η2 + ξ1)Ω24(β2) (9.8)

+ Ω12(η2 + ξ1 + β1)Ω23(β12)Ω34(β2) + Ω12(η2 + ξ1 + β1)Ω24(β12)Ω43(β1)
)
Ω21(ξ1) .

Focusing on the first tadpole on the right-hand side of (9.8), we apply F-IBP(
Ω13(η2 + ξ1 + β1)Ω32(η2 + ξ1)Ω21(ξ1)

)
Ω24(β2) C(56)(ξ2)Ω57(β3)Ω68(β4) (9.9)

IBP=
(

M132(η2 + ξ1)
∣∣
η3→β1

− Ω21(−η2)Ω13(β1)
n∑

i=4
x3,i + Ω23(−η2)Ω31(−η2 − β1)

n∑
i=4

x1,i

)
× Ω24(β2) C(56)(ξ2)Ω57(β3)Ω68(β4) .

The tadpole
(
Ω13(η2 + ξ1 + β1)Ω32(η2 + ξ1)Ω21(ξ1)

)
Ω24(β2) is now reduced to chains and

isolated cycles. The latter can be further decomposed until they also become chains which
may attach to the second multibranch C(56)(ξ2)Ω57(β3)Ω68(β4). Regardless of the complexity,
we have effectively reduced the cycle count by one and need only to further reduce the
second multibranch C(56)(ξ2)Ω57(β3)Ω68(β4). Similar reduction steps apply to the other
tadpoles in (9.8). Though the final expression may appear intricate, we have demonstrated
its reducibility to simpler forms.

9.3.1 Comments on possible refinement

Up to now in this section, we have demonstrated a systematic method to decompose any
product of isolated cycles, tadpoles, or multibranch graphs into basis elements. Although this
approach is effective, more efficient methods may exist, particularly in practical applications.
A prime example is the product of pure isolated cycles discussed in the preceding sections.

In the context of bosonic or heterotic string integrands, we encounter another crucial
element alongside elliptic functions Vw(1, 2, · · · , m), defined as,

Ei :=
n∑

j=1
j ̸=i

ϵi · kjf
(1)
ij , (9.10)

– 37 –



J
H
E
P
0
5
(
2
0
2
4
)
2
5
5

where ϵi denotes the gluon polarization.5 Products of Ei can potentially yield multibranch
structures upon expansion, implying that our existing knowledge on handling CW ’s might
be insufficient. However, employing a strategy analogous to that used at tree level [36], we
can treat Ei as a length-1 “cycle”. By extending the definitions of genus-one fusions (3.11)
and labeled forests (6.1) to incorporate Ei, we can develop a recursive formula akin to (7.5)
for integrands involving Ei. For instance, similar to (4.3), for a single En paired with a
single cycle, we derive,

(1 + s12··· ,n−1)C(12··· ,n−1)(ξ1)En = M12···m(ξ1)En (9.11)

−
n−1∑

a,b=1
a ̸=b

∑
ρ∈A�BT

(a,A,b,B)=(1,2,··· ,n−1)

(−1)|B| ϵn ·ka f (1)
na (xb,n + ∇b) Ωa,ρ,b,

The final term on the right side of (9.11) introduces isolated length-n f -Ω cycles, which
can subsequently be broken down using (3.4). Despite this, a comprehensive derivation of a
general formula to address an arbitrary number of Ei is beyond this paper’s scope, marking
the end of our discussion on Ei’s here.

9.3.2 A product of meromorphic multibranch and tree graphs

The methodologies outlined in this section are equally applicable within the chiral splitting
framework. In this context, we define a meromorphic tadpole as a monomial where all
instances of Ω in a tadpole are substituted with F , exemplified by C̃(12)(ξ)F23(β). Similarly,
a meromorphic multibranch can be defined, such as C̃(12)(ξ)F23(β1)F14(β2).

Given that Fi,j(βk) and Ωi,j(βk) obey identical Fay identities, as expressed in (2.5), we
can reduce any meromorphic multibranch to meromorphic tadpoles in the same manner
as we do for Ω’s. The equivalence established in (9.5) remains valid when substituting all
occurrences of Ω with F .

Addressing meromorphic tadpoles, it is crucial to be mindful of the attaching point when
applying the formula (7.9). Upon breaking the cycle in an original meromorphic tadpole,
the tails in the resultant g-F tadpoles are shortened. For example,

(1 + s12)C̃(12)(ξ)F13(β1)F34(β2) =
(

M̃12(ξ) + F12(η2) ℓ·k2 − F12(η2)
n∑

i=3
x̃2,i

)
(9.12)

× F13(β1)F34(β2) − ∇̃2
(
F12(η2)F13(β1)F34(β2)

)
,

where the tail F13(β1)F34(β2) in the meromorphic tadpole on the left-hand side of (9.12)
becomes the shorter tail F34(β2) in the g-F tadpole F12(η2)x̃2,3F13(β1)F34(β2) on the right-
hand side. This recursive approach allows us to reduce any meromorphic tadpole to its
basic form.

For products consisting of isolated meromorphic cycles, meromorphic tadpoles, or mero-
morphic multibranch graphs, we can sequentially break down the cycles using the afore-
mentioned techniques.

5For a graviton, we need two copies of this.
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9.4 Towards connected multiloop graphs

In generating functions for genus-one string integrands with massive external legs, a typical
new structure beyond multibranch graphs is the connected multiloop graphs, where two
or more cycles interconnect, exemplified by

∏r
i=1 Ω12(χi) for r ≥ 3. In this paper, we

embark on the relevant study by addressing the challenge of reducing
∏r

i=1 Ω12(χi) to a
basis, commencing with the two-loop case of r = 3 as depicted in figure 9 (e). This process
presents a form of generalization from the r = 2 case, discussed in section 2 of the companion
paper [33]. A comprehensive treatment of any connected multiloop graphs remains a subject
for future exploration.

9.4.1 Two connected loops

As already used in [33], by carefully taking the limit z1 → z and z2 → −z in Fay identities (2.5),
one can derive the following identities

Ω(z, η1, τ)Ω(−z, η2, τ) = Ω(z, η1−η2, τ)
(
ĝ(1)(η2, τ) − ĝ(1)(η1, τ)

)
+ ∂zΩ(z, η1−η2) . (9.13)

From this, we deduce,

Ω12(χ1)Ω12(χ2)Ω12(χ3) = Ω12(χ12)Ω12(χ3)
(
ĝ(1)(χ12, τ) − ĝ(1)(χ1, τ)

)
(9.14)

− Ω12(χ3)∂2Ω12(χ12) ,

where χ12 = χ1 + χ2. The term Ω∂Ω prompts us to employ IBP relations, leading to two
simultaneous equations

In∂2
(
Ω12(χ12)Ω12(χ3)

)
= ∂2

(
Ω12(χ12)Ω12(χ3)In

)
− Ω12(χ12)Ω12(χ3)

(
∂2In

)
=
(
− s12f

(1)
12 +

n∑
i=3

s2if
(1)
2i + ∂2

)(
Ω12(χ12)Ω12(χ3)In

)
. (9.15)

Together with

f
(1)
12 Ω12(χ12) = ∂2Ω12(χ12) +

(
ĝ(1)(χ12) + ∂χ1

)
Ω12(χ12) ,

f
(1)
12 Ω12(χ3) = ∂2Ω12(χ3) +

(
ĝ(1)(χ3) + ∂χ3

)
Ω12(χ3) , (9.16)

they lead to the following two simultaneous equations,

Ω12(χ3)∂2Ω12(χ12) + Ω12(χ12)∂2Ω12(χ3) −
( n∑

i=3
s2if

(1)
2i + ∇2

)(
Ω12(χ12)Ω12(χ3)

)
= −s12Ω12(χ3)∂2Ω12(χ12) − s12Ω12(χ3)

(
ĝ(1)(χ12) + ∂χ1

)
Ω12(χ12)

= −s12Ω12(χ12)∂2Ω12(χ3) − s12Ω12(χ12)
(
ĝ(1)(χ3) + ∂χ3

)
Ω12(χ3) . (9.17)

Solving these two equations (9.17) for the two Ω∂Ω terms, we get

Ω12(χ3)∂2Ω12(χ12) = A− (1 + s12)B12 + B3
2 + s12

,

Ω12(χ12)∂2Ω12(χ3) = A− (1 + s12)B3 + B12
2 + s12

, (9.18)
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with

A =
( n∑

i=3
s2if

(1)
2i + ∇2

)(
Ω12(χ3)Ω12(χ12)

)
,

B12 = Ω12(χ3)
(
ĝ(1)(χ12) + ∂χ1

)
Ω12(χ12) ,

B3 = Ω12(χ12)
(
ĝ(1)(χ3) + ∂χ3

)
Ω12(χ3) , (9.19)

By incorporating the solution from (9.18) into (9.14), the following concise representation
is achieved

Ω12(χ1)Ω12(χ2)Ω12(χ3) = 1
2 + s12

(
(3 + 2s12)ĝ(1)(χ12)−(2 + s12)ĝ(1)(χ1)+(1 + s12)∂χ1

− ĝ(1)(χ3)−∂χ3 −
n∑

i=3
s2if

(1)
2i −∇2

)
Ω12(χ12)Ω12(χ3) , (9.20)

successfully eliminating all structures of connected multiloop graphs and only leaving isolated
cycles or f -Ω tadpoles, which are already understood and can be further simplified.

Note that (9.20) is an exact formula with the Koba-Nielsen derivative of z1 not partic-
ipating on the right-hand side. Consequently, if there are chains directly attached to this
graph of connected multiloop graphs solely through z1 or z̄1 in the generating functions
of comprehensive string integrands (e.g., Ω12(χ1)Ω12(χ2)Ω12(χ3)Ω14(β)), the Koba-Nielsen
derivative term ∂2(· · · ) on the right-hand side of the formula transforms into a total derivative,
which can then be disregarded, simplifying the expression further.

9.4.2 General case

In general, for any r ≥ 2, one can derive

r∏
i=1

Ω12(χi) = 1
r − 1 + s12

[
(2r − 3 + 2s12)ĝ(1)(χ12) − (r − 1 + s12)ĝ(1)(χ1) + (r − 2 + s12)∂χ1

−
r∑

i=3

(
ĝ(1)(χi) − ∂χi

)
−

n∑
i=3

s2if
(1)
2i −∇2

]
Ω12(χ12)

r∏
i=3

Ω12(χi) , (9.21)

successfully reducing the number of cycles by one. Through recursive application, such
connected multiloop graphs can be simplified down to a basis, showcasing the versatility of
this approach for a broad range of cases. This comprehensive demonstration underscores
the robustness of the method, affirming its capacity to simplify any polynomial of Ωi,j(βk)
down to its basis components.

Following a parallel structure to (9.21), we also establish,

r∏
i=1

F12(χi) = 1
r − 1 + s12

[
(2r − 3 + 2s12)g(1)(χ12)−(r−1+s12)g(1)(χ1)+(r−2 + s12)∂χ1

−
r∑

i=3

(
g(1)(χi) − ∂χi

)
−

n∑
i=3

s2ig
(1)
2i + ℓ·k2 − ∇̃2

]
F12(χ12)

r∏
i=3

F12(χi) , (9.22)

validating the applicability of this methodology within the chiral splitting formalism as well.
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10 Discussion

In our companion paper [33], we significantly refined Fay-identities and integration-by-parts
(F-IBP) methodologies applied to one-loop string integrals with Koba-Nielsen factors, fo-
cusing on Kronecker-Eisenstein series and their associated coefficients f (w)(zi−zj , τ) and
g(w)(zi−zj , τ). We managed to express these elements in terms of conjectural chain topology
bases for generating functions of one-loop string integrals [20–22]. Building upon these ad-
vancements, the present study broadens the scope of the recursive strategies introduced in [33],
encompassing a greater variety of Kronecker-Eisenstein cycles and unraveling the elegant
combinatorial structure of their F-IBP reductions. Utilizing single-cycle formulae derived
previously, we successfully decomposed products of any number of Kronecker-Eisenstein
cycles into a chain basis, albeit introducing certain total Koba-Nielsen derivative terms in the
process. To facilitate application and accessibility, we have embedded our main results within
a Mathematica framework. Our study does not just stop at cyclic products; it delves into more
general configurations of the Kronecker-Eisenstein series and coefficients that naturally appear
in the moduli-space integrand of genus-one string amplitudes. These additional contributions
are represented through tadpoles, multibranch structures, and connected multiloop graphs.

This paper succinctly formulates a method to break down products of isolated cycles of
the Kronecker-Eisenstein series. However, for the most general massless string integrands
without coupling terms from left- and right-moving sectors, we provide a comprehensive yet
potentially intricate conceptual framework for application. This intricacy becomes more
apparent when dealing with particular string integrands, such as those in heterotic strings
with external graviton vertices, which we acknowledge may require additional efforts for
streamlined basis decomposition, as detailed in section 9.3.1. We also showcase recursive
reduction in connected multiloop graphs, typically appearing in the case of massive external
string states. A complete exploration of combinatorial toolboxes for handling any polynomial
of the Kronecker-Eisenstein series remains an open avenue for future work.

In terms of enhancing computational methods in string theories, this paper improves
tools for α′-expansions for genus-one integrals. Thanks to this work, clarifying the physical
relevance of basis coefficients can be taken more easily. This leads to optimized computations,
validation of the chain bases, and advancements in low-energy expansions of one-loop string
amplitudes [20, 21, 24, 55].

Moreover, our decomposition techniques pave the way for decomposing genus-one string
amplitudes into gauge-invariant kinematic functions and exposing double-copy structures in
general one-loop open-string amplitudes akin to those for maximal supersymmetry [56, 57].
In particular, this discovery prompts the possibility of uncovering analogous structures and
loop-level double-copy relations in heterotic and bosonic theories, thereby extending the
quantum-field-theory building blocks at tree level [6, 11–13].

Our work not only generates relations between string theory amplitudes via equivalent
relations among string integrands, but also reveals much more relationships among partial
loop integrands of field theories such as Yang-Mills, GR, Einstein-Yang-Mills theories etc.
in the field theory limit, a domain where our results are particularly applicable [43, 58].
By breaking all f

(w)
ij loops at finite τ and α′, introducing solely tachyon poles, and then

proceeding to the field theory limit to remove these poles, we establish relations for partial
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loop integrands devoid of poles. This enables the extraction of polynomial BCJ numerators in
that representation. Certain elliptic functions denoted by Vw(1, 2, · · · , m) in the literature has
also shown to be useful to produce loop integrands with quadratic propagators in the one-loop
Cachazo-He-Yuan formula [57, 59–68] and its α′ uplift, areas poised to benefit significantly
from our techniques for handling Vm(1, 2, · · · , m) and their products.

This work also paves the way for mathematical explorations, particularly in connection
with elliptic multiple zeta values [18, 23], modular graph forms [29, 30], and elliptic poly-
logarithms [18, 49, 69–73]. It guides the verification of conjectural n-point integral bases
and their generalizations [52, 74, 75], drawing parallels with Feynman integrals in particle
physics. These connections suggest that twisted de Rham theory could provide a unified and
robust framework to comprehend genus-one string integrals, their reductions, monodromy
relations, and open-closed string relations [1–4, 27, 76–91]. Existing mathematical frame-
works that leverage twisted cohomology setups have already demonstrated that meromorphic
Kronecker-Eisenstein series form a basis under certain conditions, and a generalization of
this could substantiate the conjectures presented herein [37, 46, 47, 92–95].

Last but not least, our study underscores the potential and efficacy of combinatorial
toolboxes for tree-level string integrand basis decomposition at the genus-one level [35, 36]. It
is of course interesting to study the potential extensions to genus-two scenarios [96]. A natural
follow-up step is to study the potential extensions to bases of Koba-Nielsen integrals for higher-
genus string amplitudes. As a higher-multiplicity generalization of the derivatives of Green
functions in the two-loop five-point [97–99] and three-loop four-point amplitudes [100, 101],
it would be interesting to construct generating functions of higher-genus string integrals
from the integration kernels of [96].
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A Notations

In continuation of the discussions in our companion paper [33], we utilize several terminologies
and notations that are extensively defined therein. To aid readers, we recapitulate these
expressions, particularly those introduced in section 2 and section 8.

Integration domains and measures. For the integration of open and closed string
amplitudes, as delineated in (2.15) and (2.16), their respective domains and measures are
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detailed below,

∫
op

dµop
n ϕ :=

∑
top

Ctop

∫
Dτ

top

dτ

(Im τ)
D
2

∫
Dz

top

dz2 . . . dzn ϕ , (A.1)

∫
cl

dµcl
n ϕ :=

∫
F

d2τ

(2Im τ)
D
2

∫
Tn−1

τ

d2z2 . . . d2zn ϕ . (A.2)

Here, for open strings, the summation extends over two topologies—cylinder and Moebius-
strip. The Ctop factors, known as color or Chan-Paton factors, along with the integration
domains Dτ

top and Dz
top for τ and zi respectively, are discussed in detail in [50]. The exponent

of Im τ is determined by the spacetime dimension D.

For closed strings, the integration of the modular parameter τ is performed over the
fundamental domain F of the modular group SL2(Z). The integration over punctures z2, . . . , zn

spans the toroidal worldsheet Tτ , which is characterized by a standard parallelogram in the
complex zi-plane, having corners at 0, 1, τ+1, and τ .

Even though z = 0 was set using the translation invariance on both open and closed
string worldsheets at genus one, we consider z1 to be generic throughout our study.

Koba-Nielsen factors. The Koba-Nielsen factors for open and closed string ampli-
tudes (2.15), (2.16), as well as for chiral splitting (2.22), are detailed as follows

Iop
n := exp

(
−

n∑
i<j

sij

[
log |θ1(zij , τ)| − π

Im τ
(Im zij)2

])
, (A.3)

Icl
n := exp

(
−

n∑
i<j

sij

[
log |θ1(zij , τ)|2 − 2π

Im τ
(Im zij)2

])
, (A.4)

Jn(ℓ) := exp
(
−

n∑
1≤i<j

sij log θ1(zij , τ) +
n∑

j=1
zj (ℓ·kj) + τ

4πi
ℓ2
)

. (A.5)

Despite treating sij independently, the translation invariance of Jn(ℓ) necessitates mo-
mentum conservation along the loop momentum’s direction, embodied in the condition∑n

j=1 (ℓ · kj) = 0.
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MMM12···m(ξ) and M̃MM12···m(ξ). The doubly-periodic function M12···m(ξ) is a crucial compo-
nent in the single-cycle formula (2.21), and it is defined by the following elaborate expression,

M12···m(ξ) :=
m∑

b=2

∑
ρ∈{2,3,··· ,b−1}
�{m,m−1,··· ,b+1}

(−1)m−b

(
m∑

i=1
sib ∂ηb

−
m∑

i=2
sib ∂ηi+(1+s12···m)v1(ηb, ηb+1,··· ,m+ξ)

− ĝ(1)(ηb) −
b−1∑
i=2

Si,ρv1(ηb, ηi,i+1,··· ,b−1) −
m∑

i=b+1
Si,ρv1(ηb, ηb+1,b+2,··· ,i)

)
Ω1,ρ,b

+
∑

1≤p<u<v<w<q≤m+1
(−1)m+u+v+w

(
v1(ηu+1,··· ,w−1,−ηu,··· ,w−1) + v1(ηu,··· ,w − ηu+1,··· ,w)

)

×
( m∑

i=q

svi +
p∑

i=1
svi

) ∑
ρ∈{2,3,··· ,p}�{m,m−1,··· ,q}

γ∈{p+1,p+2,··· ,u−1}�{v−1,v−2,··· ,u+1}
π∈{v+1,v+2,··· ,w−1}�{q−1,q−2,··· ,w+1}

∑
σ∈{γ,u}�{π,w}

Ω1,ρ,v,σ , (A.6)

where Sj,ρ := s1j +
∑

i∈ρ sij if j /∈ ρ , otherwise s1j +
∑

i∈ρ
i precedes j in ρ

sij and

v1(η, ξ) := ĝ(1)(η) + ĝ(1)(ξ) − ĝ(1)(η+ξ) = g(1)(η) + g(1)(ξ) − g(1)(η+ξ) , (A.7)

with ĝ(1)(η, τ) := g(1)(η, τ) + πη

Im τ
= 1

η
− ηĜ2(τ) −

∞∑
n=4

ηn−1Gn(τ) . (A.8)

Here, the holomorphic Eisenstein series are derived from the Kronecker-Eisenstein series
evaluated at the origin, represented as

Gw(τ) :=
∑

(m,n) ̸=(0,0)

1
(mτ + n)w

= −f (w)(0, τ) , w ≥ 4 , (A.9)

with modular weight (w, 0). This is represented through absolutely convergent double
sums over integers m, n for w ≥ 4. Although the analogous limit z → 0 of f (2)(z, τ) is
not well-defined, we come across a non-holomorphic yet modular variant of the weight-two
Eisenstein series

Ĝ2(τ) := lim
s→0

∑
(m,n) ̸=(0,0)

1
(mτ + n)2 |mτ + n|s

. (A.10)

Subsequently, the meromorphic version G2(τ) of Ĝ2(τ) is given by G2(τ) := Ĝ2(τ) + π
Im τ .

In the context of the meromorphic functions M̃12···m(ξ), they can be systematically
derived from the doubly-periodic functions M12···m(ξ) through a simple substitution,

M̃12···m(ξ) = M12···m(ξ)
∣∣
Ω1α(2)...α(m)→F1α(2)...α(m), ĝ(1)(η)→g(1)(η) . (A.11)

Elliptic functions and their breaking. Elliptic functions Vw(1, 2, . . . , m) for a general
w are constructed from the products of the Kronecker-Eisenstein series as shown below,

F (z12, η, τ)F (z23, η, τ) . . . F (zm,1, η, τ)
= Ω(z12, η, τ)Ω(z23, η, τ) . . . Ω(zm,1, η, τ)

=: η−m
∞∑

w=0
ηwVw(1, 2, . . . , m|τ) , (A.12)
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which yields

Vw(1, 2, . . . , m) =
∑

k1+k2+...+km=w

f
(k1)
12 f

(k2)
23 . . . f

(km−1)
m−1,mf

(km)
m1 (A.13)

=
∑

k1+k2+...+km=w

g
(k1)
12 g

(k2)
23 . . . g

(km−1)
m−1,mg

(km)
m1 ,

with cyclic identification zm+1 = z1. Here, Vm(1, 2, . . . , m) prominently features an f -cycle
f

(1)
12 f

(1)
23 · · · f (1)

m−1,mf
(1)
m1.

As elucidated in the companion paper [33], a direct application of (2.21) to string
integrands involves decomposing the elliptic functions Vm(1, 2, . . . , m) into a basis. First,
according to (A.12), one can easily establish a connection between Vm(1, 2, . . . , m) and
the cycle C(12···m)(ξ) by extracting its coefficients of bookkeeping variables ηi and ξ in a
specific order,

Vm(1, 2, · · · , m) = C(12···m)(ξ)
∣∣∣∣

η0
2 ,η0

3 ,··· ,η0
m

:=
(
· · ·
((

C(12···m)(ξ)
∣∣
η0

2

)∣∣
η0

3

)
· · ·
∣∣
η0

m

)
. (A.14)

Then we just need to perform the same operation on the right-hand side of (2.21) to break
Vm(1, 2, . . . , m),

Vm(1, 2, · · · , m) =
M12···m(ξ)

∣∣∣∣
η0

2 ,η0
3 ,··· ,η0

m,ξ0

1 + s12···m
− 1

1 + s12···m

m∑
b=2

(−1)m−b (A.15)

×
∑

ρ∈{2,3,··· ,b−1}�{m,m−1,··· ,b+1}

( n∑
i=m+1

sbif
(1)
bi + ∇b

)
Ω1,ρ,b

∣∣∣∣
η0

2 ,η0
3 ,··· ,η0

m
.

Similar operations work for a product of elliptic functions.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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