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Abstract. It is difficult to register the images involving large deformation and
intensity inhomogeneity. In this paper, a new multi-channel registration algo-
rithm using modified multi-feature mutual information (a-MI) based on minimal
spanning tree (MST) is presented. First, instead of relying on handcrafted fea-
tures, a convolutional encoder-decoder network is employed to learn the latent
feature representation from cardiac MR images. Second, forward computation
and backward propagation are performed in a supervised fashion to make the
learned features more discriminative. Finally, local features containing appear-
ance information is extracted and integrated into a-MI for achieving multi-
channel registration. The proposed method has been evaluated on cardiac cine-
MRI data from 100 patients. The experimental results show that features learned
from deep network are more effective than handcrafted features in guiding intra-
subject registration of cardiac MR images.
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1 Introduction

Image registration is an important technique in medical image analysis [1]. Many
clinical applications, such as multi-modal image fusion, radiotherapy, and computer-
assisted surgery, can benefit from this technique. However, large deformation and
intensity inhomogeneity bring great challenges into this procedure. To deal with these
problems, the standard metrics like sum of squared difference (SSD), correlation
coefficient (CC), and mutual information (MI) are not sufficient for intensity-based
registration.

Recently, some studies have focused on multi-channel image registration for these
issues. Legg et al. [2] extracted several feature images from the original images, and
subsequently incorporated these feature images into a dissimilarity measure based on
regional mutual information for multi-modal image registration. Staring et al. [3]
adopted k-nearest neighbors graph (KNNG) to implement multi-feature mutual
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information (a-MI) in order to register cervical MRI data. Rivaz et al. [4] introduced a
self-similarity weighted a-MI using local structural information to register multiple
feature images. Li et al. [5] developed an objective function that relies on the auto-
correlation of local structure (ALOST) into registration of intra-image with signal
fluctuations. Guyader et al. [6] proposed to formulate multi-channel registration as a
group-wise image registration problem, in which the modality independent neighbor-
hood descriptor (MIND) was used as the feature images.

It is critical for these methods to select discriminative features that can establish
accurate anatomical correspondences between two images. Most of multi-channel
image registrations utilized handcrafted features, such as multi-scale derivatives or
descriptor engineering, to achieve good performance. In general, handcrafted features
need manually intensive efforts to design the model for specific task. Learning-based
methods have been developed to select the best feature set from a large feature pool,
which can be adapted to the data at hand [7]. Moreover, deep learning can automati-
cally and hierarchically learn effective feature representation from the data. Shin et al.
[8] applied the stacked auto-encoders to organ identification in MR images. Chmelik
et al. [9] classified lytic and sclerotic metastatic lesions in spinal 3D CT images by deep
convolutional neural network (CNN). Wu et al. [10] employed a convolutional stacked
auto-encoder to identify intrinsic deep feature representations for multi-channel image
registration.

In contrast, we propose an end-to-end feature learning method to improve the
performance of a-MI based on minimal spanning tree (MST). The convolutional
encoder-decoder architecture that combines semantic information from a deep, coarse
layer with appearance information from a shallow, fine layer is trained in a supervised
fashion. Various latent features can be learned by forward computation and backward
propagation. The local feature representation of testing image extracted from the first
layer of encoder part is integrated into a-MI metric. The proposed method is evaluated
on intra-subject registration of cardiac MR images.

2 Method

2.1 a-MI Implementation Using MST

In the previous work [11], multi-channel registration of two images If xð Þ and Im xð Þ can
be formulated as l̂ ¼ argmin

l
aMI Tl; If xð Þ; Im xð Þ� �

, where Tl is the free-form defor-

mation (FFD) model based on B-spline. Assume that z xið Þ ¼ z1 xið Þ � � � zd xið Þ½ � denotes
a vector of dimension d containing all feature values at point xi. Let z f xið Þ be the
feature vector of the fixed image at point xi, and zm Tl xið Þ� �

be that of the moving
image at the transformed point Tl xið Þ. Let zfm xi; Tl xið Þ� �

be the concatenation of the
two feature vectors: z f xið Þ; zm Tl xið Þ� �� �

. Three MST graphs with N samples can be
constructed by:
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Lf ¼ min
XN�1

ij¼1
z f xið Þ � z f xj

� ��� ��c; ð1Þ

Lm ¼ min
XN�1

ij¼1
zm Tl xið Þ� �� zm Tl xj

� �� ��� ��c; ð2Þ

Lfm ¼ min
XN�1

ij¼1
zfm xi; Tl xið Þ� �� zfm xj; Tl xj

� �� ��� ��2c; ð3Þ

where �k k is the Euclidean distance, and c 2 0; dð Þ: So a-MI based on MST can be
expressed as:

aMI ¼ 1
1� a

log
Lf
Na

þ log
Lm
Na

� log
Lfm
Na

� �
; ð4Þ

where a ¼ d � cð Þ=d.

2.2 Network Architecture

The network architecture like 2D U-Net [12] for deep feature learning consists of
encoding and decoding branches connected with skip connections. The encoding stage
contains padded 3� 3 convolutions followed by rectified linear unit (ReLU) activation
functions. A 2� 2 maxpooling operation with stride 2 is applied after every two con-
volutional layers. After each downsampling, the number offeature channels is doubled. In
the decoding stage, a 2� 2 upsampling operation is applied after every two convolutional
layers. The resulting feature map is concatenated to the corresponding feature map from
the encoding part. After each upsampling, the number of feature channels is halved.

The input size of the encoder-decoder architecture should be divisible by 16, and
equal to the output size. At the final layer, a 1� 1 convolution is used to generate the
same depth of feature map as the desired number of classes.

2.3 Feature Representation with Supervised Learning

To train the encoder-decoder network, the input images and their labels are used to
optimize the weights of convolutional layers through the softmax classifier. For the
class imbalance between the foreground and background, we adopt weighted cross
entropy as the loss function:

L ¼ �
X

x2X x xð Þy xð Þlog ŷ xð Þð Þ; ð5Þ

where y xð Þ is the true label, ŷ xð Þ is the probability estimation by softmax, and x xð Þ is
the weight coefficient at the pixel x within domain X.

Due to supervised learning, global features containing semantic information are
prone to be biased. Here local features containing appearance information are extracted
from the first layer of our network for multi-channel registration. Figure 1 shows an
example of 64 features from a 2D slice of cardiac MR image. Finally, we embed 65
features (original intensity image, 64 deep features) into a-MI based on MST metric.
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Before performing registration, these features are normalized to have zero mean and
unit variance. Note that feature extraction is executed in 2D manner, while registration
is performed in 3D.

3 Experiment and Result

The multi-feature mutual information using MST was implemented in the registration
package elastix [13] with multi-threaded mode, which is mainly based on the Insight
Toolkit. The registration experiments were run on aWindows platformwith an Intel Dual
Core 3.40 GHz CPU and 32.0 GB memory. A Tensorflow implementation of convolu-
tional encoder-decoder network was trained on a Nvidia GeForce GTX 1070 GPU.

Fig. 1. An example of 64 local feature representations with supervised learning from a 2D slice
of cardiac MR image.
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3.1 Dataset and Evaluation Method

To evaluate the performance of the proposed method, our experiments were on cardiac
cine-MRI training data of the ACDC challenge [14], which consists of 100 patient
scans. The image spacing varies from 0:70� 0:70� 5 mm to 1:92� 1:92� 10 mm.
We resampled the data to an in-plane spacing of 1:37� 1:37 mm, and then cropped all
resampled images to an in-plane size of 224� 224 pixels. The manual delineation of
the left ventricle (LV), the left ventricle myocardium (LVM), and the right ventricle
(RV) at the end-diastolic (ED) and end-systolic (ES) phases of each patient is provided
as the ground truth for quantitative evaluation.

The data were divided into the training and validation set. The training set com-
prising 80 subjects was used to train the deep network in a slice-by-slice manner for
feature extraction. The validation set with the remaining 20 subjects was performed
registration between images at ED and ES. In total 40 different registration results were
available for evaluation. The propagated segmentations can be generated by trans-
forming the manual segmentation of the moving image to the fixed image domain, with
obtained deformation field.

The Dice Similarity Coefficient (DSC) as a measure of overlap was calculated
between propagated segmentation and ground truth of the fixed image. To compare two
methods, a value of p\0:05 in two-sided Wilcoxon tests is regarded as a statistically
significant difference. The Hausdorff distance (HD) between the surface of propagated
segmentation and the surface of ground truth was also used to measure the quality of
registration.

3.2 Parameter Settings

The proposed a-MI based on MST using the deep feature representation (in total 65
features, called aMI+SDF) was compared to localized MI (called LMI) [15] and a-MI
based on MST with the Cartesian feature set [3] (in total 15 features, called aMI+HCF).
Since cardiac MR images only show local deformations between the time phases,
initial rigid registration was not necessary.

For weighted cross entropy, we set a weight of 0.3 for the foreground class, and 0.1
for the background class. To train the encoder-decoder network, we used the Adam
optimizer, where learning rate 1:0� 10�3 and 60 epochs with batch size of 4 were set.

For all experiments on intra-subject registration, a multiresolution scheme using
Gaussian smoothing was applied. Scales r = 4.0, 2.0, and 1.0 voxels in the x and
y directions were used. For the z direction, r = 2.0, 1.0, and 0.5 voxel was used. As for
transformation model, the parameterized B-splines with grid spacing of 20, 10, and
5 mm was employed for three resolution levels respectively.

For LMI, a local region of 50� 50� 25 mm was randomly selected. About the
parameter optimization, A = 200, s = 0.6, a = 2000, and 2000 iterations were set. The
number of random samples was set to N = 2000. For aMI+HCF and aMI+SDF,
A = 50, s = 0.602, a = 2000, and 600 iterations were set. The number of random
samples was set to N = 5000.
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In multi-feature mutual information, the kD trees, a standard splitting rule, a bucket
size of 50, and an errorbound value of 10.0 were selected. The k = 20 nearest neighbors
were set. In addition, a value was set to 0.99.

3.3 Registration Accuracy

The boxplot of overlap scores using the three methods is shown in Fig. 2. It is clear that
registration quality of LMI is the worst. Compared to aMI+HCF, the median overlap of
aMI+SDF increases significantly from 0.898 to 0.921 (p ¼ 2:70� 10�3) for the LV,
from 0.781 to 0.822 (p ¼ 4:57� 10�6) for the LVM, and from 0.775 to 0.813
(p ¼ 1:92� 10�5). The overall mean and standard deviation of the measures are
summarized in Table 1. The same trend can be found in the HD measure. The median
HD of aMI+SDF for the LV is as low as 9.171 mm. Figure 3 displays a typical
example of registration results. It can be observed that aMI+SDF performs much better
than aMI+HCF for these anatomical structures.

Fig. 2. The boxplot of overlap scores using different methods at different anatomical structures.
A star indicates a statistical significant difference of the median overlap compared to the previous
column.
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4 Conclusion

In this paper, we present a multi-channel registration algorithm for cardiac MR images.
To make the feature representation more robust to large appearance variations of
cardiac substructures, we propose to extract the features with convolutional encoder-
decoder network. Afterwards, the learned features in a supervised fashion are

Table 1. The mean and standard deviation of quantitative measures using the three methods for
different anatomical structures.

Structures Methods DSC HD (mm)

LV LMI 0.797 ± 0.135 12.567 ± 4.111
aMI+HCF 0.868 ± 0.085 10.072 ± 3.412
aMI+SDF 0.888 – 0.080 9.614 – 3.348

LVM LMI 0.696 ± 0.104 12.243 ± 3.804
aMI+HCF 0.776 ± 0.069 10.481 ± 3.260
aMI+SDF 0.808 – 0.055 10.009 – 3.130

RV LMI 0.680 ± 0.168 19.065 ± 7.503
aMI+HCF 0.732 ± 0.162 17.745 ± 8.095
aMI+SDF 0.765 – 0.155 17.378 – 7.513

Fig. 3. (a) The fixed image. (b) The moving image. (c) The fusion result by aMI+HCF
registration. (d) The fusion result by aMI+SDF registration. The fixed image is combined with
the warped moving image, using a checkerboard pattern.
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incorporated into multi-feature mutual information framework. With experiments on
cardiac cine-MRI data, the proposed method demonstrates the superior performance
regarding to intra-subject registration accuracy.
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