Photophysical Properties of Three-Dimensional Transition Metal Tris-Oxalate Network Structures

  • Chapter
Transition Metal and Rare Earth Compounds

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 241))

Abstract

Excitation energy transfer processes play an important role in many areas of physics, chemistry and biology. The three-dimensional oxalate networks of composition [MIII(bpy)3][MIM′III(ox)3]ClO4 (bpy=2,2′-bipyridine, ox=oxalate, MI=alkali ion) allow for a variety of combinations of different transition metal ions. The combination with chromium(III) on both the tris-bipyridine as well as the tris-oxalate site constitutes a model system in which it is possible to differentiate unambiguously between energy transfer from [Cr(ox)3]3− to [Cr(bpy)3]3+ due to dipole-dipole interaction on the one hand and exchange interaction on the other hand. Furthermore it is possible to just as unambiguously differentiate between the common temperature dependent phonon-assisted energy migration within the 2E state of [Cr(ox)3]3−, and a unique resonant process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Fejer MM, Injeyan H, Keller U (eds) (1999) Advanced solid state lasers. In: OSA trends in optics and photonics, vol 26. Optical Society of America, Washington

    Google Scholar 

  2. Jüstel T, Nikol H, Ronda C (1998) Angew Chem Int Ed 37:3084

    Google Scholar 

  3. Grätzel M (2001) Nature 414:338

    Google Scholar 

  4. a) Clegg RM (ed) (2002) Fluorescence resonance energy transfer in biology. In: Rev Mol Biotechnol 82:123, Elsevier, Oxford; b) Andrews DL, Demidov AA (eds) (1999) Resonance energy transfer. Wiley-VCH, New York

    Google Scholar 

  5. a) Searle GFW, Tredwell CJ, Barber J, Porter G (1979) Biochim Biophys Acta 545:496; b) Owens TG (1996) Adv Photosynth 5:1

    Google Scholar 

  6. DiBartolo B (ed) (1984) Energy transfer processes in condensed matter. In: Nato Advanced Studies Institutes Series B, vol 114. Plenum Press, New York

    Google Scholar 

  7. DiBartolo B, Chen X (eds) (2001) Advances in energy transfer processes. World Scientific Publishing, Singapore

    Google Scholar 

  8. Förster T (1948) Ann Phys 2:55

    Google Scholar 

  9. Dexter DL (1953) J Chem Phys 21:836

    Google Scholar 

  10. Henderson B, Imbusch GF (1989) Optical spectroscopy of inorganic solids. Clarendon Press, Oxford

    Google Scholar 

  11. a) Tanner PA (2004) Top Curr Chem 241 Yersin H (ed) Springer, Berlin Heidelberg New York, and references therein; b) Cavalli E, Bovero E, Belletti A (2002) J Phy Condens Matter 14:5221; c) Basiev TT, Orlovski MV, Papashvili AG, Doroshenko ME, Pelle F, Heber J (2001) J Lumin 94:123; d) Chua M, Tanner PA, Reid MF (1994) Solid State Commun 90:581; e) Basiev TT, Orlowski YV, Privis YS (1996) J Lumin 69:187

    Google Scholar 

  12. a) Tsushima M, Ikeda N, Yoshimura A, Nozaki K, Ohno T (2000) Coord Chem Rev 208:299; b) Furue M, Yoshidzumi T, Kinoshita S, Kushida T, Nozakura S, Kamachi M (1991) Bull Chem Soc Jpn 64:1632; c) Vögtle F, Frank M, Nieger M, Belser P, von Zelewski A, Balzani V, Barigelletti F, DeCola L, Flamigni L (1993) Angew Chem 105:1706; d) DeCola L, Balzani V, Barigelletti F, Flamigni L, Belser P, von Zelewski A, Frank M, Vögtle F (1993) Inorg Chem 32:5228; e) Belser P, von Zelewski A, Frank M, Seel C, Vögtle F, DeCola L, Barigelletti F, Balzani V (1993) J Am Chem Soc 115:4076; f) Juris A, Balzani V, Campagna S, Denti G, Serroni S, Frei G, Güdel HU (1994) Inorg Chem 33:1491; g) Barigelletti F, Flamigni L, Balzani V, Collin JP, Sauvage JP, Sour A, Constable EC, Cargill Thompson AMW (1994) Coord Chem Rev 132:209; h) Schlicke B, Belser P, DeCola L, Sabbioni E, Balzani V (1999) J Am Chem Soc 121:4207; i) Scandola F, Bignozzi CA, Chiorbelli C, Indelli MT, Rampi MA (1990) Coord Chem Rev 97:299; k) Bignozzi CA, Bortolini O, Chiorbelli C, Indelli MT, Rampi MA, Scandola F (1992) Inorg Chem 31:172; l) Otsuka T, Kaizu Y (1997) Chem Lett 79; m) Yersin H, Kratzer C (2002) Coord Chem Rev 229:75

    Google Scholar 

  13. a) Yatskou M, Meyer M, Huber S, Pfenniger M, Calzaferri G (2003) Chem Phys Chem 4:567; b) Blasse G (1987) In: NATO ASI Series, Series C 214: Mathematical and Physical Sciences, pp 355–370; c) Fleming CN, Maxwell KA, DeSimone JM, Meyer TJ, Papanikolas, John M (2001) J Am Chem Soc 123:10336; d) Chua M, Tanner PA (1999) Chem Phys 250:267

    Google Scholar 

  14. a) Holstein T, Lyo SK, Orbach R (1976) Phys Rev Lett 36:891; b) Selzer PM, Hamilton DS, Yen WM (1977) Phys Rev Lett 38:858; c) Selzer PM, Huber DL, Barnett BB, Yen WM (1978) Phys Rev B 17:4979

    Google Scholar 

  15. a) Chu S, Gibbs HM, McCall SL, Passner A (1980) Phys Rev Lett 45:1715; b) Jessop PE, Szabo A (1980) Phys Rev Lett 45:1712; c) Imbusch GF (1992) J Lumin 53:465; d) Imbusch GF (1985) In: DiBartolo B (ed) Energy transfer in condensed matter, NATO ASI Serie B 114, p 471. Plenum Publishing Corporation

    Google Scholar 

  16. Decurtins S, Schmalle HW, Pellaux R, Schneuwly P, Hauser A (1996) Inorg Chem 35:1451

    Google Scholar 

  17. Schönherr T, Spanier J, Schmidtke HH (1989) J Phys Chem 93:5969

    Google Scholar 

  18. Hauser A, Mäder M, Robinson WT, Murugesan R, Ferguson J (1987) Inorg Chem 26:1331

    Google Scholar 

  19. Sugano S, Tanabe Y, Kamimura H (1970) Pure and applied physics 33. Academic Press, New York London

    Google Scholar 

  20. Imbusch GF, Yen WM (1987) In: Yen WM, Levenson MD (eds) Lasers, spectroscopy and new ideas. Springer Series in Optical Sciences 54. Springer, Berlin Heidelberg New York, p 248

    Google Scholar 

  21. a) Riesen H (1992) J Lumin 54:71; b) Riesen H, Krausz E (1992) J Chem Phys 97:7902

    Google Scholar 

  22. a) Yen WM, Selzer PM (eds) (1981) Laser spectroscopy of solids. Applied Physics 49, Springer, Berlin Heidelberg New York; b) Moerner WE (ed) (1988) Persistent spectral hole burning. Top Curr Phys 44, Springer, Berlin Heidelberg New York

    Google Scholar 

  23. a) Riesen H, Krausz E (1993) Comm Inorg Chem 14:323; b) Krausz E, Riesen H (1999) In: Solomon EI, Lever ABP (eds) Inorganic electronic structure and spectroscopy I. Wiley, New York, p 307

    Google Scholar 

  24. Lahiry S, Kakkar R (1982) Chem Phys Lett 88:499

    Google Scholar 

  25. von Arx ME, Hauser A, Riesen H, Pelaux R, Decurtins S (1996) Phys Rev B 54:15800

    Google Scholar 

  26. Lewis ML, Riesen H (2002) J Phys Chem A 106:8039

    Google Scholar 

  27. Langford VS, von Arx ME, Hauser A (1999) J Phys Chem A 103:7161

    Google Scholar 

  28. Ballhausen CJ (1962) Introduction to ligand field theory. McGraw-Hill, New York

    Google Scholar 

  29. Blasse G (1984) In: DiBartolo B (ed) Nato Advanced Studies Institutes Series B, vol 114. Plenum Press, New York

    Google Scholar 

  30. Determined on a single crystal by measuring the real thickness using a micrometer and the effective thickness through the crystal by focussing on the top and bottom surfaces using a microscope

    Google Scholar 

  31. a) Dornauf H, Heber J (1980) J Lumin 22:1; b) Heber J, Dornauf H, Siebold H (1981) J Lumin 24:735; c) Vasquez SO, Flint CD (1995) Chem Phys Lett 238:378

    Google Scholar 

  32. von Arx ME, Langford VS, Oetliker U, Hauser A (2002) J Phys Chem A 106:7099

    Google Scholar 

  33. von Arx ME, Burattini E, van Pieterson L, Pellaux R, Decurtins S, Hauser A (2000) J Phys Chem A 104:883

    Google Scholar 

  34. Hauser A, von Arx ME, Pellaux R, Decurtins S (1996) J Mol Cryst Liq Cryst 286:225

    Google Scholar 

  35. Coronado E, Galan-Mascaros JR, Gomez-Garcia CJ, Martinez-Agudo JM (2001) Inorg Chem 40:113

    Google Scholar 

  36. Sieber R, Decurtins S, Stoeckli Evans H, Wilson C, Yufit D, Howard JAK, Capelli SC, Hauser A (2000) Chem Eur J 6:361

    Google Scholar 

Download references

Acknowledgements

We thank N. Amstutz for the synthesis of the samples used in this study, and S. Decurtins and his co-workers for their help with the determination of the concentrations of donors and acceptors in the mixed crystals. We thank H. Riesen for helpful discussion in particular on the topic of FLN spectroscopy and spectral hole burning. Figure 3b is by courtesy of S. Decurtins. This work was financially supported by the Swiss National Science Foundation and NFP47.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Hauser .

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Hauser, A., von Arx, M.E., Langford, V.S., Oetliker, U., Kairouani, S., Pillonnet, A. Photophysical Properties of Three-Dimensional Transition Metal Tris-Oxalate Network Structures. In: Transition Metal and Rare Earth Compounds. Topics in Current Chemistry, vol 241. Springer, Berlin, Heidelberg. https://doi.org/10.1007/b96860

Download citation

  • DOI: https://doi.org/10.1007/b96860

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20948-5

  • Online ISBN: 978-3-540-39904-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation